Vulnerabilities in Analog and Digital Electronics

Microelectronics and Computer Group
University of Maryland & Boise State University
Vulnerabilities in Analog and Digital Electronics
Overview

The Fundamental Issues:

1) Modern ICs contain millions of transistors and millions of metal interconnects

2) Critical dimensions of standard transistors are below 0.1µm with digital voltage levels of 1.0V, leaving very low noise margins.

3) Interconnect networks can be highly capacitive and inductive.

4) Such small devices are extremely fragile, especially MOSFET gate oxides which are 0.002µm thick.

5) Induced voltages from coupling to external and internal E&M sources can cause circuit errors and permanent damage.
NEURON
Vulnerabilities in Analog and Digital Electronics
Overview

Circuit Topology Issues:

1) Communication circuits are especially vulnerable.

2) Communication circuit topology typically consists of an antenna, coupled into an LNA at input, followed by a mixer/down-converter, into a demodulator, then a ADC and finally a processor.

3) Each stage has its unique vulnerabilities.
 - Input LNA especially vulnerable: can overload, jam, etc
 - Demodulator often contains a PLL, which is subject to phase noise
 - Processor can introduce bit errors

4) Damage can be temporary or permanent
Vulnerabilities in Analog and Digital Electronics
Presentations

1. Microwave radiation effects in digital data processors
 ------------ B. Jacob

2. On-chip measurement of electromagnetic pulses
 ---------- R. J. Baker

3. Numerical modeling & analysis of nanoscale devices
 -------- N. Goldsman

4. Experimental studies of interference & upset in devices & gates
 ------------ A. Iliadis

5. Diagnostics of upset & damage using focused ion beams
 ---------- J. Melngailis
Numerical Modeling & Analysis of Nanoscale Devices

Neil Goldsman
Department of Electrical and Computer Engineering
University of Maryland
College Park, MD 20192
Numerical Modeling & Analysis of Nanoscale Devices

Outline

• Introduction

• Modeling Overview

• Numerical Boltzmann/Spherical Harmonic Method

• Results:
 MOSFET
 Bipolar Junction Transistor
Issues:

- Nanoscale devices are very fragile with gate lengths of 0.1\(\mu\)m and below, and oxide thickness of 0.002\(\mu\)m.
- E&M pulses can couple to device terminals and momentarily alter voltage levels.
- Such terminal voltage changes can radically alter I-V characteristics and if large enough, can destroy device though oxide breakdown and/or filament formation related to excessive avalanching.

Use Numerical Modeling of Nanoscale Devices to help understanding and to predict consequences of E&M coupling to terminals, and to present design alternatives for safeguarding against coupling effects.
Numerical Modeling & Analysis of Nanoscale Devices

Goals:
1) Use advanced semiconductor device modeling tools to understand effects of E&M coupling on nanoscale transistors, especially for rapid coupling to device terminals.

2) Where possible, use existing tools

3) When necessary, develop new tools by adding physics and algorithms

4) Examine E&Ms effect on existing as well as future devices scaled to 25nm

5) Extract device circuit models for SPICE to predict how the affected devices will influence circuit operation
Numerical Modeling & Analysis of Nanoscale Devices

Numerical Boltzmann Approach to Semiconductor Device Modeling (Developed at University of Maryland):

Achieves detailed device modeling by self-consistent solution of:
- Boltzmann Transport Equation for Electrons
- Current-Continuity Equation for Holes
- Poisson Equation
- Schrodinger Equation

E&M coupling to device terminals can dramatically change boundary conditions of these equations and thus alter the results

Solution gives the following for the entire device:
- Quantum corrected nonequilibrium distribution function
- Electrostatic potential
- From the distribution function, these quantities can be obtained:
 - Terminal currents, electron concentrations, impact-ionization, gate currents
Numerical Boltzmann/Spherical Harmonic Device CAD
Quantum Effects: Schrödinger Results

Mathematical Model

START

Poisson Eqn

Boltzmann Eqn

Hole Continuity Eqn

Schrödinger Eqn

NO

Converge

YES

STOP

MOSFET CROSS SECTION

Gate Oxide

Quantum Box

Substrate
Numerical Boltzmann/Spherical Harmonic Device CAD
E&M Influences Quantum Effects: Schrödinger Results

MOSFET Cross Section

MOSFET QM Confinement Shown

Dispersion Relation of QM Well

MOSFET Current Density
Numerical Boltzmann/Spherical Harmonic Device CAD Results: Device Structure and Distribution Function

MOS Cross Section

Electron Concentration

Channel Distribution Function

I-V: Agreement
Numerical Boltzmann/Spherical Harmonic Device CAD

E&M Coupling can Dramatically Increase: Impact Ionization, Substrate & Gate Currents

Agreement with experiment: No fitting parameters!

Impact-Ionization Generation Rate

Substrate Current

Gate Current Illustration

Gate Current

I_g vs V_g, V_d
Numerical Boltzmann/Spherical Harmonic Device CAD
E&M Coupling can Cause More Direct Tunneling Gate Currents

Gate Tunneling Illustration

Device Structure

Wave function with lower energy

Wave function with higher energy
Time-Dependent BJT Simulation

1) 0.75V, 0.1 psec pulse input to BJT base
2) Transient simulation (movie) shows response
 Field responds in 1.0 psec
 Carriers respond fully in 20psec
 Distribution function responds in 20psec
 Response demonstrates 20psec limitation in response time.

Indicates critical time scales for inducing damage and errors.
Numerical Boltzmann/Spherical Harmonic Device CAD
Quantum Effects: Schrödinger Results

BJT Structure

Doping Profile

Input Signal

Electric Field
Numerical Modeling & Analysis of Nanoscale Devices

Summary

1) E&M coupling to device terminals can give rise to unwanted, potentially large and damaging voltage and current variations.

2) Use advanced semiconductor device modeling tools including Numerical Boltzmann method to understand and model effects of E&M coupling on nanoscale transistors.

3) Where possible, use existing tools.

4) When necessary, develop new tools by adding physics and algorithms.

5) Examine E&M's effect on existing as well as future devices scaled to 25nm.

6) Extract device circuit models for SPICE to predict how the affected devices will influence circuit operation.