Microwave Effects & Chaos in 21st Century Analog & Digital Electronics

University of Maryland, College Park (UMCP) and Boise State University (BSU)

AFOSR  MURI 2001 Kickoff Meeting 6/14/01
Goals

- Understand failure mechanisms in electronics, esp. as voltage & detail size decrease (e.g. to 0.5V, 50nm)
- Discover Chaos effects that would result in upset or damage at reduced levels of microwave power density
- Specify innovations to reduce vulnerability (e.g. new computer architecture, error correcting codes, or electronic packaging)
Microwave Effects & Chaos (UMCP/BSU)

**Methodology**

- Custom design and fabrication of ICs with on-chip diagnostics and ability to modify connections with focused ion beams
- Statistical description of fields in complex topologies (hot spots on circuits in boxes)
- Testing over an extensive frequency range (100MHz to 100 GHz), single or repetitive pulsing, variable pulse duration & power
- Balanced efforts in theory, computer simulation and experiment
Three Interrelated Parts of Study

- A. Studies of semiconductor devices, circuits and systems
- B. Studies of Chaos at microwave frequencies
- C. Microwave testing of electronics identified as candidates for intensive study in parts A and B
Microwave Effects & Chaos (UMCP/BSU)

**Personnel**

- Principal Investigator: Victor Granatstein

- Co - PIs:

  Part A: Neil Goldsman, Agis Iliadis, Bruce Jacob, John Melngailis

  Part B: Steven Anlage, Thomas Antonsen, Jr., Edward Ott

  Part C: Yuval Carmel, Patrick O’Shea, Omar Ramahi, John Rodgers

- PI on BSU Subcontract: R. Jacob Baker (Part A)
Microwave Effects & Chaos (UMCP/BSU)

**Presentations**

A. 1. Overview of vulnerabilities in analog & digital electronics
------ N. Goldsman

2. On-chip measurement of electromagnetic pulses
------ R. J. Baker

3. Microwave radiation effects in digital data processors
------ B. Jacob

4. Numerical modeling & analysis of nanoscale devices
------ N. Goldsman

5. Experimental studies of interference & upset in devices & gates
------ A. Iliadis

6. Diagnostics of upset & damage using focused ion beams
and other advanced techniques
------ J. Melngailis
Microwave Effects & Chaos (UMCP/BSU)

Presentations (continued)

B. 1. Theory and modeling of wave chaos
       -------- E. Ott and T.M. Antonsen Jr.

       2. Chaos experiments at microwave frequencies
          --------------------------     S. Anlage

C. 1. Microwave experimental design and methodology
       --- J. Rodgers, Y. Carmel & P. O’Shea

       2. Computational electromagnetics & coupling into enclosures
          --------------------------     O. Ramahi