MURI on "The Effects of RF Pulses on Electronic Circuits and Systems" (Administered by AFOSR)

Introduction to Presentations by University of Maryland, College Park (UMCP) and Boise State University (BSU)

"Overview of Research Progress"

presented by Victor Granatstein Second Annual Review 11/14/03

Microwave Effects & Chaos (UMCP/BSU) MAIN TOPICS

A. Using wave chaos concepts to analyze complicated RF enclosures.

- B. EM noise mitigation in circuit boards and cavities
- C. Microwave effects on semiconductor devices, ICs & digital systems
- D. Testing chaos and nonlinear effects in high speed circuits

- A. Wave Chaos : Significant Progress (S. Anlage, T. Antonsen, E. Ott, 2 grad Students, 2 UGs)
- Model gives statistical ensemble of scattering matrices describing coupling into and out of irregular enclosures (Random Coupling Model)
- RCM requires only generic input parameters (e.g., cavity Q & impedance of ports)
- Predictions of RCM verified in 2-d wave chaotic microwave cavity (1/4 bow tie cavity)
- <u>Revolutionary new way to predict properties of</u> <u>irregular enclosures</u>.

- A. Wave Chaos: Interactions/Transitions
- HPM community and related intelligence community informed of results (AFRL, ARL & NRL visits to UMCP)
- Participation in Ad-hoc DOD Working Group on Nonlinear & Chaotic Effects (UMCP hosted their meeting on 4/25/03 and presented wave chaos work there)
- X. Zheng, T. Antonsen, E. Ott, "Statistics of Chaotic Scattering Matrices: A Random Coupling Approach" (in draft)

Microwave Effects & Chaos (UMCP/BSU) 5 B. EM Noise Mitigation: Significant Progress

(Omar Ramahi, 4 grad students, 1 M.S. & 1 Ph.D. completed)

- Developed new concept for noise mitigation in circuit boards using high impedance surfaces (electromagnetic band gap material)
- Developed new aperture coating technique that substantially reduces aperture induced resonance

Microwave Effects & Chaos (UMCP/BSU) 6 B. EM Noise Mitigation: Interactions/Transitions

- Invited presentations at IBM (Res.Triangle Pk., NC), Sun Microsys. (Burlington, MA), Hewlett Packard (Marlborough, MA), Inco Corp (Toronto, Can) & E-tenna (Laurel, MD)
- Keynote talk at annual Nokia meeting in Finland on aperture modeling
- Proposal to IBM for expanded study of noise mitigation in PCBs
- 3 papers in refereed journals, 10 papers in conference proceedings

C. Microwave Effects on Devices & Circuits Significant Progress

(N. Goldsman, P. Guzdar, A. Iliadis, B. Jacob, O. Ramahi, 10 grad students, 2 MS & 1 Ph.D. completed, 2 UGs)

- Developed suite of state-of-the-art simulation tools for simulating EM effects on ICs; showed oxide breakdown occurs for induced voltages 2x power supply voltage (1.3 volts)
- On-chip protection circuit under patent review
- Identified sources of vulnerability in digital ckts. & used Verilog model to explore architecture-level approaches to mitigation of RF effects

C. Microwave Effects on Devices & Circuits Interactions/Transitions

8

- Working with NSA to develop models for predicting interactions in ICs
- Working with ARL to simulate details of wide bandgap semiconductor device operation
- 2 papers in refereed journals, 7 papers in conference proceedings, patent disclosure
- Organizing session on RF Effects & Metamaterials at 2003 Int. Semiconductor Device Research Symposium (ISDRS), Dec. 10-12, 2003

D. Testing Chaos & Nonlinear Effects in Ckts. Significant Progress

(S. Anlage, V. Granatstein, J. Melngailis, J. Rodgers, 3 grad students incl. 1 MS completed, 6 UGs)

- Deeper understanding of chaos in p/n junctions; e.g., importance of reverse recovery effects
- Demonstrated that distributed ckt.
 containing p/n junction displays chaos

D. Testing Chaos & Nonlinear Effects in Ckts. Significant Progress (cont.)

- Identified major mechanism responsible for RF upset of ICs ; viz., ubiquitous ESD devices demodulate RF and induced voltages cause bias shift, bit errors, latch, oscillations, noise, etc.
- Showed that spurious resonances could amplify induced voltages by a factor of 6
- Improved on-chip microwave sensor; viz.
 Schottky diode compatible with CMOS operating at 15 GHz (previous range was < 3 GHz)

D. Testing Chaos & Nonlinear Effects in Ckts. Interactions/Transitions

- Provided test results on a wide variety of devices to Titan/Jaycor to assist with their modeling of RF effects in DOD systems
- Phillips Logic Co. supplying device samples & proprietary design parameters. They have expressed interest in stronger collaboration
- Papers presented at 2003 Directed Energy Symposium, AMEREM 2002, 2001 ISDRS, and accepted for presentation at 2003 ISDRS
- 2 papers in refereed journals

Research at Boise State University

(R. J. Baker, W. B. Knowlton, 6 grad students incl. 1 MS completed, 6 UG students)

- Collaboration with J. Melngailis on CMOS compatible Schottky diode
- Demonstrated significant degradation in MOSFET operation resulting from gate oxide pulsed stress
- Interest in using high frequency pulses with direct tunneling (present in thin oxide layers) to develop new flash memory technology
- Cooperation with Micron Technology & Cypress Semiconductor
- 6 papers in conference proceedings

Presentations

PART A. WAVE CHAOS

- 2. "Statistical Properties of Wave Chaotic Scattering Matrices" ----- Presenter: <u>Tom Antonsen</u>
- 3. "Properties of Complicated Enclosures (Wave Chaos Experiments)" --- Presenter: <u>Steve Anlage</u>

PART B. NOISE MITIGATION

 4. "EM Noise Mitigation in Circuit Boards and Cavities" ----- Presenter: <u>Omar Ramahi</u> Microwave Effects & Chaos (UMCP/BSU) Presentations

PART C.

MICROWAVE EFFECTS on DEVICES & CKTS.

14

- 5. "EM Effects on Semiconductor Devices, Gates & IC Interconnects" ----- Presenter: <u>Neil Goldsman</u>
- 6. "Microwave Interference Vulnerabilities of Devices in ICs" ----- Presenter: <u>Agis Iliadis</u>

7. "Evaluating Vulnerabilities of Digital Systems' ---- Presenter: <u>Bruce Jacob</u> Microwave Effects & Chaos (UMCP/BSU)
Presentations

PART D. TESTING CHAOS & NONLINEAR EFFECTS in CIRCUITS

- 8. "Inducing Chaos in the p/n Junction"
 Presenter: <u>Steve Anlage</u>
- 9. "RF Transient & Nonlinear Effects in High Speed Circuits" ----- Presenter: John Rodgers
- 10. "Schottky Diode RF Detector & Focused Ion Beam Post-processing" - Presenter John Melngailis

Microwave Effects & Chaos (UMCP/BSU) Presentations

RESEARCH at BOISE STATE UNIVERSITY

16

 11. "Degradation in 3.2 nm Gate Oxides: Effects on Inverter Performance and MOSFET Characteristics"
 ----- Presenter: <u>Bill Knowlton</u>