

Statistical Properties of Wave Chaotic Scattering and Impedance Matrices

MURI Faculty:	Tom Antonsen, Ed Ott, Steve Anlage,
MURI Students:	Xing Zheng, Sameer Hemmady
Collaborators:	Shmuel Fishman, Richard Prange

AFOSR-MURI Program Review

Electromagnetic Coupling in Computer Circuits

Schematic

- What can be said about coupling without solving in detail the complicated EM problem ?
- Statistical Description !

(Statistical Electromagnetics, Holland and St. John)

• Coupling of external radiation to computer circuits is a complex processes:

apertures resonant cavities transmission lines circuit elements

• Intermediate frequency range involves many interacting resonances

- System size >> Wavelength
- Chaotic Ray Trajectories

voltage

current

Z and S-Matrices What is S_{ij} ?

outgoing

incoming

• Details depend sensitively on unknown parameters

Statistical Model of Z Matrix

Two Dimensional Resonators

 $H_x \xrightarrow{E_z} H_y$

Only transverse magnetic (TM) propagate for f < c/2h

• Anlage Experiments

• Power plane of microcircuit

Voltage on top plate $E_z(x, y) = -V_T(x, y) / h$

• Cavity fields driven by currents at ports, (assume $e^{j\omega t}$ dependence) :

$$\nabla_{\perp}^{2} V_{T} + k^{2} V_{T} = -jkh \eta \sum_{ports} u_{i} I_{i} \qquad \eta = \sqrt{\mu/\varepsilon}$$

$$k = \omega/c$$
Profile of excitation current
ort: $V_{i} = \int dx dy u_{i} V_{T}$

• Voltage at jth port:

• Impedance matrix $Z_{ij}(k)$: $Z_{ij} = -jkh\eta \int u_i \left(\nabla_{\perp}^2 + k^2\right)^{-1} u_j dxdy$

• Scattering matrix: $S(k) = (Z + Z_0 I)^{-1} (Z - Z_0 I)$

Problem, find:
$$Z_{ij} = -jkh\eta \int u_i \left(\nabla_{\perp}^2 + k^2\right)^{-1} u_j dxdy$$

- 1. Computational EM HFSS
- 2. Experiment Anlage, Hemmady
- 3. Random Matrix Theory replace wave equation with a matrix with random elements No losses
- 4. Random Coupling Model expand in Chaotic Eigenfunctions
- 5. Geometric Optics Superposition of contributions from different ray paths Not done yet

Preprint available: <u>Z and S 1.pdf</u>

$$Z_{ij} = -jkh\eta \int u_i \left(\nabla_{\perp}^2 + k^2 \right)^{-1} u_j \, dx dy = -jkh\eta \sum_{\text{modes}-n} \frac{\langle u_i \phi_n \rangle \langle \phi_n u_j \rangle}{k^2 - k_n^2}$$

Where:

1. ϕ_n are eigenfunctions of closed cavity

$$\left\langle u_{j}\phi_{n}\right\rangle =\int dxdy\ u_{j}\phi_{n}$$

2. k_n^2 are corresponding eigenvalues

$$k_n = \omega_n / c$$

Z_{ij} - Formally exact

Random Coupling Model Replace ϕ_n by Chaotic Eigenfunctions

$$Z_{ij} = -jkh \eta \sum_{\text{modes}-n} \frac{\langle u_i \phi_n \rangle \langle \phi_n u_j \rangle}{k^2 - k_n^2}$$

1. Replace eigenfunction with superposition of random plane waves

Chaotic Eigenfunctions

Rays ergodically fill phase space.

Eigenfunctions appear to be a superposition of plane wave with random amplitudes and phases.

$$\phi_n = \lim_{N \to \infty} \operatorname{Re}\left\{ \sqrt{\frac{2}{AN}} \sum_{j=1}^N a_j \exp\left[i\left(k_j \cdot x + \theta_j\right)\right] \right\}$$

Time reversal symmetry

$$\phi_n = \lim_{N \to \infty} \frac{1}{\sqrt{2AN}} \sum_{j=1}^N a_j \exp\left[i\left(k_j \cdot x + \alpha_j\right)\right]$$

Time reversal symmetry broken

 k_j uniformly distributed on a circle $|k_j| = k_n$

$$\phi_n$$
 is a Gaussian random variable

TRS $P(\phi) \approx \exp\left[-\left|\phi\right|^2 / 2\left\langle \left|\phi\right|^2\right\rangle\right]$

$$Z_{ij}(k) = -\frac{j}{\pi} \sum_{n} R_{Ri}^{1/2}(k_n) R_{Rj}^{1/2}(k_n) \frac{\Delta k_n^2 w_{in} w_{jn}}{k^2 (1 - jQ^{-1}) - k_n^2}$$

System parameters

$$R_{Ri}(k) = \frac{k\eta}{4} \oint \frac{d\theta_k}{2\pi} \left| \overline{u}_i(k) \right|^2 = \operatorname{Re}\left\{ Z_{Ri} \right\}$$

-Radiation resistance for port i

 $\Delta k_n^2 = 1/(4A)$ - mean spectral spacing

Q -quality factor

Statistical parameters

- win- Guassian Random variables
 - k_n random spectrum

• Mean and fluctuating parts:

$$Z_{ij} = \left\langle Z_{ij} \right\rangle + \delta Z_{ij}$$

- Mean part: (no losses) $\begin{cases} Z_{ii} \rangle = j X_{R,i}(k) & \text{Radiation reactance} \\ X_{R,i}(k) = \text{Im} \{Z_R\} \\ \langle Z_{ii} \rangle = 0, \quad i \neq j \end{cases}$
 - Fluctuating part: Lorenzian distribution -width radiation resistance R_{Ri}

$$P(X_{ii}) = \frac{R_{Ri}}{\pi \left(X_{ii}^2 + R_{Ri}^2\right)}$$

Numerical Test of Z_{ii}

HFSS - Solutions Bow-Tie Cavity

Frequency Dependence of Reactance for a Single Realization

Mean spacing $\delta f \approx .016 \text{ GHz}$

Frequency Dependence of Median Cavity Reactance

Distribution of Fluctuating Cavity Impedance

 $\xi = (X - X_{R}(\omega)) / R_{R}(\omega)$

Impedance Transformation by Lossless Two-Port

Properties of Lossless Two-Port Impedance

HFSS Solution for Lossless 2-Port

Effect of Losses

Equivalence of Losses and Channels

 $Z_{cav} = jX_R + (\rho + j\xi)R_R$

Distribution of resistance fluctuations $P(\rho)$

3

2

-2

-1

0

ξ

1

-3

Future Directions

- Direct comparison of random coupling model with

 -random matrix theory ✓
 -HFSS solutions ✓
 -Experiment ✓
- Exploration of increasing number of coupling channels \checkmark
- Study losses in HFSS
- 3D examples
- Role of Scars on low period orbits
- Generalize to systems consisting of circuits and fields

Role of Scars?

• Eigenfunctions that do not satisfy random plane wave assumption

- Scars are not treated by either random matrix or chaotic eigenfunction theory
- Semi-classical methods

Bow-Tie with diamond scar

Large Contribution from Periodic Ray Paths?

Future Directions

Additional complications to be added later

- Can be addressed
- -theoretically-numerically-experimentally

HFSS simulation courtesy J. Rodgers