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Electromagnetic Coupling in Computer 
Circuits

connectors

cables

circuit boards

Integrated circuits

Schematic
• Coupling of external radiation to 
computer circuits is a complex 
processes:

apertures
resonant cavities
transmission lines
circuit elements

• Intermediate frequency range 
involves many interacting resonances

• System size >>
Wavelength

• Chaotic Ray Trajectories

• What can be said about coupling without 
solving in detail the complicated EM 
problem ?
• Statistical Description !
(Statistical Electromagnetics, Holland and 
St. John)



Z and S-Matrices
What is Sij ?
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S matrix
S = (Z + Z0 )−1(Z − Z0)

• Complicated function of 
frequency
• Details depend sensitively on 
unknown parameters

Z(ω) , S(ω)

N- Port
System

•
•
•

V1
+ ⇒

V1
− ⇐

VN
+ ⇒

VN
− ⇐

N ports  
• voltages and currents, 
• incoming and outgoing 
waves
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Statistical Model of Z Matrix

Port 1

Port 2

Other ports

Losses

Port 1

Free-space radiation
Resistance   RR(ω)
ZR(ω) = RR(ω)+jXR (ω)

RR1(ω)

RR2(ω)

Zij (ω) = −
j
π

RRi
1/2(ωn )RRj

1/2(ωn)
∆ωn

2 winw jn

ω2(1+ jQ−1) −ωn
2

n
∑

Statistical Model Impedance

Q -quality factor

∆ω2
n - mean spectral spacing

Radiation Resistance   RRi(ω)

win- Guassian Random variables

ωn - random spectrum

System
parameters

Statistical
parameters



Two Dimensional Resonators

• Anlage Experiments
• Power plane of microcircuit

Only transverse magnetic (TM) propagate for
f < c/2h

Ez

HyHx

h

Box with
metallic walls

ports

Ez (x, y) = −VT (x, y) / h

Voltage on top plate



Wave Equation for 2D Cavity Ez =-VT/h

Vj = dxdyu jVT∫• Voltage at jth port:

• Impedance matrix Zij(k): Zij = − jkhη ui ∇⊥
2 + k 2( )∫

−1
uj dxdy

• Scattering matrix: S(k) = Z + Z0I( )−1 Z − Z0I( )

k=ω/c
∇⊥

2 VT + k 2VT = − jkhη uiIi
ports
∑

• Cavity fields driven by currents at ports, (assume ejωt dependence) :

η = µ / ε

Profile of excitation current



Preprint available: Z_and_S_1.pdf

Five Different Methods of Solution

Zij = − jkhη ui ∇⊥
2 + k 2( )∫

−1
u j dxdy

1. Computational EM - HFSS

2. Experiment - Anlage, Hemmady

3. Random Matrix Theory - replace wave equation with a matrix with random elements
No losses

4. Random Coupling Model - expand in Chaotic Eigenfunctions

5. Geometric Optics - Superposition of contributions from different ray paths
Not done yet

Problem, find:



Expand VT in Eigenfunctions of Closed Cavity

Zij = − jkhη ui ∇⊥
2 + k 2( )∫

−1
uj dxdy = − jkhη

uiφn φnuj

k2 − kn
2

modes−n
∑

Where:

1. φn are eigenfunctions of closed cavity

2. kn
2 are corresponding eigenvalues

ujφn = dxdy∫ ujφn

kn = ωn / c

Zij - Formally exact



Random Coupling Model
Replace φn by Chaotic Eigenfunctions

Zij = − jkhη
uiφn φn u j

k 2 − kn
2

modes− n
∑
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2.  Eigenvalues kn
2 are distributed according

to appropriate statistics

sn = (kn+1
2 − kn

2) / ∆k2Normalized Spacing

1. Replace eigenfunction with superposition of random plane waves

φn = limN →∞ Re
2

AN
ak exp i knek ⋅ x +θk( )[ ]

k =1

N

∑
 
 
 

 
 
 

Random amplitude Random direction Random phase



Chaotic Eigenfunctions

Rays ergodically fill phase 
space. 
 
Eigenfunctions appear to be a 
superposition of plane wave 
with random amplitudes and 
phases.

φn = limN →∞ Re
2

AN
aj exp i k j ⋅ x + θ j( )[ ]

j =1

N

∑
 
 
 

  

 
 
 

  

φn = limN →∞

1
2AN

aj exp i k j ⋅ x + α j( )[ ]
j =1

N

∑

Time reversal 
symmetry

kj uniformly distributed on a circle |kj|=kn

Time reversal 
symmetry 
broken

is a Gaussian 
random variable

φn

P(φ) ≈ exp −φ
2

/ 2 φ
2[ ]

TRS



Statistical Model for Impedance Matrix

Zij (k) = −
j
π

RRi
1/2(kn)RRj

1/2(kn)
∆kn

2 winw jn

k2(1− jQ−1) − kn
2

n
∑

Q -quality factor

∆k2
n=1/(4A) - mean spectral spacing

RRi(k) =
kη
4

dθk
2π∫ u i (k) 2 = Re ZRi{ }

-Radiation resistance for port i

System parameters

win- Guassian Random variables

kn - random spectrum

Statistical parameters



Predicted Properties of Zij

Zij = Zij + δZij•   Mean and fluctuating parts:

•   Fluctuating part:  Lorenzian distribution
-width radiation resistance RRi

P(Xii) =
RRi

π Xii
2 + RRi

2( )

•   Mean part:
(no losses)

Zij = 0, i ≠ j

Zii = jX R, i (k) Radiation reactance

X R,i (k) = Im Z R{ }



Numerical Test of Zii

ξ = −
1
π

wn
2

k2 − kn
2

n =1

N

∑Numerically Generated Reactance ξ = ξ +δξ

ξ

106 realizations, N=2000,

Theory: ξ =
1
π

ln
N − k 2

k2

 
  

 
  

Mean ξ 

P(δξ) =
1

π (1+ δξ 2)

Fluctuation δξ



HFSS - Solutions
Bow-Tie Cavity

Moveable conducting
disk - .6 cm diameter
“Proverbial soda can”

Curved walls guarantee all 
ray trajectories are 
chaotic

Cavity impedance 
calculated for 
100 locations of disk
4000 frequencies
6.75 GHz  to 8.75 GHz



Frequency Dependence of Reactance 
for a Single Realization

Ω

Mean spacing δf ≈ .016 GHz

Zcav=jXcav



Frequency Dependence of Median Cavity 
Reactance

Effect of strong 
Reflections ?

Radiation Reactance
HFSS with perfectly absorbing
Boundary conditions

Median Impedance for
100 locations of disc

∆f = .3 GHz, L= 100 cm

Ω



Distribution of Fluctuating Cavity Impedance

ξ = (X − X R(ω)) / RR (ω)

6.75-7.25 GHz 7.25-7.75 GHz

7.75-8.25 GHz 8.25-8.75 GHz

ξ    ξ    

ξ    ξ    

Rfs ≈ 35 Ω



Impedance Transformation 
by Lossless Two-Port

Port 

Free-space radiation
Impedance
ZR(ω) = RR(ω)+jXR(ω)

Port 

Cavity Impedance: Zcav(ω)

Zcav(ω) = j(XR(ω)+ξ RR(ω))

Unit Lorenzian

Lossless
2-Port

Lossless
2-Port

Z’R(ω) = R’R(ω)+jX’R(ω)

Z’cav(ω) = j(X’R(ω)+ξ R’R(ω))

Unit Lorenzian



Properties of Lossless Two-Port Impedance

Eigenvalues of Z matrix

det Z − jX1 = 0

X1,2 = XR + ξ1, 2RR

ξ1,2 = tan
θ1,2

2
 
  

 
  

Individually ξ1,2 are 
Lorenzian distributed

θ1

θ2

Distributions same as
In Random Matrix theory



HFSS Solution for Lossless 2-Port

θ2

θ1

Joint Pdf for θ1 and θ2

Port #1:   (14, 7)

Port #2:   (27, 13.5)

Disc



Effect of Losses

Port 1
Other ports

Losses

Zcav = jXfs+(ρ+jξ) RfsDistribution of reactance fluctuations
P(ξ) Distribution of resistance fluctuations

P(ρ)



Equivalence of Losses and Channels
Zcav = jXR+(ρ+jξ) RR

Distribution of reactance fluctuations
P(ξ)

Distribution of resistance fluctuations
P(ρ)

ρ

ρ

ξ

ξ



Future Directions

• Direct comparison of random coupling model with 
-random matrix theory 
-HFSS solutions 
-Experiment 

• Exploration of increasing number of coupling channels 

• Study losses in HFSS
• 3D examples
• Role of Scars on low period orbits
• Generalize to systems consisting of circuits and fields



Role of Scars?

• Eigenfunctions that do not satisfy random 
plane wave assumption

Bow-Tie with diamond scar

• Scars are not treated by either random matrix
or chaotic eigenfunction theory

• Semi-classical methods



Large Contribution from Periodic Ray Paths ?

22 cm

11 cm Possible strong reflections
L = 94.8 cm, ∆f =.3GHz

47.4 cm



Future Directions

Bow-tie shaped cavity

Dielectric

Test port

Excitation port

• Can be addressed

-theoretically

-numerically

-experimentally

Features:
Ray splitting
Losses

HFSS simulation courtesy J. Rodgers
Additional complications to be added later


