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EM Effects on Semiconductor Devices
Gates and Integrated Circuit Interconnects

Goal: Through modeling and experiment characterize microwave
coupling on integrated circuits and its effect on device and circuit
performance.

Method: Develop modeling tools to analyze and predict effects on
devices, fundamental circuit blocks, and interconnects.

-Base modeling tools on Semiconductor Equations and Schrodinger
Equation and Maxwell's Equations.

Verify with experiments: Chips fabricated through MOSIS
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EM Coupling: Levels Investigated
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Task 1: EM Coupling to Semiconductor Devices

«  EM coupling may induce large voltages on semiconductor
device terminals inside IC’s

Large terminal voltages can damage devices permanently
and cause upsets.

e  Most modern IC’s are composed of MOSFETs.
Pentium IV contains 40 million nanoscale MOSFETs.
. MOSFETs are exceptionally vulnerable.

« Task 1 focuses on detailed modeling of MOSFETs to
understand their internal mechanisms of EM induced
failure.



MOSFET Cross-Section and Illustration of Vulnerabilities:
Oxide and Avalanche Breakdown

Problems:

-Scaling to the nanometer gate length requires oxides less than 20Angstroms.
-Such thin oxides give rise to such large gate current that devices will not function.
-Large internal fields cause impact ionization, avalanching and damaging filaments
-Problems especially important for EM coupling, which can induce large voltages
to Gate and Drain Electrodes!




Developed Quantum Device Simulator to Investigate Internal
MOSFET Subject to Large Coupled EM Terminal Voltages

Solve QM Device Equations Numerically. Device Doping Profile
Inputs are device structure, doping profile & -

basic physics.
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Quantum Device Modeling Gives Internal Fields, Currents
and Problem Spots:

Resulting P itic Substrate C t
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Using the new simulator to model EM induced avalanche breakdown

-Results indicate 2V on drain of 0.1um causes excessive electron-hole pair
generation peak in channel.

-Simulations agree with experiment on resulting substrate current
-Excessive substrate current causes permanent filament damage



Gate Current: Mathematical Model

The final gate leakage current will be the summation of the tunneling and

thermionic current
']gate (‘x) — Jtu (X) + "]th (x)

Where tunneling current
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Boltzmann-Schrodinger/Spherical Harmonic Device CAD
Results: Gate Current (WKB Method)
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Gate Tunneling Current
Ig vs. Time
DC and Transient

Transient does not increase
gate current density, and
thus probably does not
Increase probability of
breakdown.
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Resulting Electrostatic Potential inside 0.14um MOSFET:
Bias Conditions for Oxide Breakdown
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Device Simulations predicts induced gate voltage of 2X supply
causes MOSFET oxide damage



Experimental
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Coupling and
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Task 2. EM Effects on Gates

Differential equation based modeling of EM
effects on mverter circuits

« Stage 1: Develop simulation tool.

« Stage 2: Use tool to analyze distributed effects of
EM GHz range coupling on fundamental
computer chip circuit elements.



Developed Distributed Circuit Simulator

Applied to Inverters

DD Equations
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Modeling 20GHz, 1V voD-1v |/
Coupled to 0.1pum Inverter ) '_‘
L=0.1um
-Output follows input reduced by nput - FI\— Output
20% @ 20GH:z LIT
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Modeling 20GHz, 1V

Coupled to 0.1pm Inverter

-1pF & 10pF Load Caps.

-Output does not follow mput

-Inverter transitions to average
output voltage state (C discharge)
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Modeling 20GHz, 1V
Coupled to 0.1pym & 0.25um

Inverters

-Output follows mput but with
reduced amplitude in 0.25

-Bit errors can still occur in larger

device but may be less likely
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Task 3. Interconnects and Passive Elements

Developed Finite Difference Time Domain
Alternating Direction Implicit Method
(FDTD-ADI) for Solving Maxwell’s

Equations on Chip.



Model Verification

Vacuum metal, t = 1.8 um

« 2D guided-wave

- Vacuum Ideal Conductor .
h=82 um propagation
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Simulating Signal Propagation along Metal-
Insulator-Silicon-Substrate (MISS) Interconnect

Cross Section of Simulated MISS Structure
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Simulation Performance

Non-uniform grid in the cross section; smallest grid
size 1n the cross section 1s 0.1 um. Uniform grid = 25
um 1n the propagation direction.

Simulation At = 2x10°13 sec. Courant’s limit is
At < 0.33x1015sec

Simulation time 1s 3-4 hour on a PC for 1000 step
simulation.

Outer boundary condition: Mur’s first order



Voltage observed at different Z locations
along the MISS Strip

Z=0um Z=500um | iiEDIE. " * A fast 1V, 20psec
_ Z=1000 um —=="J|  (jgital pulse of rise-
1 time= 2ps 1s excited
* Substrate doping
n=10"/cm?
* Metal conductivity
=5.8x 107 S/m.

» Shows digital signal
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Cross Section of Ey field Cross Section of
' Current Jz inside Metal

Jz (Mumz) inside metal
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Signal Propagation with Different Substrate Doping

— z=0
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At the skin-effect
mode, higher substrate
doping conforms signal
better.




Simulating EM Coupling between Interconnect Lines in
Metal-Insulator-Silicon-Substrate (MISS) Structure

Adjacent Interconnects X-section Voltage Pulse Coupling Results
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Results: New simulator allows for resolving large variations in grid points

Induced voltage 20% of applied signal even at 20um apart.



Simulations show extensive
coupling through substrate
currents.

Substrate Current:
Horizontal x-section
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EM Coupling Mechanisms 1n IC

Noise Injection: Noise Coupling Noise Reception
* Capacitive Injection * Resistive Coupling * Capacitive Reception
* Hot Electron Injection * Inductance Coupling * Threshold Voltage Modulation




IC Chip Layout

Digital Switching Noise Testing Circuit 1




Coupling Measurement
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On-Chip EM Coupling

» Coupling between On-chip Inductors

[

s = Reference | Left: Results from literature and
__@lg circuit model for coupled on-chip
PR o 1nductors

Right: Our test structure (in fab)
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On-Chip EM Coupling

» Coupling between On-chip Inductors and Transistors
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Inductance (nH)

Planar inductor vs. Multilayer inductor

Inductance, planar/multilayer spiral inductors
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Planar inductor vs. Multilayer inductor

Layouts for planar inductor (left) and multilayer inductor (right), in
fabrication for probe-station measurements. The total length of the
inductors are the same, and the two pictures are of the same scale.
Note the much smaller footprint of the multilayer inductor.



Accomplishments

e Task 1: Developed quantum device modeling code

Used code to ascertain internal MOSFET vulnerable spots.

Found MOSFET drain junction area especially susceptible to avalanching,
which can cause breakdown and filament formation leading to permanent
device failure.

Developed method for modeling gate current and oxide breakdown

Calculations predict that induced voltages as little as 2.6V can cause
device failure in current device technologies.

Voltages necessary for damage will decrease as device dimensions reduce
according to semiconductor roadmap.



Accomplishments

« Task 2: Developed distributed CAD tool for modeling multi-transistor
circuits.

Applied the new tool to modeling inverter switching due to GHz range
coupled signals.

Simulations show details of fields and current densities of switching inside
devices.

Simulations show current technology inverters (0.1um) follow input
signal of 20GHz which can cause bit errors. Larger devices (0.25 um) are
less likely to cause bit errors at 20GHz.

Capacitive loading (1 — 10 pF) causes inverter circuits to reach
indeterminate average state causing bit errors with RC time constant.



Accomplishments

« Task 3: Developed Maxwell Equation based CAD tool for modeling on-chip
interconnects and passive structures.

— New tool overcomes Courant limit and is thus well suited for analyzing chips
where resolving mm and pum size structure simultaneously.

— Applied the new tool to modeling propagation of pulses along IC interconnect
transmission lines.

— Simulations show details of fields and current densities inside semiconductor
substrate and metal interconnects

— Simulations indicate significant losses and dispersion which depend on the doping
density of the semiconductor substrate. Higher doping gives rise to less losses.

— Simulations indicate extensive coupling between interconnect lines. 20% percent
coupling is seen on lines as much as 20pm apart.

» Numerous test IC’s designed and fabricated to EM effects on interconnects
and devices. Experiments currently being set up.
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Future Work

Use new device CAD tool to further asses oxide breakdown effects in
new and existing technologies.

Use new circuit distributed CAD tools to further investigate
microwave induced switching performance of digital building blocks.
Investigate entire microwave spectrum and a wide range of CMOS
technologies.

Apply interconnect CAD tool to further investigate coupling of
external microwaves to chip.

Perform measurements on test chips to further quantify EM — IC
coupling. Model experiments with newly developed CAD tools.

Combine Device and EM CAD tools to develop comprehensive IC
distributed simulator.



