Inducing Chaos in the p/n Junction

Renato Mariz de Moraes, Marshal Miller, Alex Glasser, Anand Banerjee, Ed Ott, Tom Antonsen, and Steven M. Anlage

CSR, Department of Physics

MURI Review

14 November, 2003

Funded by STIC/STEP and Air Force MURI

Motivation

- Identify the origins of chaos in the driven resistor inductor varactor diode series circuit
- Establish a "universal" picture of chaos in circuits containing p/n junctions
- Identify new opportunities to induce chaos exploiting the p/n junction nonlinearity

 \Rightarrow John Rodgers' talk

Driven Resistor-Inductor-Diode Circuit Studied since the 1980's

Why is the driven RLD circuit so important?

Simplest passive circuit that displays period doubling and chaosIt is a good model of the ubiquitous p-n junction and its nonlinearities

Chaos in the Driven RLD Circuit

 $V_{\rm LF} = V_0 \cos(2\pi f t)$

Nonlinearity of the p-n Junction

The diffusive dynamics of majority and minority charge carriers in the p-n junction is complex and nonlinear

All models of chaotic dynamics in p-n junctions approximate the charge dynamics using nonlinear lumped-elements

Approximate Nonlinear Lumped-element

1.

Resistor-Inductor-Diode Circuit

What is the cause of chaos?

There are 3 competing forms of nonlinearity in this problem: Nonlinear I-V curve $I_{rv}(Q)$. Traditional focus \Rightarrow rectification

- Finite minority carrier lifetime or reverse recovery time. Delayed feedback The p/n junction retains memory of previous fwd-bias current swings Rollins + Hunt
 - => No consensus on the origin of chaos

Reverse Recovery Time τ_{RR}

Search for Period Doubling and Chaos in Driven RLD Circuit

Diode	τ _{RR} (ns)	C _j (pF)	Results with $f_0 \sim 1/\tau_{RR}$	Results with $f_0 \sim 10/\tau_{RR}$	Results with $f_0 \sim 100/\tau_{RR}$
1N5400	7000	81	Period-doubling and chaos for f/f ₀ ~ 0.11 – 1.64	Period-doubling and chaos $f/f_0 \sim 0.16 - 1.76$	No chaos, nor period-doubling
1N4007	700	19	Period-doubling and chaos for f/f ₀ ~ 0.13 – 2	Period-doubling and chaos for $f/f_0 \sim 0.23$ - 1.3	No period doubling or chaos
1N5475B	160	82	Period-doubling and chaos for $f/f_0 \sim$ 0.66 - 2.2	No chaos, nor period-doubling	No chaos, nor period-doubling
NTE610	45	16	Period-doubling and chaos for $f/f_0 \sim$ 0.14 - 3.84	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	No chaos, nor period-doubling

 $f_0 = \frac{1}{2\pi\sqrt{LC_j}}$

Circuit Chaos: Rule of Thumb Driven Nonlinear Diode Resonator

For lumped element nonlinear diode resonator circuits, Period Doubling and Chaos are observed for sufficiently large driving amplitudes when;

$$\omega \sim \omega_0 / 10 \leftrightarrow 4 \omega_0$$
and
$$\omega_0 < 10 / \tau_{RR} \text{ to } 100 / \tau_{RR}$$
where
$$\omega_0 = \frac{1}{\sqrt{LC_j}} \text{ and } C_j \text{ is the diode junction capacitance}$$

$$\tau_{RR} \text{ is the "reverse recovery" time of the diode}$$

Circuit Chaos Driven Nonlinear Diode Resonator

(technical detail)

Several kinds of models of the driven RLD circuit show behavior consistent with experiment

Universal Feature of All Models:

All models display a "reverse-recovery-like" phenomenon, associated with a charge storage mechanism.

When $\omega >> 1/\tau_{RR}$ period doubling and chaos are strongly suppressed

Piecewise Linear Capacitor has a "Reverse Recovery Time τ_{RR} "

Circuit Chaos Driven Nonlinear Diode Resonator

The reverse recovery time of the diode is itself a nonlinear function of many parameters, including;

History of current transients in the diode Pulse amplitude Pulse frequency Pulse duty cycle DC bias on the junction

Influence τ_{RR}

These nonlinearities can expand the range of driving parameters over which period doubling and chaos are observed.

Max. of Circuit Current (Arb. Units)

Circuit Chaos More Complicated Circuits

The ω_{HF} signal is rectified, introducing a DC bias on the p/n junction and increasing the circuit nonlinearity at ω_{LF} .

Our conclusion:

The combination of rectification and nonlinear dynamics in this circuit produces qualitatively new ways to influence circuit behavior by means of rf injection.

Two-Tone Injection of Nonlinear Circuits

Driven **RLD** Circuit

No change in period doubling behavior with or without RF

Driven RLD/TIA Circuit

RF injection causes significant drop in driving amplitude required to produce perioddoubling! RF Injection Lowers the Threshold for Chaos in Driven RLD/TIA

Two-Tone Injection of Nonlinear Circuits

In this case ...

The combination of rectification, nonlinear capacitance, and the DC-bias dependence of τ_{RR} produce complex dynamics

In general ... To understand the p/n junction embedded in more complicated circuits:

 $\left. \begin{array}{c} \text{Nonlinear capacitance} \\ \text{Rectification} \\ \text{Nonlinearities of } \tau_{\text{RR}} \end{array} \right\} \text{ All play a role!}$

 \Rightarrow More surprises are in store ...

Chaos in the Driven Diode <u>Distributed</u> Circuit

A simple model of the ESD circuit on an IC

Delay differential equations for the diode voltage

1) 2
$$V_{inc}(t) = V(t) + Z_o[gV + \frac{d}{dt}Q(V(t))]$$

2) $V_{ref} = V(t) - V_{inc}(t)$
3) $V_{inc}(t) = V_{ref}(t-2T) + V_g(t-T)$

 $\frac{\mathrm{d}}{\mathrm{d}t}V(t) = \frac{-(1+Z_{\mathrm{o}}g)}{Z_{\mathrm{o}}C(V(t))}V(t) + \frac{\rho_{g}(1-Z_{\mathrm{o}}g)}{Z_{\mathrm{o}}C(V(t))}V(t-2T) + \frac{-\rho_{g}C(V(t))}{C(V(t-2T))}\frac{\mathrm{d}}{\mathrm{d}t}V(t-2T) + \frac{V_{g}\tau_{g}}{Z_{\mathrm{o}}C(V(t))}\cos(w(t-T))$

Chaos in the Driven Diode Distributed Circuit

Chaos in the Driven Diode Distributed Circuit

Challenges for the Future

- Ten parameters to explore:
 - $C_f, C_r, g, Z_o, R_g, V_g, \omega, T, V_f, V_{gap}$ Experimental verification of numerical results

Conclusions about Chaos in the Driven p/n Junction

- A history-dependent recovery/discharge time scale is the key physics needed to understand chaos in the driven RLD circuit
- Nonlinear Capacitor (NLC) models have a τ_{RR} -like time scale
- Both the Hunt and NLC models have a history-dependent recovery time scale due to charge storage mechanisms
- Real diodes have strong nonlinearities of the reverse recovery time that are not captured in current models
- The addition of a TIA to the RLD circuit introduces a new way to influence nonlinear circuit behavior through rectification
- Embedding a diode in a distributed circuit offers new opportunities to induce chaos. See John Rodgers' talk

Recent Papers on the Nonlinear Diode Resonator and Related Circuits:

Renato Mariz de Moraes and Steven M. Anlage, "Unified Model, and Novel Reverse Recovery Nonlinearities, of the Driven Diode Resonator," Phys. Rev. E 68, 026201 (2003).

Renato Mariz de Moraes and Steven M. Anlage, "Effects of RF Stimulus and Negative Feedback on Nonlinear Circuits," IEEE Trans. Circuits Systems I (in press). http://arxiv.org/abs/nlin.CD/0208039

T. L. Carroll and L. M. Pecora, "**Parameter ranges for the onset of period doubling in the diode resonator**," Phys. Rev. E **66**, 046219 (2002)

DURIP 2004 proposal: "Nonlinear and Chaotic Pulsed Microwave Effects on Electronics" Anlage, Granatstein and Rodgers