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We propose a model to study the statistical properties of the impedance (Z) and scattering

(S) matrices of open electromagnetic cavities with several transmission lines or waveguides

connected to the cavity. The model is based on assumed properties of chaotic eigenfunctions

for the closed system. Analysis of the model successfully reproduces features of the random

matrix model believed to be universal, while at the same time incorporating features which

are specific to individual systems. Statistical properties of the cavity impedance Z are

obtained in terms of the radiation impedance (i.e., the impedance seen at a port with the

cavity walls moved to infinity). Effects of wall absorption and nonreciprocal media (e.g.,

magnetized ferrite) are discussed. Theoretical predictions are tested by direct comparison

with numerical solutions for a specific system.
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I. INTRODUCTION

The problem of the coupling of electromagnetic radiation in and out of structures is a general one

which finds applications in a variety of scientific and engineering contexts. Examples include the

susceptibility of circuits to electromagnetic interference, the confinement of radiation to enclosures,

as well as the coupling of radiation to accelerating structures.

Because of the wave nature of radiation, the coupling properties of a structure depend in detail

on the size and shape of the structure, as well as the frequency of the radiation. In considerations

of irregularly shaped electromagnetic enclosures for which the wavelength is fairly small compared

with the size of the enclosure, it is typical that the electromagnetic field pattern within the enclo-

sure, as well as the response to external inputs, can be very sensitive to small changes in frequency
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and to small changes in the configuration. Thus, knowledge of the response of one configuration of

the enclosure may not be useful in predicting that of a nearly identical enclosure. This motivates

a statistical approach to the electromagnetic problem.

There are many examples of situations in which a statistical description is called for. It may be

that many devices are manufactured, and, while nearly identical, they may have small differences.

These small differences may lead to large fluctuations in appropriate wave quantities. In such a

case, the statistics, as characterized by the probability distribution function of the appropriate wave

quantity, is of interest. As another example, a specific single device may be intended to operate in

some frequency range, and, within this range, there may be extremely rapid, complicated variation

of an electromagnetic quantity of interest. Furthermore, it may be that, on different occasions the

device is operated at different frequencies within the allowed range. In this case it is of interest to

know the probability distribution function of the relevant electromagnetic quantity for a randomly

chosen value of frequency in the allowed range. As still another example, an enclosure may have

within it flexible cables whose placement is occasionally changed, critically affecting the detailed

field distribution within the enclosure and its responses at its ports.

While our ability to numerically compute the response of particular structures has advanced

greatly in recent years, the kind of information needed for a statistical description may not be

obtainable directly from numerical computation. In the case of complex or irregularly shaped

enclosures that are large compared to a wavelength, accurate numerical solution of the electro-

magnetic field problem can be difficult or impossible. Also, if such numerical solutions are to be

used to generate statistics, the numerical solutions must be obtained for many slightly different

configurations and/or frequencies.

Thus it would seem to be desirable to have specific analytical predictions for the statistics of

electromagnetic quantities in such circumstances. This general problem has received much attention

in previous works (e.g., Refs. [1–7]). Some of the main issues addressed in these works are: the

probability distribution of fields at a point, the correlation function of fields at two points near each

other, the statistics of the excitation of currents in cables or in small devices within the enclosure,

the cavity Q, the statistics of coupling to the enclosure, and the statistics of scattering properties.

A fundamental basis for most of these studies is that, due to the complexity of the enclosure

and the smallness of the wavelength compared to the enclosure size, the electromagnetic fields

approximately obey a statistical condition that we shall call the random plane wave hypothesis.

According to this hypothesis, the fields in any small region within the interior of the enclosure are,

in some suitable sense, similar to what would result from a spatially uniform random superposition
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of many plane waves whose polarizations are randomly oriented in the plane perpendicular to

the direction of propagation of the plane wave, whose phases are randomly assigned, and whose

propagation directions are assigned randomly with an isotropic distribution. This work has been

quite successful in obtaining meaningful predictions, and some of these have been tested against

experiments with favorable results. A good introduction and overview is provided in the book by

Holland and St. John [1].

In addition to this previous work on statistical electromagnetics [1–7], much related work has

been done by theoretical physicists. The physicists are interested in solutions of quantum mechan-

ical wave equations when the quantum mechanical wavelength is short compared with the size of

the object considered. Even though the concern is not electromagnetics, the questions addressed

and the results are directly applicable to wave equations, in general, and to electromagnetics, in

particular. The start of this line of inquiry was a paper by Eugene Wigner [8]. Wigner’s interest

was in the energy levels of large nuclei. Since the energy level density at high energy is rather dense,

and since the solution of the wave equations for the levels was inaccessible, Wigner proposed to ask

statistical questions about the levels. Wigner’s results apply directly to the statistics of resonant

frequencies in highly-overmoded irregularly-shaped electromagnetic cavities. Since Wigner’s work,

and especially in recent years, the statistical approach to wave equations has been a very active area

in theoretical physics, where the field has been called ‘quantum chaos’. We emphasize, however,

that the quantum aspect to this work is not inherent, and that a better terminology, emphasizing

the generality of the issues addressed, might be ‘wave chaos’. For a review see Chapter 11 of Ref.

[9] or the books [10, 11].

In this paper we consider an irregularly shaped cavity with transmission lines and/or waveguides

connected to it, and we attempt to obtain the statistical properties of the impedance matrix Z and

the scattering matrix S characterizing the response of the cavity to excitations from the connected

transmission lines and/or waveguides in the case where the wavelength is small compared to the

size of the cavity. We will only treat the case of cavities that are thin in the vertical (z-direction)

direction. In this case the resonant fields of the closed cavity are transverse electromagnetic (TEM,

~E = Ez(x, y)ẑ), and the problem admits a purely scalar formulation. While the two dimensional

problem has practical interest in appropriate situations (e.g., the high frequency behavior of the

power plane of a printed circuit), we emphasize that our results for the statistical properties of

Z and S matrices are predicted to apply equally well to three dimensional electromagnetics and

polarized waves. We note that previous work on statistical electromagnetics [1–7] is for fully

three dimensional situations. Our main motivation for restricting our considerations here to two
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dimensions is that it makes possible direct numerical tests of our predictions (such numerical

predictions might be problematic in three dimensions due to limitations on computer capabilities).

Another benefit is that analytical work and notation are simplified.

Our paper is organized as follows. In Sec. II, as background for our work, we review previous

relevant developments mostly from the physics literature. Following some preliminaries (Sec. III),

Sec. IV presents our statistical model. Section V illustrates our model by application to the

statistics of the impedance seen at a single transmission line input to a cavity that is irregularly-

shaped, highly over-moded, lossless, and non-gyrotropic (i.e., no magnetized ferrite). Section VI

applies the model to obtain the impedance statistics in more general cases, including multiple inputs

(in which case the impedance is a matrix rather than the scalar of Sec. IV), gyrotropic media, and

losses. Section VII relates the impedance matrix characteristics to those of the scattering matrix.

Throughout, our analytical results will be compared with direct numerical solutions of the wave

problem. Section VIII concludes with a discussion and summary of results.

II. BACKGROUND

In this section we will review previous work that is relevant to the subsequent discussion in the

paper. Most of this review concerns work done in the context of quantum mechanics and can also

be found in Refs. [9–11]. For definiteness, when we give examples, it will often be in the context

of the two-dimensional Helmholtz equation, (∇2 + k2)φ = 0, with φ = 0 on the boundaries. This

example is relevant to quantum dots [12], which motivates some of the work reviewed below, but

it is also clearly relevant to the case of vertically thin electromagnetic cavities.

A. Eigenvalue Statistics

In considering a closed system Weyl [9, 13] gave a result for the approximate average eigenvalue

density in the limit of small wavelength compared to the system size. For the two-dimensional

problem (∇2 + k2)φ = 0 in a region R of area A, Weyl’s formula reduces to

ρ̃(k2) ∼= A/4π , (1)

where ρ̃(k2)δk2 is the number of eigenvalues k2
n (k2

1 ≤ k2
2 ≤ k2

3 ≤ . . .) between (k2 − δk2/2) and

(k2 + δk2/2). The quantity

∆(k2) = 1/ρ̃(k2)
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is the average spacing between eigenvalues [average of (k2
n+1 − k2

n) for k2
n
∼= k2]. Inherent in the

derivation of (1) are the assumptions that δk2 ≪ k2 and that many modes are present in the range

δk2. These imply the requirement that k2A ≫ 4π, the previously mentioned small wavelength

limit. Higher order corrections to the Weyl formula (e.g., terms of order ℓ/k added to the right

hand side of (1), where ℓ is a relevant length of the boundary) have been given in Refs. [14, 15].

Other corrections due to Gutzwiller are oscillatory in k and are geometry dependent [10, 16]. For

a three dimensional electromagnetic enclosure Weyl’s formula becomes

∆(k2) = 1/ρ̃(k2) = 2π2/kV,

where V is the volume of the enclosure. We note that ∆(k2) depends on k in the three dimensional

case, but is k-independent in two dimensions. Since we work primarily in two dimensions, we

henceforth use the notation ∆ in place of ∆(k2).

If one examines the spacings between two adjacent eigenvalues, k2
n+1 − k2

n, then, on average

it is well-approximated by 1/∆ with ∆ given by the Weyl formula. However, the fluctuations

from the average are themselves typically of order 1/∆. Thus it is of interest to consider the

distribution function of the eigenvalue spacings for a random choice of adjacent eigenvalues in the

range (k2 − δk2/2) to (k2 + δk2/2). As a first step we can normalize the spacings using the Weyl

formula,

sn = (k2
n+1 − k2

n)∆ . (2)

Wigner considered the probability distribution function for the eigenvalues (energy levels) of large

complicated nuclei. Depending on symmetries, he found three cases, only two of which are relevant

for us. These two cases are referred to as the Gaussian Orthogonal Ensemble (GOE) and the

Gaussian Unitary Ensemble (GUE) (to be explained subsequently). Wigner’s surmise for the

probability distributions P (s) of the normalized spacing (2) are [8–11]

PGOE(s) ∼= (π/2)s exp(−πs2/4) , (3)

and

PGUE(s) ∼= (32/π)s2 exp(−4s2/π) . (4)

These spacing distributions, while derived for a very specific model, have been found to apply in

a variety of contexts, including the spacing distributions for modes of electromagnetic resonators.

Other statistical properties of the spectrum can be quantified. These will be discussed in more

detail as they are needed.
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B. Random Matrix Theory

We now explain the idea behind Wigner’s derivations of (3) and (4), first considering (3) which

applies to our example, the eigenvalue problem,

(∇2 + k2)φ = 0 in R , (5)

φ = 0 on the boundary of R , (6)

where R is a finite connected two dimensional domain and ∇2 = ∂2/∂x2 + ∂2/∂y2. Introducing a

real orthonormal basis ψj(x, y) (j = 1, 2, . . .), where ψj satisfies the boundary condition (6) [note,

ψj are in general not the solutions of the eigenvalue problem (5,6)], we express φ(x, y) as

φ =
∑

j

cjψj . (7)

Substituting (7) in (5) multiplying by ψi and integrating over R we obtain the infinite matrix

problem,

Hc = Λc , (8)

where Λ = −k2, c = (c1, c2, . . .)
T (the superscribed T denotes the transpose), and the elements of

H are

Hij =

∫ ∫

R
ψi∇2ψjdxdy . (9)

Note that, aside from the conditions of orthonormality and the satisfaction of the boundary con-

ditions, Eq. (6), the basis functions ψj(x, y) are so far arbitrary. Nevertheless, we still know

something about the matrix H: It is real, and, via integration of (9) by parts, it is also symmetric.

Wigner hypothesized that the eigenvalue spectrum of complicated nuclear systems have similar

statistical properties to those of the spectra of ensembles of random matrices. That is, we take the

infinite dimensional matrix H in (8) to be randomly drawn from some large collection of matrices

(the ‘ensemble’). Wigner further hypothesized that the following two statistical conditions on the

probability distribution P̄ (H) for the ensemble of matrices should be satisfied.

(1) Invariance. The probability distribution should be independent of the choice of basis {ψi}.
Expressing the eigenvalue problem (8) in another orthonormal basis {ψ′

i} transforms the vector of

expansion coefficients c to another vector of expansion coefficients c′,

c′ = Oc , (10)
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where O is an orthogonal matrix, OT = O−1. Invariance requires P̄ (H) = P̄ (H ′), or

P̄ (H) = P̄ (OHOT ) (11)

for all orthogonal matrices O.

(2) Independence. The matrix elements (aside from the symmetry Hij = Hji) are independent

random variables. Thus P̄ (H) is the product of distributions for all the individual elements Hij ,

i ≤ j (the value of the element Hij , i > j is implied by the symmetry).

These two conditions can be shown to imply [8–11] that the distributions for the Hij are all

Gaussians, that the variances of the off diagonal elements are all the same, and that the variances

of all the diagonal element distributions are double the variance of the off diagonal elements. This

specifies the Gaussian Orthogonal Ensemble (GOE) of random matrices. Using this distribution

for H, Wigner proposed Eq. (3) for the normalized spacing distribution.

Wigner’s second result (4) applies to situations in which ‘time reversal symmetry is broken’.

Most prominently, in the quantum mechanical context, this often occurs as a result of the presence

of a magnetic field. To simply see the origin of this terminology, consider the motion of a point

charge in a homogeneous magnetic field B0ẑ0. The motion in the (x, y) plane is circular. If, at

any time t = t0, we stop the charge, and reverse its velocity, it does not retrace its path, but, as

illustrated in Fig. 1(a), it follows a different circular path. In contrast, the motion of a particle in an

arbitrary potential does retrace its path upon reversal of its velocity vector, if there is no magnetic

field. The impact of this is that the quantum mechanical wave equation becomes complex; that

is, unlike (5), (6), there are imaginary terms present, and these typically cannot be removed by a

change of variables. Thus, expanding as before, H is now a complex Hermitian matrix, Hij = H∗
ji,

and (11) is replaced by

P̄ (H) = P̄ (UHU †) , (12)

where U is an arbitrary unitary matrix, U−1 = U †, with † standing for the conjugate transpose

of the matrix. Application of (12) and the independence hypothesis, then leads to the Gaus-

sian Unitary Ensemble (GUE) of random matrices: Re(Hij) = Re(Hji); Im(Hij) = −Im(Hij);

Im(Hii) = 0; for i 6= j the random variables Re(Hij) and Im(Hij) are independent and have equal

variance that is the same for all i 6= j; for i = j (diagonal terms) all the Hii have equal variance that

is twice that of either Re(Hij) or Im(Hij) for i 6= j. The statistics for the normalized eigenvalue

spacings in the GUE case is given by (4).

The GUE statistics are also relevant to electromagnetics [17]. In particular, if a lossless magne-

tized ferrite is present, the basic wave equation becomes complex because the magnetic permittivity
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FIG. 1: Time reversal symmetry braking (a) for a particle trajectory in a magnetic field, and (b) for reflection

from a lossless magnetized ferrite slab.

matrix µ is Hermitian, µ = µ†, with complex off-diagonal elements. As an example of the breaking

of ‘time reversal symmetry’ in the case of a magnetized ferrite, consider Fig. 1(b) which shows

a homogeneous lossless ferrite slab, with vacuum in the region to its left, a perfectly conducting

surface bounding it on its right, a constant applied magnetic field B0ẑ0, and a time harmonic

electromagnetic plane wave incident on the slab from the left where the angle of incidence is θ.

The resulting reflection coefficient for the situation in Fig. 1(b) has magnitude one due to energy

conservation, and is thus given by the phase shift α(θ, B0) upon reflection. If we now reverse the

arrows in Fig. 1(b), the phase shift is different from what it previously was if B0 6= 0, but is the

same if B0 = 0. Thus here too a magnetic field may be said to break time reversal symmetry.

The study of random ensembles of matrices, particularly the GOE and GUE ensembles initiated

by the work of Wigner, has become a very highly developed field [18, 19]. Using these ensembles

many questions, other than that of finding P (s), have been addressed. We will come back to this

later in the paper.

C. Wave Chaos

Wigner’s original setting was a very complicated wave system, and it was this complication

that he invoked to justify the validity of a statistical hypothesis. Subsequently it was proposed

[20, 21] that, under appropriate conditions, even apparently simple systems might satisfy the

Wigner hypotheses. The idea was that, since the wavelength is short, the ray equations should
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indicate the character of solutions of the wave equation. Considering the example of a vacuum-

filled two dimensional cavity (i.e., it is thin in z), the ray equations are the same as those for

the trajectory of a point particle: straight lines with specular reflection (i.e., angle of incidence

equals angle of reflection) at the boundaries. Such systems are called ‘billiards’ and have been

studied since the time of Birkhoff [22] as a paradigm of particle motion in Hamiltonian mechanics.

It is found that typically three different types of motion are possible: (a) integrable, (b) chaotic,

and (c) mixed. Whether (a), (b) or (c) applies depends on the shape of the boundary. It is

noteworthy that even rather simple boundaries can give chaotic behavior. Thinking of chaotic

behavior as complicated, the authors of Refs. [20, 21] proposed that Wigner’s hypotheses might

apply in situations where the system was simple but the dynamics was chaotic (complicated), and

they tested this proposal numerically on systems of the type (5), (6), obtaining results in good

agreement with the predicted PGOE(s), Eq. (3). In addition, subsequent experimental [17, 23, 24]

work in electromagnetic cavities, both with and without magnetized ferrite, support (3) and (4).

Figure 2 gives some examples of billiard (or cavity) shapes. The rectangle of Fig. 2(a) is an

example of an integrable system; particle orbits separately conserve the kinetic energies associated

with their motion in the x-direction and in the y-direction. On the other hand, this is not true for

the examples of chaotic billiard (cavity) shapes shown in Figs. 2(b-e). For these chaotic shapes, the

following situation applies. Suppose we pick an initial condition for the particle orbit at random by

first choosing a point within the billiard with uniform probability density per unit area and by next

choosing an angle θ with uniform probability in 0 to 2π. We then launch the particle with speed

v from the chosen point and in a direction θ to the horizontal. With probability one, the resulting

orbit will fill the cavity uniformly and isotropically. That is, if one considers a subregion of area

A′ of the billiard (total area A), and an orbit of length tending to infinity, then (i) the fraction of

the total orbit length within the subregion approaches A′/A, and (ii) the orbit orientation angles,

weighted by the orbit length within the subregion, approach a uniform distribution in [0, 2π]. Of

course, there are special orbits (e.g., the dashed lines in Figs. 2(c) and (d)) for which (i) and (ii)

above are violated, but, if initial conditions are chosen randomly in the manner we have indicated

above, then the probability of picking such orbits is zero).

Thus one qualitative difference between the billiard orbits from randomly chosen initial condi-

tions for an integrable case, like Fig. 2(a), as opposed to chaotic cases, like Figs. 2(b-e), is that

the velocity direction samples all orientations equally at all spatial points in the chaotic case, but

not in the integrable case. Another, perhaps more fundamental, difference is that, if we start two

initial conditions at the same (or slightly different) location and with the same speed, but with
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FIG. 2: Examples of billiard shapes. (a) Is a rectangle. (b) Is made up of two circular arcs of radii R1 and

R2 that are tangent at the point of joining to two straight line segments. The sides of (c) are circular arcs.

The billiard region of (d) lies between the circle and the square. (e) Is similar to (b). (f) Is made up of four

circular arcs that join smoothly at the dots indicated on the boundary; the centers of the upper and lower

arcs lie outside the billiard region while the other two arcs of radii R1 and R2 have centers that are within

the billiard region. (a) Is integrable, (b)-(e) are chaotic, and (f) is mixed.

slightly different angular orientations of their velocity vectors, then the character of the subsequent

evolutions of the two orbits is different in the integrable and chaotic cases. In both cases, the two

orbits typically separate from each other, but in the integrable case the separation is, on average,

proportional to time, while in the chaotic case it is, on average, exponential with time. This expo-

nential sensitivity of randomly chosen orbits to small perturbations is often used as the definition

of chaos [9]. Finally, we note that, for the example of Fig. 2(f), there are volumes of the (x, y, θ)

phase space for which nearby orbits separate exponentially with time (chaos), interspersed with

volumes for which nearby orbits separate linearly with time. Such cases are commonly referred to

as ‘mixed’. Our interest in this paper is in shapes corresponding to chaos, e.g., Figs. 2(b-e).

Complicated enclosures, possibly containing dielectric objects, small scatters (like bolts or

wires), etc., are of great practical interest, perhaps more so than a simple chaotic shape, like

one of those in Figs. 2(b-e). In this paper we will, nevertheless, concentrate on a simple cavity of

chaotic shape (in particular, Fig. 2(c)). One reason for this choice is that the case of simple cavities

of chaotic shape is much more accessible to numerical solution than is the case for complicated

configurations, and we will be relying on numerical solutions to validate and test our analytic re-

sults. It is our hope that validation in the case of simple two dimensional chaotic cavities implies

applicability of our approach to complicated configurations, including three dimensional situations.
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D. The Random Plane Wave Hypothesis

As mentioned in Sec. I, the basis for much of the previous work on statistical electromagnetics

[1–7] is ‘the random plane wave hypothesis’ that, in a suitable approximate sense, the fields within

the cavity behavior like a random superposition of isotropically propagating plane waves. The

same hypothesis has also been used for waves in plasmas [25] and within the context of quantum

mechanics of classically chaotic systems [26]. A strong motivation for this hypothesis is the obser-

vation that ray orbits in chaotic systems (like the billiards in Figs. 2(b-e)) are uniform in space

and isotropic in direction. Furthermore, direct numerical tests in two dimensional chaotic cavities

tend to support the hypothesis [20].

We also note that different predictions result from the random plane wave hypothesis in the cases

of time reversal symmetry (i.e., real waves) and of broken time reversal symmetry (i.e., complex

waves), and these have been tested in microwave cavity experiments with and without magnetized

ferrites [27]. We discuss the case of broken time reversal symmetry further in Sec. VI.B.

In our subsequent work in this paper, we mainly employ the random plane wave hypothesis,

although use will occasionally also be made of random matrix theory (in particular, we will use

Eqs. (3) and (4)). As will become evident, the random matrix hypotheses of Wigner are closely

related to the random plane wave hypothesis. Because the random plane wave hypothesis has a

somewhat closer connection to the physical aspects of the problem, it allows a more transparent

means of taking into account the nonuniversal effects of the port geometry.

While the random plane wave hypothesis is mostly confirmed by numerical tests, it is also

observed that it is sometimes violated. In particular, when many eigenmodes of a very highly

overmoded, two-dimensional cavity are computed and examined, it is found, for most modes, that

the energy density is fairly uniformly distributed in space over length scales larger than a wavelength

[20, 28]. This is in accord with the random plane wave hypothesis. On the other hand, it is also

found [28–31] that there is some small fraction of modes for which energy density is observed to be

abnormally large along unstable periodic orbits. For example, for a cavity shaped as in Fig. 2(c),

a short wavelength mode has been found [31] for which there is enhanced energy density in the

vicinity of the dashed, diamond-shaped orbit shown in Fig. 2(c). This phenomenon has been called

‘scarring’ [28]. One conjecture is that, as the wavelength becomes smaller compared to the cavity

size, scarring becomes less and less significant, occurring on a smaller and smaller fraction of modes

and with smaller energy density enhancement near the associated periodic orbit [31]. In our work

to follow, we will neglect the possibility of scarring. We also note that the scar phenomenon is not
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included in the random matrix theory approach.

III. PRELIMINARIES

For an electrical circuit or electromagnetic cavity with ports, the scattering matrix is related

to the impedance matrix Z. The impedance matrix provides a characterization of the structure

in terms of the linear relation between the voltages and currents at all ports (for a cavity with a

waveguide port, the concepts of voltages and currents can be appropriately generalized to describe

the waveguide modes),

V̂ = ZÎ, (13)

where V̂ and Î are column vectors of the complex phasor amplitudes of the sinusoidal port voltages

and currents. Specifically, the temporally sinusoidally varying voltage V (t) is given in terms of its

phasor representation V̂ by V (t) = Re(V̂ ejωt).

In defining the S matrix in terms of the Z matrix, we introduce column vectors of incident (â)

and reflected (b̂) wave amplitudes,











â = (Z
−1/2
0 V̂ + Z

1/2
0 Î)/2

b̂ = (Z
−1/2
0 V̂ − Z

1/2
0 Î)/2,

(14)

where Z0 is a real diagonal matrix whose elements are the characteristic impedances of the trans-

mission line (or wave guide) modes connected to each port. With this definition, the time averaged

power delivered to the structure is

P =
1

2
Re{Î†V̂ } =

1

2
(â†â − b̂†b̂), (15)

where Î† = (ÎT )∗, ÎT is the transpose of Î, and ∗ denotes complex conjugate.

The scattering matrix S gives the reflected waves in terms of the incident waves,

b̂ = Sâ,

and is related to the impedance matrix Z by substituting

V̂ = Z
1/2
0 (â + b̂) and Î = Z

−1/2
0 (â − b̂)

into Eq. (13),

S = Z
1/2
0 (Z + Z0)

−1(Z − Z0)Z
−1/2
0 . (16)
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If the structure is lossless, then Z† = −Z, S is unitary (S−1 = S†), and P=0.

As discussed in the next section, the impedance matrix Z can be expressed in terms of the

eigenfunctions and eigenvalues of the closed cavity. We will argue that the elements of the Z matrix

can be represented as combinations of random variables with statistics based on the random plane

wave hypothesis for the representation of chaotic wave functions and the Wigner results [3, 4] for

the spacing distribution of the eigenvalues.

This approach to determination of the statistical properties of the Z and S matrices allows

one to include the generic properties of these matrices, as would be predicted by representing the

system as a random matrix from either the Gaussian Orthogonal Ensemble (GOE) or Gaussian

Unitary Ensemble (GUE). It also, however, allows one to treat aspects of the S and Z matrices

which are specific to the problems under consideration (i.e., so-called non-universal properties)

and which are not treated by random matrix theory. For example, the diagonal components of

the Z matrix have a mean frequency dependent part which strongly affects the properties of the S

matrix and depends on the specific geometry of the ports.

The Z matrix also has a fluctuating part. The mean and the fluctuating parts of Z can be

directly related to the real and imaginary parts of the complex impedance associated with the

same coupling structure radiating into infinite space (i.e., the ‘radiation impedance’).

IV. THE RANDOM COUPLING MODEL

We consider a closed cavity with ports connected to it. For specificity, in our numerical work,

we consider the particular, but representive, example of the vertically thin cavity shown in Fig. 3(a)

coupled to the outside via a coaxial transmission cable. Fig. 3(b) shows an example of how this

cavity might be connected to a transmission line via a hole in the bottom plate. The cavity shape

in Fig. 3 is of interest here because the concave curvature of the walls insures that typical ray

trajectories in the cavity are chaotic. (Fig. 3(a) is a quarter of the billiard shown in Fig. 2(c).)

In such a case we assume that the previously mentioned hypotheses regarding eigenfunctions and

eigenvalue distributions provide a useful basis for deducing the statistical properties of the Z and

S matrices, and, in what follows, we investigate and test the consequences of this assumption. We

call our approach the Random Coupling Model.

The vertical height h of the cavity is small, so that, for frequencies of interest, only the transverse

electric-magnetic (TEM) wave propagates inside the cavity. Thus, the solution for the electric field
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FIG. 3: (a) Top view of the cavity used in our numerical simulation. (b) Side view of the details of a possible

coupling.

is of the form:

~E = Ez(x, y)ẑ. (17)

This electric field gives rise to a charge density on the top plate ρs = −ǫ0Ez, and also generates a

voltage VT (x, y) = −hEz(x, y) between the plates. The magnetic field is perpendicular to ẑ,

~B = (Bx, By) = µ0
~H, (18)

and is associated with a surface current density ~Js = ~H × ẑ flowing on the top plate.

The cavity excitation problem for a geometry like that in Fig. 3(b) is system specific. We

will be interested in separating out statistical properties that are independent of the coupling

geometry and have a universal (i.e., system-independent) character. For this purpose, we claim

that it suffices to consider a simple solvable excitation problem, and then generalize to more

complicated cases, such as the coupling geometry in Fig. 3(b). Thus we consider the closed cavity

(i.e., with no losses or added metal), with localized current sources resulting in a current density

~Js(x, y, t) =
∑

i Ii(t)ui(x, y)ẑ between the plates. The profile functions ui(x, y) are assumed to be

localized; i.e., ui(x, y) is essentially zero for (x − xi)
2 + (y − yi)

2 > l2i , where li is much smaller

than the lateral cavity dimension. ui(x, y) characterizes the distribution of vertical current at the

location of the i-th model input (analogous to the i-th transmission line connected to the cavity).
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The profile is normalized such that

∫

dxdyui(x, y) = 1. (19)

For the sake of simplicity, consider the case in which the cavity is excited by only one input. The

injection of current serves as a source in the continuity equation for surface charge, ∂ρs/∂t+∇· ~Js =

Iu(x, y), where ∇ = (∂/∂x, ∂/∂y). Expressed in terms of fields, the continuity equation becomes:

∂

∂t
(−ǫ0Ez) + ∇ · (H̃ × ẑ) = Iu(x, y). (20)

Differentiating Eq. (20) with respect to t and using Faraday’s law, we obtain,

∂2

∂t2
(−ǫ0Ez) + ∇ · 1

µ0
∇Ez = u(x, y)

∂I

∂t
. (21)

Expressing the electric field in terms of the voltage VT = −Ezh, we arrive at the driven wave

equation,

1

c2

∂2

∂t2
VT −∇2VT = hµ0u

∂I

∂t
, (22)

where c is speed of light, c2 = 1/(µ0ǫ0).

Assuming sinusoidal time dependence ejωt for all field quantities, we obtain the following equa-

tion relating V̂T and Î, the phasor amplitudes of the voltage between the plates and the port

current,

(∇2 + k2)V̂T = −jωhµ0uÎ = −jkhη0uÎ, (23)

where η0 =
√

µ0/ǫ0 is the characteristic impedance of free space and k = ω/c. Thus Eq. (23)

represents a wave equation for the voltage between the plates excited by the input current.

To complete our description and arrive at an expression of the form of Eq. (13), we need to

determine the port voltage V . We take its definition to be a weighted average of the spatially

dependent voltage VT (x, y, t),

V =

∫

dxdyu(x, y)VT (x, y, t). (24)

It then follows from Eq. (20) that the product IV gives the rate of change of field energy in the

cavity, and thus Eq. (24) provides a reasonable definition of port voltage. Solution of Eq. (23) and

application of (24) to the complex phasor amplitude V̂T provide a linear relation between V̂ and

Î, which defines the impedance Z.
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To solve Eq. (23), we expand V̂T in the basis of the eigenfunctions of the closed cavity, i.e.,

V̂T =
∑

n cnφn, where (∇2 + k2
n)φn = 0,

∫

φiφjdxdy = δij and φn(x, y) = 0 at the cavity boundary.

Thus, multiplying Eq. (11) by φn and integrating over (x, y) yields

cn(k2 − k2
n) = −jkhη0〈uφn〉Î , (25)

where kn = ωn/c, ωn is the eigenfrequency associated with φn, and

〈 uφn〉 =

∫

φnudxdy.

Solving for the coefficients cn and computing the voltage V̂ yields

V̂ = −j
∑

n

khη0〈uφn〉2
k2 − k2

n

Î = ZÎ. (26)

This equation describes the linear relation between the port voltage and the current flowing into

the port. Since we have assumed no energy dissipation (e.g., due to wall absorption or radiation),

the impedance of the cavity is purely imaginary, as is indicated by Eq. (26).

The expression for Z in Eq. (26) is equivalent to a formulation introduced by Wigner and

Eisenbud [32] in nuclear-reaction theory in 1947, which was generalized and reviewed by Lane

and Thomas [33], and Mahaux and Weidenmuller [34]. Recently, Fyodorov and Sommers [35]

derived a supersymmetry approach to scattering based on this formulation (which they called the

“K-matrix” formalism), and it has also been adapted to quantum dots by Jalabert, Stone and

Alhassid [36].

Explicit evaluation of Eq. (26) in principle requires determination of the eigenvalues and cor-

responding eigenfunctions of the closed cavity. We do not propose to do this. Rather, we adopt

a statistical approach to the properties of eigenfunctions of chaotic systems, and we use this to

construct models for the statistical behavior of the impedance. By a statistical approach we mean

the following. For high frequencies such that k = ω/c ≫ L−1 where L is a typical dimension of

the cavity, the sum in Eq. (26) will be dominated by high order (short wavelength) modes with

knL ≫ 1. For these modes the precise values of the eigenvalues kn as well as the overlap integrals

〈uφn〉 will depend sensitively on the geometry of the cavity. Rather than predict these values

precisely we will replace them with random variables. The assumption here is that there are many

modes with kn in the narrow interval ∆k centered at k (where ∆ ≪ ∆k ≪ k), and, if we choose

one of these at random, then its properties can be described by a statistical ensemble. As discussed

in Sec. II, the properties of the short wavelength eigenfunctions can be understood in terms of ray

trajectories. For geometries like that in Fig. 3(a), ray trajectories are chaotic.
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The assumed form of the eigenfunction from the random plane wave hypothesis is

φn = lim
N→∞

√

2

AN
Re{

N
∑

j=1

αj exp(ikn~ej · ~x + iθj)}, (27)

where ~ej are randomly oriented unit vectors, θj is random in [0, 2π], and αj are random. Using

(27) we can calculate the overlap integral 〈uφn〉 appearing in the numerator of (26). Being the

sum of contributions from a large number of random plane waves, the central limit theorem implies

that the overlap integral will be a Gaussian random variable with zero mean. The variance of the

overlap integral can be obtained using Eq. (27),

E{〈uφn〉2} =
1

A

∫ 2π

0

dθ

2π
|ū(~kn)|2, (28)

where E{.} denotes expect value, and ū(~kn) is the Fourier transform of the profile function u(x, y),

ū(~kn) =

∫

dxdyu(x, y)exp(−i~kn · ~x), (29)

and ~kn = (kn cos θ, kn sin θ). The integral in (28) over θ represents averaging over the directions ~ej

of the plane waves.

The variance of 〈uφn〉 depends on the eigenvalue k2
n. If we consider a localized source u(x, y)

such that the size of the source is less than the typical wavelength 2π/kn, then the variance will

be A−1 (recall the normalization of u given by Eq. (19)). As larger values of kn are considered,

the variance ultimately decreases to zero. As an illustrative example, suppose that the source

corresponds to an annular ring of current of radius a,

u(x, y) =
1

π
δ(x2 + y2 − a2). (30)

In this case, one finds from Eq. (28),

E{〈uφn〉2} = A−1J2
0 (kna), (31)

which decreases to zero with increasing kna as (kna)−1. (A smooth, analytic function u(x, y) will

yield a sharper cutoffs in variance as kn increases.)

Modeling of Eq. (26) also requires specifying the distribution of eigenvalues kn appearing in

the denominator. According to the Weyl formula (1) for a two dimensional cavity of area A, the

average separation between adjacent eigenvalues, k2
n − k2

n−1, is 4πA−1. Thus, one requirement on

the sequence of eigenvalues is that they have a mean spacing 4πA−1. The distribution of spacings

of adjacent eigenvalues is predicted to have the characteristic Wigner form for cavities with chaotic

trajectories. In particular, defining the normalized spacing, sn = A(k2
n − k2

n−1)/4π, the probability
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density function for sn is predicted to be closely approximated by Eq. (3) for chaotic systems with

time-reversal symmetry. Thus, a second requirement on the sequence of eigenvalues is that they

have the correct spacing distribution. One approach of ours will be to generate values for the

impedance assuming that sequences of eigenvalues can be generated from a set of separations sn

which are independent and distributed according to Eq. (3). The usefulness of the assumption of

the independence of separations will have to be tested, as it is known that there are long range

correlations in the spectrum, even if nearby eigenvalues appear to have independent spacings. A

more complete approach would be to use sequence of eigenvalues taken from the spectra of random

matrices. We will find that in some cases it is sufficient to consider the simpler spectra, generated

from independent spacing distributions, but in other cases, for example, when losses are considered,

or when correlations of impedance values at different frequencies are considered, the correlations

in eigenvalues exhibited by random matrix theory are important.

A key assumption in our random coupling model is the independence of the overlap integrals,

〈uφn〉, and the eigenvalues kn. This we argue on the basis that each eigenfunction satisfies the plane

wave hypothesis and successive eigenfunctions appear to be independent. A second justification

comes from random matrix theory where it is known that the probability distribution for the

eigenvalues of a random matrix is independent of that of the elements of the eigenfunctions [[18],

Chap.3].

Combining our expressions for 〈uφn〉 and using the result that for a two dimensional cavity the

mean spacing between adjacent eigenvalues is ∆ = 4πA−1, the expression for the cavity impedance

given in Eq. (26) can be rewritten,

Z = − j

π

∞
∑

n=1

∆
RR(kn)w2

n

k2 − k2
n

, (32)

where wn is taken to be a Gaussian random variable with zero mean and unit variance, the kn are

distributed independent of the wn, and RR is given by

RR(k) =
khη0

4

∫

dθ

2π
|u(~k)|2. (33)

Our rationale for expressing the impedance in the form of Eq. (32) and introducing RR(kn) is

motivated by the following observation. Suppose we allow the lateral boundaries of the cavity to

be moved infinitely far from the port. That is, we consider the port as a 2D free-space radiator. In

this case, we solve Eq. (23) with a boundary condition corresponding to outgoing waves, which can

be readily done by the introduction of Fourier transforms. This allows us to compute the phasor

port voltage V̂ by Eq. (24). Introducing a complex radiation impedance ZR(k) = V̂ /Î (for the
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problem with the lateral boundaries removed), we have

ZR(k) = − j

π

∫ ∞

0

dk2
n

k2 − k2
n

RR(kn), (34)

where RR(kn) is given by Eq. (33) and kn is now a continuous variable. The impedance ZR(k) is

complex with a real part obtained by deforming the kn integration contour to pass above the pole

at kn = k. This follows as a consequence of applying the outgoing wave boundary condition, or

equivalently, letting k have a small negative imaginary part. Thus, we can identify the quantity

RR(k) in Eq. (33) as the radiation resistance of the port resulting from one half the residue of the

integral in (34) at the pole, k2
n = kn,

Re[ZR(k)] = RR(k), (35)

and

XR(k) = Im[ZR(k)]

is the radiation reactance given by the principal part (denoted by P ) of the integral (34),

XR(k) = P{− 1

π

∫ ∞

0

dk2
n

k2 − k2
n

RR(kn)}. (36)

Based on the above, the connection between the cavity impedance, represented by the sum in

Eq. (32), and the radiation impedance, represented in Eq. (35) and Eq. (36), is as follows. The

cavity impedance, Eq. (32), consists of a discrete sum over eigenvalues kn with weighting coefficients

wn which are Gaussian random variables. There is an additional weighting factor RR(kn) in the

sum, which is the radiation resistance. The radiation reactance, Eq. (36), has a form analogous to

the cavity impedance. It is the principle part of a continous integral over kn with random coupling

weights set to unity. While, Eqs. (32), (35), (36), have been obtained for the simple model imput

Ĵ = Îu(x, y) in 0 ≤ z ≤ h with perfectly conducting plane surfaces at z = 0, h, we claim that these

results apply in general. That is, for a case like that in Fig. 1(b), ZR(k) (which for the simple

model is given by Eq. (34)) can be replaced by the radiation impedance for the problem with the

same geometry. It is important to note that, while RR(k) is nonuniversal (i.e., depends on the

specific coupling geometry, such as that in Fig. 2(b)), it is sometimes possible to independently

calculate it, and it is also a quantity that can be directly measured (e.g., absorber can be placed

adjacent to the lateral walls). In the next section, we will use the radiation impedance to normalize

the cavity impedance yielding a universal distribution for the impedance of a chaotic cavity.
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V. IMPEDANCE STATISTICS FOR A LOSSLESS, TIME REVERSAL SYMMETRIC

CAVITY FED BY A SINGLE TRANSMISSION LINE

We first consider the time reversal symmetric (TRS) case for a lossless cavity with only one

port. In this case, the impedance of the cavity Z in Eq. (32) is a purely imaginary number and

S, the reflection coefficient, is a complex number with unit modulus. Terms in the summation of

Eq. (32) for which k2 is close to k2
n will give rise to large fluctuations in Z as either k2 is varied or

as one considers different realizations of the random numbers. The terms for which k2 is far from

k2
n will contribute to a mean value of Z. Accordingly, we write

Z = Z̄ + Z̃, (37)

where Z̄, the mean value of Z, is written as

Z̄ = − j

π

∑

n

∆E{RR(k2
n)

k2 − k2
n

}, (38)

and we have used the fact that the w2
n are independent with E{w2

n} = 1. If we approximate the

summation in Eq. (38) by an integral, noting that ∆ is the mean spacing between eigenvalues,

comparison with (36) yields

Z̄ = jXR(k), (39)

where XR = Im[ZR] is the radiation reactance defined by Eq. (36). Thus, the mean part of the

fluctuating impedance of a closed cavity is equal to the radiation reactance that would be obtained

under the same coupling conditions for an antenna radiating freely; i.e., in the absence of multiple

reflections of waves from the lateral boundaries of the cavity.

As an example, we evaluate this impedance for the case of the annular current profile (30) in

Appendix A and find

Z̄ = −j(khη/4)J0(ka)Y0(ka), (40)

where Y0 is a Bessel function of the second kind. This impedance has a positive imaginary log-

arithmic divergence as ka → 0 which is due to the large inductance associated with feeding the

current through a small circle of radius a.

We now argue that, if k2 is large enough that many terms in the sum defining Z satisfy k2
n < k2,

then the fluctuating part of the impedance Z̃ has a Lorentzian distribution with a characteristic

width RR(k). That is, the probability density function for the imaginary part of the fluctuating
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components of the cavity impedance Z̃ = jX̃ is

PX̃(X̃) =
RR

π(X̃2 + R2
R)

. (41)

The reason that the form of PX̃ is Lorentzian will be given subsequently. That the characteristic

width scales as RR(k) follows from the fact that the flucatuating part of the impedance is dominated

by the terms for which k2
n ≃ k2. The size of the contribution of a term in the sum in Eq. (32)

decreases as |k2 − k2
n| in the denominator increases. The many terms with large values of |k2 − k2

n|
contribute mainly to the mean part of the reactance with the fluctuations in these terms cancelling

one and another due to the large number of such terms. The contributions to the mean part from

the relatively fewer terms with small values of |k2 − k2
n| tend to cancel due to the sign change

of the denominator while their contribution to the fluctuating part of the reactance is significant

since there are a smaller number of these terms. Consequently, when considering the impedance

fluctuations, it suffices to treat RR(kn) as a constant in the summation in Eq. (32) and factor it

out. This results in a sum that is independent of coupling geometry and is therefore expected to

have a universal distribution.

To test the arguments above, we consider a model normalized cavity reactance ξ = X/RR

and also introduce a normalized wavenumber k̃2 = k2/∆ = k2A/4π. In terms of this normalized

wavenumber, the average of the eigenvalue spacing [average of (k̃2
n+1 − k̃2

n)] is unity. Our model

normalized reactance is

ξ = − 1

π

N
∑

n=1

w2
n

k̃2 − k̃2
n

, (42)

where the wn are independent Gaussian random variables, k̃2
n are chosen according to various

distributions, and we have set RR(kn) to a constant value for n ≤ N and RR(kn) = 0 for n > N .

The fluctuating part of jξ given by Eq. (42) mimics fluctuating part of the impedance Z in the case

in which RR(kn) as a sharp cut-off for eigenmodes with n > N . In terms of ξ, Eq. (41) becomes

Pξ(ξ) =
1

π

1

[(ξ − ξ̄)2 + 1]
, (43)

where ξ̄ is the mean of ξ.

First we consider the hypothetical case where the collection of k̃2
n values used in Eq. (42) result

from N independent and uniformly distributed random choices in the interval 0 6 k̃2
n 6 N . In

contrast to Eqs. (3) and (4), this corresponds to a Poisson distribution of spacings P (s) = exp(−s)

for large N . In Appendix B, we show that this case is analytically solvable and that the mean
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value ξ̄ is

ξ̄ = P{− 1

π

∫ N

0

dk̃2
n

k̃2 − k̃2
n

} =
1

π
ln|N − k̃2

k̃2
|, (44)

and, furthermore, that ξ has a Lorentzian distribution given by Eq. (43).

Our next step is to determine the probability distribution function for ξ given by (42) in the

case where the spacing distribution corresponds to the TRS case described by Eq. (3). Since we

have not been able to do this analytically, we do it numerically. Thus we generated 106 realizations

of the sum in Eq. (42). For each realization we randomly generated N = 2000 eigenvalues using

the spacing probability distribution (3), as well as N = 2000 random values of wn chosen using

a Gaussian distribution for wn with E{wn} = 0 and E{w2
n} = 1. We first test the prediction of

Eq. (44) by plotting the median value of ξ versus k̃2 in Fig. 4(a). (We use the median rather than

the mean, since, for a random variable with a Lorentzian distribution, this quantity is more robust

when a finite sample size is considered.) Also plotted in Fig. 4(a) is the formula (44). We see that

the agreement is very good. Next we test the prediction for the fluctuations in ξ by plotting a

histogram of ξ values for the case k̃2 = N/2 in Fig. 4(b). From (44) for k̃2 = N/2 the mean is

expected to be zero, and, as can be seen in the figure, the histogram (open circles) corresponds to

a Lorentzian with zero mean and unit width (solid line) as expected. Histograms plotted for other

values of k̃2 agree with the prediction but are not shown. Thus, we find that the statistics of ξ are

the same for P (s) = exp(−s) (Poisson) and for P (s) given by Eq. (3). Hence we conclude that the

statistics of ξ are independent of the distribution of spacings. This is further supported by Fig. 4(c)

where the histogram of ξ for k̃2 = N/2 is plotted for the case in which the spacing distribution is

that corresponding to time reversal symmetry broken (TRSB) systems, Eq. (4) (the TSRB case

will be discussed more carefully in the next section). Again the histogram is in excellent agreement

with (43). This implies that, for this case, with a single input transmission line to the cavity, the

impedance statistics are the same for the TRS and TRSB cases. (This will not be so for cavities

with more than one input port; see Sec. VI.)

Next we address the issue of long range correlations in the distribution of eigenvalues on statistics

of the impedance. As we have mentioned, a quantity analogous to X, the “K-matrix”, is considered

in random matrix theory [35],

K = πW †(E − H)−1W. (45)

Here H is an N by N random matrix selected form the Gaussian Orthogonal Ensemble and W is

an M by N random matrix whose elements are independent Gaussian random variables. K is thus

an M by M square matrix. The parameter E is analogous to k2 in our problem.
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FIG. 4: (a) Median of ξ versus k̃2/N , compared with Eq. (44). (b) Histogram of approximation to Pξ(ξ)

(solid dots) in the TRS case compared with a Lorentzian distribution of unit width. (c) Same as (b) but for

the TRSB case.
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The similarity between K and Z defined in Eq. (26) is apparent if (E − H)−1 is represented

in the basis corresponding to the eigenvectors of H, H = O diag(k2
1, k2

2, ... k2
N )OT where O =

[o1|o2|...|oN ], om is the mth eigenvector of H, Hom = k2
mom, oT

mom′ = δmm′ . The integers N

and M play the role of the number of eigenmodes excited by the ports and the number of ports

respectively. For example, in the one port case, W is an N-dimensional column vector, and Eq. (45)

becomes

K = π

N
∑

n=1

w̃2
n

k2 − k2
n

, (46)

where w̃n = W T on, and we have replaced E by k2. The formal equivalence between ξ in (42) and

K is apparent ( −πξ ⇔ K/π, w2
n ⇔ w̃2

n). Thus, the random plane wave hypothesis corresponds

to W T on being a Gaussian random number. One of the most important differences between our

formulation and random matrix theory is that in some cases we ignore the long range correlations

among eigenvalues, i.e., the spacings are taken to be independent of each other, whereas the eigen-

values of the random matrix H (and resonant cavities) have long range correlations. Nevertheless

Ref. [35] shows that the eigenvalues of K are Lorentzian distributed. (For the case M=1 corre-

sponding to a single port, the value K is Lorentzian distributed.) Therefore the appearance of

a Lorentzian is not dependent on long range correlations of the k2
n (analogously the eigenvalues

of H). We emphasize that our use of only the nearest neighbor statistics to model the statistical

properties of k2
n is mostly motivated by the resulting ease of numerical implementation and our

conjecture that it will yield accurate results for the impedance statistics. As will subsequently be-

come apparent, this is very well supported by our numerical experiments. However, we note that

in principle, one can also incorporate additional eigenvalue correlation from random matrix theory

in the statistics generating the k2
n in Eq. (42).(and when losses are considered, this is necessary.)

We note that the mean and width of the distribution in the random matrix approach are specific

to the random matrix problem. In contrast, in our formulation, these quantities are determined

by the geometry specific port coupling to the cavity through the radiation impedance ZR(k2
n).

To test our prediction for the distribution function of the normalized impedance we have com-

puted the impedance for the cavity in Fig. 3(a) for the coupling shown in Fig. 3(b) using the

commercially available program HFSS (High Frequency Structure Simulator). To create different

realizations of the configuration, we placed a small metallic cylinder of radius 0.6 cm and height h

at 100 different points inside the cavity. In addition, for each location of the cylinder, we swept the

frequency through a 2.0 GHz range (about 100 modes) from 6.75GHz to 8.75GHz in 4000 steps of

width 5×10−4 GHz. We generated 100,000 impedance values. In addition, to obtain the radiation

24



7 7.5 8 8.5
10

30

50

70

90

Freq(GHz)

R
ea

ct
an

ce

Med[X
cav

]
X

rad

FIG. 5: Median cavity reactance averaged over 100 realization vs. frequencies ranged from 6.75GHz to

8.75GHz, compared with the corresponding radiation reactance Im[ZR(ω)].

impedance, we also used HFSS to simulate the case with absorbing boundary conditions assigned

to the sidewalls of the cavity. We find that the average value of the cavity reactance (which we

predict to be the radiation reactance) has large systematic fluctuations. This is illustrated in Fig. 5

where we plot the median cavity reactance versus frequency. Here the median is taken with re-

spect to the 100 locations of the perturbing disc. Also shown in Fig. 5 is the radiation reactance

XR(ω) = Im[ZR(ω)]. As can be seen the radiation reactance varies only slightly over the plotted

frequency range, whereas the median cavity reactance has large frequency dependent fluctuations

about this value. On the other hand, we note that over the range 6.75-8.75 GHz, the average

radiation reactance is 40.4 Ω and the average of the median cavity reactances is 42.3Ω. Thus over

this frequency band, there is good agreement. The scale of the fluctuations in cavity reactance is on

the order of 0.2GHz, which is much larger than the average spacing between cavity resources which

is only 0.016GHz. Thus, these fluctuations are not associated with individual resonances. Rather,

the frequency scale of 0.2GHz suggests that they are multipath interference effects (L ∼ 100cm),

which survive in the presence of the moveable conducting disc. One possibility is that the fluctua-

tions are the result of scars and this will be investigated in the future. The implication is that to

obtain good agreement with the theory predicting Lorentzian distribution, it may be necessary to

average over a sufficiently large frequency interval.
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FIG. 6: Histogram approximation to Pξ(ξ) from numerical data calculated using HFSS in different frequency

ranges. (a) 6.75 - 8.75 GHz, (b) 6.75 - 7.25 GHz, (c) 7.25 - 7.75GHz, (d) 7.75 - 8.25 GHz, (e) 8.25 - 8.75

GHz.

To test the Lorentzian prediction we normalize the cavity impedance using the radiation

impedance as in Eq. (39) and Eq. (41), the normalized impedance values, ξ̃ = {Im[Z(k)] −
XR(k)]}/RR(k), are computed, and the resulting histogram approximations to Pξ(ξ̃) is obtained.

Fig. 6(a) shows the result for the case where we have used data in the frequency range 6.75GHz

to 8.75GHz (the range plotted in Fig. 5). The histogram points are shown as dots, and the theo-

rectical unit width Lorentzian is shown as a solid curve. Good agreement between the predicted

Lorentzian and the data is seen. Figures 6 (b)-(e) show similar plots obtained for smaller frequency

range of width 0.5GHz: (b) 6.75 - 7.25 GHz, (c) 7.25 - 7.75GHz, (d) 7.75 - 8.25 GHz, (e) 8.25 -

8.75 GHz. For these narrow freqency ranges, we see that Figs. 6(b) and 6(c) show good agreement

with (43), while, on the other hand, Figs. 6(d) and 6(e) exhibit some differences.

We now summarize the main ideas of this section. The normalized impedance of a chaotic

cavity with time-reversal symmetry has a universal distribution which is a Lorentzian. The width

of the Lorentzian and the mean value of the impedance can be obtained by measuring the corre-

sponding radiation impedance under the same coupling conditions. The physical interpretation of

this correspondence is as follows. In the radiation impedance, the imaginary part is determined

by the near field, which is independent of cavity boundaries. On the other hand, the real part
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of the radiation impedance is related to the far field. In a closed, lossless cavity, the real part of

the impedance vanishes. However, waves that are radiated into the cavity are reflected from the

boundaries eventually returning to the port and giving rise to fluctuation in the cavity reactance.

VI. GENERALIZATION: THE STATISTICS OF Z MATRICES

In the previous two sections, we restricted our considerations to discussion of the simplest case,

that of a one-port, time-reversal symmetric, lossless cavity. In this section, we will generalize our

model to describe the impedance matrix in more complicated situations. The implications of our

theory for scattering matrices are discussed in Sec. VII.

A. Lossless multiport case with time reversal symmetry

In the one port case, there is only one driving source uÎ in Eq. (23). For the multiport case,

we suppose ui(x, y) is the profile function for i-th port and each port is driven independently by a

current Îi. Then Eq. (23) becomes

(∇2
⊥ + k2)V̂T = −jkhη0

M
∑

i=1

uiÎi, (47)

where
∫

dxdyui = 1 and M is the number of ports. Each of the ui are centered at different locations.

The phasor voltage at each port can be calculated as before, V̂i =
∫

dxdyuiV̂T ≡< uiV̂T > and is

linearly related to the phasor currents Îj through the impedance matrix, V̂i =
∑

j Zij Îj .

To obtain an expression for the matrix Z, we expand V̂T as before in the basis φn, the result is

Z = −jkhη0

∑

n

ΦnΦT
n

k2 − k2
n

, (48)

where the vector Φn is [〈u1φn〉, 〈u2φn〉,...,〈uMφn〉]T . Using the random eigenfunction hypothesis,

we write Φn as

Φn = L(kn)wn, (49)

where L is a nonrandom, as yet unspecified, M ×M matrix that depends on the specific coupling

geometry at the ports and may depend smoothly on kn, and wn is an M -dimensional Gaussian

random vector with covariance matrix C(kn). That is, the probability distribution of wn is

Pw(wn) ∝ exp − (
1

2
wT

n C(kn)−1wn). (50)
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Note that C(kn) =
∫

Pw(wn)wnwT
n dwn ≡ 〈wnwT

n 〉. We desire to choose L(k) so that C(k) = 1M ,

where 1M is the M × M identity matrix. That is, we require that the components of the random

vector are statistically independent of each other, each with unit variance. The idea behind (49)

is that the excitation of the ports by an eigenmode will depend on the port geometry and on

the structure of the eigenmode in the vicinity of the ports. The dependence on the specific port

geometry is not sensitive to small changes in the frequency or cavity configuration and is embodied

in the matrix quantity L(k). The structure of the eigenmode in the vicinity of the ports, however, is

very sensitive to the frequency and cavity configuration, and this motivates the statistical treatment

via the random plane wave hypothesis. From the random plane wave hypothesis, the excitation of

the port from a given plane wave component is random, and, since many such waves are superposed,

by the central limit theorem, the port excitation is a Gaussian random variable, as reflected by the

vector wn. In Sec. IV we have derived a result equivalent to (49) for the case of a one-port with

a specific model of the excitation at the port (namely, a vertical source current density Iu(x, y)ẑ

between the plates). Our derivation here will be more general in that it does not depend on

a specific excitation or on the two-dimensional cavity configuration used in Sec. IV. Thus this

derivation applies, for example, to three dimensional cavities, and arbitrary port geometries. From

(48) and (49) we have

Z = −jkhη0

∑

n

L(kn)wnwT
n LT (kn)

k2 − k2
n

. (51)

We now take the continuum limit of (51) and average over wn,

〈Z〉 = −j

∫ ∞

0
khη0L(k′)

C(k′)

k2 − (k′)2
LT (k′)

dk′2

∆
. (52)

We note that the continuum limit is approached as the size of the cavity is made larger and larger,

thus making the spacing (k2
n+1 − k2

n) approach zero. Thus, the continuum limit corresponds to

moving the lateral walls of the cavity to infinity. Using our previous one-port argument as a

guide, we anticipate that, if the pole in Eq. (52) at k′2 = k2 is interpreted in the causal sense

(corresponding to outgoing waves in the case with the walls removed to infinity), then 〈Z〉 in (52)

is the radiation impedance matrix,

〈Z〉 = ZR(k) = RR(k) + jXR(k), (53)

where V̂ = ZR(k)Î with V̂ the M -dimensional vector of port voltages corresponding to the M -

dimensional vector of port currents Î, in the case where the lateral walls have been removed to

infinity. With the above interpretation of the pole, the real part of Eq. (52) yields

RR(k) = πkhη0L(k)C(k)LT (k)/∆. (54)
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Choosing L(k) to be

L(k) = [
∆

πkhη0
RR(k)]

1

2 , (55)

where the positive symmetric matrix square root is taken, Eq. (54) yields C(k) = 1M , as desired.

Thus, Eq. (48) becomes

Z = − j

π

∑

n

∆
R

1/2
R (kn)wnwT

n R
1/2
R (kn)

k2 − k2
n

, (56)

where < wnwT
n >= 1M . (Note that the Weyl formula for ∆ is different in two and three dimensions.)

In the case of transmission line inputs that are far apart, e.g., of the order of the cavity size, then

the off-diagonal elements of ZR are small and can be neglected. On the other hand, this will not be

the case if some of the transmission line inputs are separated from each other by a short distance

of the order of a wavelength. Similarly, if there is a waveguide input to the cavity where the

waveguide has multiple propagating modes, then there will be components of V̂ and Î for each of

these modes, and the corresponding off-diagonal elements of ZR for coupling between these modes

will not be small.

For the remainder of the paper, we will assume identical transmission line inputs that are far

enough apart that we may neglect the off-diagonal elements of ZR. As before, we will take the

eigenvalues k2
n to have a distribution generated by the spacing statistics. Because the elements of

Z depend on the eigenvalues k2
n, there will be correlations among the elements. The elements of

the Z matrix are imaginary, Z = jX, where X is a real symmetric matrix. Consequently X has

real eigenvalues. We will show in Sec. IV.C that the distribution for individual eigenvalues of X

is Lorentzian with mean and width determined by the corresponding radiation impedance.

B. Effects of Time-Reversal Symmetry Breaking (TRSB)

In the time-reversal symmetric system, the eigenfunctions of the cavity are real and correspond

to superpositions of plane waves with equal amplitude waves propagating in opposite directions as

in Eq. (27). If a non-reciprocal element (such as a magnetized ferrite) is added to the cavity, then

time reversal symmetry is broken (TRSB). As a consequence, the eigenfunctions become complex.

Eq. (27) is modified by removal of the operation of taking the real part, and the 〈uiφn〉 in Eq. (26)

also become complex. In this case we find

〈uℓφn〉 = [∆RR(kn)]1/2wℓn (57)
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where wℓn = (w
(r)
ℓn + jw

(i)
ℓn )/

√
2 and w

(r)
ℓn and w

(i)
ℓn are real, independent Gaussian random variables

with zero mean and unit variance. The extra factor of
√

2 accounts for the change in the nor-

malization factor in Eq. (27), required when the eigenfunctions become complex. Further, wT
n in

Eq. (56) and Eq. (50) is now replaced by w†
n.

A further consequence of TRSB is that the distribution of eigenvalue spacings is now given by

Eq. (4), rather than by (3). The main difference between Eq. (3) and Eq. (4) is the behavior of

P (s) for small s. In particular, the probability of small spacings in a TRSB system (4) is less than

than of a TRS system (3) (P (s) ∼ s2 rather than s).

For the sake of simplicity, we will assume all the transmission lines feeding the cavity ports are

identical, and have the same radiation impedance (RR + jXR). Analogous to the one port case,

we can define a model normalized reactance matrix ξij = Xij/RR for the case RR(kn) constant for

n ≤ N and RR(kn) = 0 for n > N ,

ξij = − 1

π

N
∑

n=1

winw∗
jn

k̃2 − k̃2
n

, (58)

where k̃2 = k2/∆, wℓn = (w
(r)
ℓn + jw

(i)
ℓn )/

√
2, w

(r)
ℓn and w

(i)
ℓn are real, independent Gaussian random

variables with zero mean and unit variance, E(w∗
inwjn) = δij . Note that a unitary transformation,

ξ′ = UξU †, returns (58) with win and wjn replaced by w′
in and w′

jn where w′
n = Uwn. Since a

unitary transformation does not change the covariance matrix, E(winw∗
jn) = E(w′

inw′∗
jn) = δij ,

the statistics of ξ and of ξ′ are the same; i.e., their statistical properties are invariant to unitary

transformations.

C. Properties of the impedance matrix

The fluctuation properties of the Z matrix can be described by the model matrix ξij specified

in Eq. (58). In the TRS case the wjn are real Gaussian random variables with zero mean and

unit width and the spacings of the k2
n satisfy (3). In the TRSB case the wjn are complex and the

spacings between adjacent k2
n satisfy (4).

In the case under consideration of multiple identical ports, ξij will have a diagonal mean part ξ̄δij

for which all the diagonal values are equal and given by (44). The eigenfunctions of ξij = ξ̄δij + ξ̃ij

and of its fluctuating part ξ̃ij will thus be the same. Consequently, we focus on the eigenvalues of

the fluctuating part.

We restrict our considerations to the two-port case. We recall that for the one-port case there

is no difference in the statistics of Z for the TRS and TRSB cases. In the two-port case, how-
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FIG. 7: (a) Scatter plot of θ1 vs θ2, in the TRS case. (b) Scatter plot of θ1 vs θ2 in the TRSB case.(c) Scatter

plot of θ1 vs θ2 from the HFSS simulation, with 100 realizations and sweeping freqency from 6.75GHz to

8.75GHz.

ever, essential differences are observed when time reversal is broken. Using (58) we generate 106

realizations of the 2 by 2 matrix ξ in both the TRS and TRSB cases, again for N = 2000 and

k2 = 1000. For each realization we compute the eigenvalues of the ξ matrix. Individually the prob-

ability distributions of the eigenvalues are Lorentzian. However, if we consider the joint probability

density function (PDF) of the two eigenvalues, then differences between the TRS and TRSB cases

emerge. We map the two eigenvalues ξi, i = 1 or 2, into the range [π/2, π/2] via the transformation

θi = arctan(ξi). Scatter plots of θ2 and θ1 for 106 realizations of the ξ matrix are shown in Fig. 7(a)

for the TRS case and in Fig. 7(b) for the TRSB case. The white diagonal band in both cases shows

that the eigenvalues avoid each other (i.e., they are anti-correlated). This avoidance is greater in

the TRSB case than in the TRS case. The correlation

corr(θ1, θ2) ≡
〈θ1θ2〉 − 〈θ1〉〈θ2〉

√

〈θ2
1〉〈θ2

2〉
(59)

is -0.216 for the TRS case and -0.304 for the TRSB case.

From the construction of the ξ matrices for the TRS and TRSB cases their statistical properties
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are invariant under orthogonal and unitary transformations, respectively. Random matrix theory

has been used to study these rotation-invariant ensembles and predicts the joint density function

of θ1 and θ2 [35] to be,

Pβ(θ1, θ2) ∝ |ej2θ1 − ej2θ2 |β, (60)

where β = 1 for the TRS case and β = 2 for the TRSB case. Note that based on Eq. (60), the

probability density function for one of the angles P (θ1) =
∫

dθ2P (θ1, θ2) is uniform. From the

definition θ = arctan ξ, this is equivalent to the eigenvalues of the ξ matrix having Lorentzian

distributions (Pξ(ξi) = Pθ(θi)|dθi/dξi| = |dθi/dξi|/2π).

The correlation coefficients calculated from the numerical results in Figs. 7(a) and 7(b) are

consistent with the predictions of the random matrix theory from Eq. (60), that is, -0.216 for the

TRS case and -0.304 for the TRSB case. This implies that the distribution of spacings and the long

range correlations in the eigenvalues of the random matrix, which are ignored in the construction

of the k2
n in our Random Coupling Model, are not important in describing the statistics of the

impedance matrix. (These correlations can be included using a sequence of k2
n generated by the

eigenvalues of a random matrix.)

Now we test these predictions for our Bow-tie cavity of Fig. 3. We use the HFSS software

to calculate the cavity impedance matrix and radiation impedance matrix for a 2-port case. We

locate the two ports, of the kind pictured in Fig.3(b), at the positions (x, y)=(14cm, 7cm) and (x,

y)=(27cm, 13.5cm). We also include the 0.6cm cylindrical perturbation which is located alternately

at 100 random points in the cavity, and we numerically calculate the impedance matrix for 4000

frequencies in the range 6.75GHz to 8.75GHz. We obtain a normalized Z matrix, which is analogous

to the ξ matrix defined in Eq. (58) according to

ξhfss = R−1
R (Im[Zcav] − 1̃XR), (61)

where 1̃ is the 2 by 2 identity matrix, Zcav is the 2 by 2 impedance matrix calculated by HFSS,

and XR and RR are the radiation reactance and resistance for a single port. For each realization

of ξhfss we calculate its eigenvalues ξi = tan θi, i = 1, 2, and plot the values on the θ1 vs. θ2 plane,

as shown in Fig. 7(c). The anti-correlation of the angles is seen in the figure, and corr(θ1, θ2) from

(59) is -0.205, which is comparable with what we expect for the TRS case, -0.216.

So far we have focused on the eigenvalues of the impedance matrix. The eigenfunctions of Z are

best described in terms of the orthogonal matrix whose columns are the orthonormal eigenfunctions
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of Z. Specially, in the TRS case, since ξ is real and symmetric,

ξ = O





tan θ1 0

0 tan θ2



 OT , (62)

where OT is the transpose of O, and O is an orthogonal matrix, which we express in the form

O =





cos η sin η

− sin η cos η



 . (63)

A scatter plot representing the joint pdf of the angle η and one of the eigenvalue angles θ1 is shown

in Fig. 8(a1). In analogy to how we obtain the realizations used in Fig. 4, this plot is obtained by

inserting random choices for the k2
n and win in (58). Notice that we have restricted η in Fig. 8(a1)

to the range 0 ≤ η ≤ π/2. This can be justified as follows. The columns of the matrix O in (63)

are the eigenvectors of ξ. We can always define an eigenvector such that the diagonal components

of O are real and positive. Further, since the eigenvectors are orthogonal, one of them will have

a negative ratio for its two components. We pick this one to be the first column and hence this

defines which of the two eigenvalues is θ1. The scatter plots in Fig. 7 show that the restriction

on η maintains the symmetry of θ1 and θ2, vis. Pβ(θ1, θ2) = Pβ(θ2, θ1). Also in the Fig. 8(a2)

(and (a3)), we plot the conditional distribution of θ (and η) for different values of η (and θ). As

can be seen, these plots are consistent with η and θ being independent. This is also a feature of

the random matrix model [18]. This independence will be exploited later when the S matrix is

considered.

For TRSB systems, the ξ matrix is Hermitian ξT = ξ∗. A unitary matrix of eigenvectors that

diagonalizes it can be parameterized as

U =





cos η sin ηeiζ

− sin ηe−iζ cos η



 . (64)

Thus, there is an extra parameter ζ characterizing the complex eigenvectors of the ξ matrix. Ac-

cording to random matrix theory, the eigenfunctions and eigenvalues are independently distributed,

i.e. η in the U matrix should be independent of θ1, θ2. This expectation is confirmed in Fig. 8(b)

where a scatter plot of θ1 vs η and conditional distributions of θ and of η are shown.

Again, we test the independence of θ and η with HFSS calculations. Using the ξhfss matrix

obtained from Eq. (61), the angles θ and η can be recovered from the eigenvalues and the eigenvec-

tors of the ξhfss. With the ensemble generated by sweeping the frequency from 6.75-8.75GHz and

considering 100 different locations of our cylindrical perturber, we obtain the joint distribution of θ
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FIG. 8: Scatter plot of η vs θ for (a1) the model impedance in the TRS case, (b1) the model impedance in

the TRSB case, and (c1) from the HFSS simulation. Plots (a2) and (a3) [(b2) and (b3), (c2) and (c3)] show

conditional probability for θ and for η for the model TRS case [model TRSB case, the HFSS simulation].

and η in Fig. 8(c1) as well as their individual distributions in Fig. 8(c2) and (c3). Here we see that

the distributions are qualitatively similar to those of the model impedance matrix in the TRS case.

However, there are significant departures which need to be investigated. It is likely that these are

the result of the same strong multipath interference which gave rise to the reactance variations in

Fig. 5.

D. Variations in Coupling

We have argued that the result, Eq. (32), is general (see also Sec. VI.A). We now further

address this issue by considering the external coupling to the cavity. Let us suppose a one-port

coupling case in which the actual coupling is equivalent to the cascade of a lossless two port and
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FIG. 9: Schematic description of the two port model

a “pre-impedance” Z seen at the terminal 2, as illustrated in Fig. 9.

The impedance Z of the cavity at terminal 2 then transforms to a new impedance Z ′ at terminal

1 of the two port according to

Z ′ = jX̂11 +
X̂12X̂21

jX̂22 + Z
, (65)

where jX̂ij is now the purely imaginary 2 by 2 impedance matrix of the lossless two-port. We

now ask how Z transforms to Z ′ when (a) Z is the complex impedance ZR corresponding to the

radiation impedance into the cavity (i.e. the cavity boundaries are extended to infinity) and (b)

Z = jX is an imaginary impedance corresponding to a lossless cavity, where X has a mean X̄ and

Lorentzian distributed fluctuation X̃.

First considering case (a) the complex cavity impedance ZR = RR + jXR transforms to a

complex impedance Z ′
R = R′

R + jX ′
R where

R′
R = RR

X̂12X̂21

R2
R + (X̂22 + XR)2

, (66)

and

X ′
R = X̂11 − (X̂22 + XR)

X̂12X̂21

R2
R + (X̂22 + XR)2

. (67)

In case (b) we consider the transformation of the random variable X to a new random variable X ′

according to X ′ = X̂11 + X̂12X̂21/(X̂22 + X). One can show that if X is Lorentzian distributed

with mean XR and width RR then X ′ will be Lorentzian distributed with mean X ′
R and the width

R′
R. Thus, the relation between the radiation impedance and the fluctuating cavity impedance is

preserved by the lossless two port. Accordingly, we reassert that this relation holds in general for

coupling structures whose properties are not affected by the distant walls of the cavity.

E. Effect of distributed losses

We now consider the effect of distributed losses in the cavity. By distributed losses, we mean

losses that affect all modes in a frequency band equally (or at least approximately so). For example,
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wall losses and losses from a lossy dielectric that fills the cavity are considered distributed. [For

the case of losses due to conducting walls, the losses are approximately proportional to the surface

resistivity, ∼
√

f , and vary little in a frequency range ∆f ≪ f . In addition, there will also be

variation of wall losses from mode to mode due to different eigenmode structural details. These

modal fluctuations, however, are small when the modes are chaotic and the wavelength is short.]

We use the random coupling model to construct a complex cavity impedance matrix accounting

for distributed analogous to lossless case, Eq. (56),

Z = − j

π

∑

n

∆
R

1/2
R (kn)wnwT

n R
1/2
R (kn)

k2(1 − jσ) − k2
n

, (68)

where σ represents the effect of losses. In particular, for loss due to wall absorption in a two-

dimensional cavity, the value of σ is equal to the ratio of the skin depth of the conductor to the

height of the cavity; if the cavity contains a lossy dielectric, σ is the loss tangent of the dielectric.

The cavity quality factor is related to σ by σ = Q−1. This follows by noting the real part of Z will

have a Lorenzian depedence on frequency (ω = kc) peaking at w = knc with a full width at half

maximum of ωσ.

We first investigate a model, normalized impedance, applicable in the one-port case, which is

the generalization of Eq. (42),

ζ(σ) = − j

π

N
∑

n=1

w2
n

k̃2(1 − jσ) − k̃2
n

. (69)

The normalized impedance ζ will have a real part ρ > 0 and an imaginary part ξ, ζ = ρ + jξ.

We expect that if k̃2σ ≪ 1, corresponding to small loss, ρ ∼= 0, and ξ will have an approximately

Lorentzian distribution.

As losses are increased such that k̃2σ ∼ 1 [the imaginary part of the denominator in Eq. (69)

is comparable to the spacing in eigenvalues k̃2
n (whose average spacing is one)], the distributions

of both ξ and ρ will change, reflecting the fact that the extremely large values of |ζ| are no longer

likely. For 1 ≪ k̃2σ ≪ N many terms in the sum will contribute to the value of ζ. In this case, we

expect ζ(σ) will approach the radiation impedance with relatively small (Gaussian) fluctuations.

We will find that with losses present the only long range correllations in the eigenvalues expected

on the basis of random matrix theory have a quantitative effect on the distributions of ρ and ξ.

This can be calculated analytically in the high loss case 1 ≪ k2σ ≪ N and is included in Appendix

C. To gain insight, however, we will first consider spectra generated by sequences of uncorrellated

separations.
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FIG. 10: (a) Histogram of the imaginary part of ζ(σ) with different values of the damping; (b) Histogram of

the real part of ζ(σ) with different dampings, where k̃2 = 1000 in the simulations.(c) and (d) are Histograms

of the reactance and resistance from HFSS calculation with a lossy top and bottom plate, compared with

the histogram from Random Coupling Model with parameter k̃2σ = 0.5.

Histograms of the real and imaginary parts of ζ are shown in Fig. 10 for the case of 106

realizations of (69) with N = 2000 and different values of k̃2σ. As mentioned spectra k2
n are

generated assuming independent spacings. Here we choose the special value k̃2 = N/2 = 1000

such that the corresponding radiation impedance has zero reactance. The general trends described

above are born out. Figures 10(a) and 10(b) show histograms constructured by joining straight line

segments between adjacent points. As seen in Fig. 10(a), when k̃2σ is increased, the distribution

of ξ values becomes “squeezed”. Namely, the Lorentzian tail disappears and the fluctuations in

ξ decrease. Eventually, when σ enters the regime, 1 ≪ k̃2σ ≪ N , the probability distribution

function of ξ(σ) approaches a narrow normal distribution centered at ξ = 0 (recall that ξ̄ = 0). As

shown in Fig. 10(b), as σ increases from zero, the distribution of the real part of ζ(σ) which, for

σ = 0, is a delta function at zero, expands and shifts toward 1, becoming peaked around 1.
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Using HFSS, we simulate the lossy case by specifying the material on the top and bottom plates

to be an imperfect conductor with a bulk resitivity of 70 mΩ · cm. In this case we can calculate a

value of σ = δ/h = 0.002, where δ is the skin depth and h the cavity height. The corresponding

parameter k̃2σ is 0.5 at 7.75GHz. Histogram results for the normalized reactance (ξ) and resistance

(ρ) fluctuations of ζhfss = R−1
R (Zcav − jXR) = ρ + jξ are plotted in Figs. 10(c) and 10(d) together

with the histograms from the random coupling model, Eq. (69), with k̃2σ = 0.5. As can be seen

the histograms from the HFSS simulations match those of the random coupling model.

We now focus on the effect of different eigenvalue distributions by considering the case of

high damping(N ≫ k2σ ≫ 1). In the high damping case, the fluctuating part of ξ give by

(69)is determined by contributions from the sum of a relatively large number of terms satisfying

|k̃2 − k̃2
n| ∼ k2σ ≫ 1. Given the independence of the wn we therefore expect ξ to be a Gaussian

random variable, and it is thus sufficient to calculate its mean and variance. The calculation is

carried out in Appdendix C. We find in the range ∆ ∼ k2σ ≪ k2, that the expected value of the

cavity impedance is the radiation impedance,

E[Z] = RR(k2) + jXR(k2). (70)

The variance of the real and imaginary parts of the cavity impedance are given in Appendix C in

terms of the two-eigenvalue correlation functions. When the damping is large, ∆ ≪ k2σ ≪ k2, the

variance of R and X are given by

V ar[R] = V ar[X] = R2
R

C∆

k2σ
, (71)

where C = 3/2π for the case of Poisson distributed independent spacings, C = 0.7577 × 3/2π for

the case of independent spacings with TRS spacing distributions, and C = 1/π for the case of

spectra corresponding to random matrices.

VII. S MATRIX STATISTICAL PROPERTIES

In this section, we use our knowledge of the statistical properties of the Z matrix to infer

properties of the S matrix. In particular, we will consider the distribution of values of the magnitude

and phase of the S matrix elements.
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A. One Port Case

For the one port lossless case the S matrix is a complex number with unit modulus. What is

relevant then is the phase of S, which can be related to the imaginary cavity impedance and the

characteristic impedance Z0 of the transmission line feeding the cavity. We assume that the signal

is in a narrow range of frequencies such that ZR = RR + jXR is essentially constant. We then use

our model (37), (39) and (41) to express the cavity impedance Z,

Z = j(XR + ξ̃RR), (72)

where ξ̃ is a unit width, zero mean, Lorentzian distributed random variable. From (72),

S = ejφ = (Z + Z0)
−1(Z − Z0) =

j(γRξ̃ + γX) − 1

j(γRξ̃ + γX) + 1
, (73)

where

γR = RR/Z0, γX = XR/Z0.

We replace the Lorentzian random variable ξ̃ by introducing another random variable ψ via ξ̃ =

tan(ψ/2). Using this substitution, the Lorentzian distribution of ξ̃ translates to a distribution of

ψ that is uniform in [0, 2π]. We then have from Eq. (73)

ej(φ−φR) =
e−jψ′

+ |ρR|
1 + |ρR|e−jψ′

, (74)

where the “free space reflection coefficient” ρR

ρR = |ρR|ejφR =
γR + jγX − 1

γR + jγX + 1
, (75)

is the complex reflection coefficient in the case in which the cavity impedance is set equal to the

radiation impedance (ξ̃ = −j), and ψ′ = ψ+π+φR +2 tan−1[γX/(γR +1)] is a shifted version of ψ.

Equations for the magnitude and phase of the free space reflection coefficient ρR can be obtained

from Eq. (75). Specifically,

|ρR| =

√

(γR − 1)2 + γ2
X

(γR + 1)2 + γ2
X

, (76)

and

tan φR =
2γX

γ2
R + γ2

X − 1
. (77)
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To compute the probability distribution function for φ, Pφ(φ), we note that, since ψ is uniformly

distributed on any interval of 2π, we can just as well take ψ′, which differs from ψ by a constant

shift, to be uniformly distributed. Consequently, we have

Pφ(φ) =
1

2π
|dψ′

dφ
|

=
1

2π

1

1 + |ρR|2 − 2|ρR| cos(φ − φR)
.

(78)

Thus Pφ(φ) is peaked at the angle φR corresponding to the phase angle of the free space reflection

phase, with a degree of peaking that depends on |ρR|, the magnitude of the free space reflection

coefficient. ‘Perfect matching’ corresponds to γR = 1, γX = 0, and |ρR| = 0, in which case Pφ(φ)

is uniform.

We next consider the case of poor matching for which |ρR| ∼= 1 and Pφ(φ) is strongly peaked at

φR. This behavior can be understood in the context of the frequency dependence of the phase for

a given realization. It follows from (73) and (42) that the phase φ decreases by 2π as k2 increases

by the spacing between eigenvalues. If |ρR| ∼= 1, then for most of the frequencies in this interval,

the phase is near φR. However, for the small range of frequencies near a resonance, the phase

will jump by 2π as the resonance is passed. This indicates that the mode of the cavity is poorly

coupled to the transmission line. In the case of good matching, |ρR| = 0, all phases are equally

likely indicating that as a function of frequency the rate of increase of phase is roughly constant.

This implies that the resonances are broad, and the cavity is well coupled to the transmission line.

In order to describe the different coupling strengths, we consider the parameter g originally

introduced by Fyodorov and Sommers [35] :

g =
1 + |〈ejφ〉|2
1 − |〈ejφ〉|2 . (79)

Evaluating 〈S〉 using Eq. (78),

g =
1 + |ρR|2
1 − |ρR|2

. (80)

Thus, g has a minimum value of 1 in the perfectly matched case and is large if the matching is

poor, |ρR| ∼ 1. An analogous quantity is the voltage standing wave ratio on the transmission line

when the cavity impedance is set equal to the radiation impedance,

VSWR =
1 + |ρR|
1 − |ρR|

= g +
√

g2 − 1. (81)

To test Eq. (78), we compared its predictions for the phase distribution with direct numerical

calculations obtained using HFSS (High Frequency Structure Simulator) for the case of the cavity
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FIG. 11: Histogram of the reflection phase distribution for an HFSS calculation for the cavity in Fig. 3

with center frequencies located at (a) 7GHz, (b) 7.5GHz, (c) 8GHz, (d) 8.5GHz, and with sweeping span

equal to 0.1GHz. Numerical data are compared with Eq. (78) using parameters determined by ZR at the

corresponding center frequencies.

and coupling detail as specified in Fig. 6. As compared to what was done for Fig. 6, we have

narrowed the frequency range to 0.1 GHz bands for each realization in 1000 10−4 GHz steps

centered at 7 GHz, 7.5 GHz, 8 GHz, 8.5 GHz. Instead of calculating the radiation impedance

for every frequency, we use the value of ZR at the middle frequency of the interval in calculating

the values of γR and γX . We present theoretical phase density distribution functions together

with numerical histogram results in Fig. 11. The agreement between the theory, Eq. (78), and the

numerical results is surprisingly good, especially considering the rather small (0.1GHz) frequency

range used.

B. Multiple Ports

We now consider the multiport case. We first study the influence of mismatch γR 6= 1, γX 6= 0

in the two-port case; then we study situations with more than two ports, but with perfect coupling

(γR = 1,γX = 0); finally we generalize our results to multi-port non-perfect coupling.
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1. Two-port case

We recall that for TRS systems the reactance matrix X is real and symmetric, and can be

diagonalized by an orthogonal matrix O, Eq. (63). If identical ports are connected to identical

transmission lines of characteristic impedance Z0, then the scattering matrix S is also diagonalized

by O, and we can write

S = O





ejφ1 0

0 ejφ2



 OT . (82)

The scattering phases φ1 and φ2 are then related to the eigenvalue angles θi by formulas analogous

to (73)-(79).

Substituting Eq. (63) for O in (82) and multiplying the matrices, we obtain

|S11|2 = cos4 η + sin4 η + 2 cos2 η sin2 η cos(φ1 − φ2). (83)

We can now compute the expected value of the square of |S11| by assuming that η is indepen-

dent of the angles φ1 and φ2 and is uniformly distributed, which yields 〈cos4 η + sin4 η〉 = 3/4,

2〈cos2 η sin2 η〉 = 1/4 and

〈|S11|2〉 =
3

4
+

1

4
〈cos(φ1 − φ2)〉. (84)

Assuming the angles θ1 and θ2 are distributed according to Eq. (60) and using the relation between

φ1,2 and θ1,2, evaluation of 〈cos(φ1 − φ2)〉 is carried out in Appendix D. The result is

〈|S11|2〉 = 1 − 1 − |ρR|4
8|ρR|2

− (1 − |ρR|2)3
16|ρR|3

ln
1 − |ρR|
1 + |ρR|

. (85)

A plot of 〈|S11|2〉 versus |ρR| is shown in Fig. 12(a). Also shown are data points obtained by taking

106 realizations of the impedance matrix (58) and computing the average of |S11|2 for different

combinations of γR and γX characterizing the radiation impedance. The data confirm that the

average of |S11|2 depends only on the magnitude of the free space reflection coefficient (76) and

not its phase (77).

In the TRSB case, the eigenvalues of the X matrix are still real, but the eigenvectors are

complex. In this case, Eq. (82) is replaced by

S = U





ejφ1 0

0 ejφ2



 U †, (86)

where the unitary matrix U is given by Eq. (64). Multiplying the matrices in Eq. (86), we find the

same expression for |S11|2, Eq. (83), as in the TRS case. The average of |S11|2 will be different in the
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TRSB case because of the different statistics for η, θ1 and θ2 which characterize the eigenfunctions

and eigenvalues of the impedance matrix. In particular, η has a distribution, arising from the

SU(2) group [37],

Pη(η) = | sin(2η)|, (87)

which yields 〈cos4 η + sin4 η〉 = 2/3, 2〈cos2 η sin2 η〉 = 1/3, thus,

〈|S11|2〉 =
2

3
+

1

3
〈cos(φ1 − φ2)〉. (88)

Recalling that θ1 and θ2 are distributed according to (60) with β = 2, this results in a different set

of integrals (see Appendix D). The result is

〈|S11|2〉 = 1 − (|ρR|2 − 1)(|ρR|2 − 3)

6
, (89)

which depends only on the magnitude of the free space reflection coefficient. A plot of 〈|S11|2〉
from Eq. (89) versus |ρR| is also shown in Fig. 12(a), along with data point obtained by taking 106

realizations of the TRSB impedance matrix (58) and computing the average of |S11|2 for different

combinations of γR and γX characterizing the free space impedance. Once again, the data collapse

to the curve predicted in Eq. (89).

We now test the relation between 〈|S11|2〉 and |ρR| with the impedance matrices we obtained

from HFSS two-port calculations. We can vary the transmission line impedance Z0 and generate

〈|S11|2〉 and |ρR|. However, the range of |ρR| values accessible doing this is limited because of the

large inductive radiation reactance associated with the coupling port. To extend the range of |ρR|
we add a shunt conductance Y = (jωC) in parallel with each port. This results in a modified

cavity impedance matrix Z
′

cav = (Z−1
cav + jωC1̃)−1. We then form the scattering matrix

S = (Z
′

cav + Z0)
−1(Z

′

cav − Z0). (90)

The corresponding free space reflection coefficient is generated by Z
′

R = (Z−1
R + jωC)−1 and

|ρR| = |Z ′

R +Z0|−1|Z ′

R −Z0|. By choosing appropriate combinations of ωC and Z0, we can achieve

a range of |ρR| values between 0 and 1. For each |ρR| value, we average |S11|2 over frequencies and

realizations and plot the points on Fig. 12(b). These compare favorably with the theoretical curve

based on the random matrix theory results.

We have also generated histograms of |S11|2 for both the TRS and TRSB cases using our

Random Coupling Model in the perfectly matched case |ρR| = 0. As shown in Fig. 13, these

agree well with those generated directly from φ1 and φ2 according to Eq. (60) and η appropriately

distributed as discussed previously.
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FIG. 12: (a) Numerical simulation for the average reflection coefficient 〈|S11|2〉 vs |ρR| defined in Eq. (76)

for the TRS and the TRSB system, taking 106 realization of the impedance matrix, 30 uniformly spaced

values of γR from 0.1 to 3, and 31 equally spaced values of γX from 0 to 3. (b) Average reflection coefficient

〈|S11|2〉 vs |ρR| using the cavity impedance and radiation impedance from HFSS calculation and varying the

values of Z0 and the capacitive reactance Y

2. M-port Case, M > 2

Using the random coupling model (58) and assuming perfect coupling γR = 1, γX = 0 (i.e.

|ρR| = 0), we have simulated the S matrix for cases of two to seven ports. The results for the
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(a)

(b)

2

FIG. 13: Histogram of reflection coefficient in (a) TRS and (b) TRSB systems, where the solid curve is

generated from our Random Coupling Model, and the dash curve is generated directed from the joint pdf

of φ1 and φ2 from Eq. (60).
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average reflection and transmission coefficients were found to satisfy:

TRS : 〈|Sij |2〉 =











2
M+1 i = j,

1
M+1 i 6= j,

(91)

and

TRSB : 〈|Sij |2〉 =











1
M i = j,

1
M i 6= j,

(92)

where M is the number of ports connecting the cavity to transmission lines. It seems that, in

the TRS case, the input waves “remember” their entry port and have a preference for reflection

through it (this is related to the concept of “weak localization” reviewed in [38]). In contrast, for

the TRSB case, the waves behave as if they forget through which port they entered the chaotic

cavity, and thus all the ports have equal probability of being the output for the waves.

We now briefly discuss the multiport case with M > 2 and with mismatch (|ρR| > 0). As long as

the assumption that the eigenfunctions (η) and the eigenvalues (θ or φ) are independent is still true,

〈|S11|2〉 is related to the mismatch only through 〈cos(φk−φl)〉, similar to the expression in Eq. (84).

The same series steps specified in Appendix C can be carried out to show that 〈cos(φk − φl)〉, as

well as 〈|S11|2〉, depend only on |ρR| (and are independent of the phase of ρR). We have verified

this by numerical simulation using the impedance matrix generated from the Random Coupling

Theory (58) with up to seven channels.

VIII. SUMMARY

We have applied the concepts of wave chaos to the problem of characterizing the impedance

and scattering matrices for irregular electromagnetic cavities in the small wavelength regime. The

coupling of energy in and out of ports in such cavities depends on both the geometry of the port

and the geometry of the cavity. We have found that in a statistical treatment these effects can

approximately be separated. The geometry of the port is characterized by its radiation impedance

which has both a real and imaginary part. This impedance describes the port in the case in which

the distant walls of the cavity are treated as perfect absorbers. The effects of geometry of the cavity

can be treated in a statistical way using the random coupling model introduced in this paper.

The random coupling model is expressed most generally for lossless cavities by Eq. (56). To

use this model one needs to know the radiation resistance matrix describing the ports, the size of
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the cavity, which determines the average density of eigenstates ∆, and whether the waves in the

cavity satisfy time reversal symmetry (TRS) or not (TRSB). This last condition determines the

statistical properties of the eigenvalue spacings, k2
n+1 − k2

n, and coupling strengths, wn. The effect

of distributed losses can also be incorporated in the random coupling model.

The random coupling model predicts that in the identical port case eigenvalues of the impedance

matrix are Lorentzian distributed with a mean equal to the radiation reactance and a width equal

to the radiation resistance. The correlation between eigenvalues and eigenvectors is found to be

the same as in random matrix theory.

The Lorentzian prediction is tested by direct numerical solution of Maxwell’s equation for the

cavity of Fig. 3. The predictions are verified if an additional averaging over frequency is introduced.

Absent this averaging, there are systematic variations in the mean reactance which need further

investigation.
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APPENDIX A: EVALUATION OF THE MEAN REACTANCE, EQ. (40)

In this appendix we derive the radiation impedance corresponding to the current distribution

profile u(x, y) = π−1δ(x2 + y2 −a2). Inserting this function into Eq. (23) and Fourier transforming

in x and y with transform variable ~kn we have

(k2 − k2
n)V̄T (~kn) = −jkhη0Î

∫

d2~r
δ(r − a)

2πa
e−j~kn·r (A1)

where V̄T (~kn) is the Fourier transform of V̂T . The right hand side of (A1) can be evaluated in

cylindrical coordinates making use of the identity,
∫ 2π

0

dφ

2π
e−jkna cos φ = J0(kna). (A2)

The result is,

V̄T (~kn) = −jkhη0J0(kna)

k2 − k2
n

Î . (A3)

The port voltage is given by Eq. (24) and may be evaluated using Parseval’s theorem,

V̂ =

∫

d2~ru(~r)V̂T (~r) =

∫

d2~kn

(2π)2
V̂T (~kn)J0(kna), (A4)

where d2~kn = dφkndkn and φ is the angle of ~kn. This gives V̂ = ZRÎ where

ZR = −jkhη0

∫

d2~kn

(2π)2
J2

0 (kna)

k2 − k2
n

. (A5)

This has the form of Eq. (34) if we identify

RR(kn) =
khη0

4
J2

0 (kna) (A6)

as the radiation resistance.

An alternate evaluation of this same quantity can be made by solving Eq. (23) exploiting the

fact that the current source is cylindrically symmetric. We find

V̂T = AJ0(kna) r < a, (A7)

and

V̂T = BH
(2)
0 (kna) r > a, (A8)

where H
(2)
0 is the Hankel function of the second kind, and corresponds to outgoing waves at infinity

for our choice of tie dependence (ejωt). Applying the conditions of continuity of V̂T at r = a and

the jump condition obtained by integrating Eq. (23) from r = a − ǫ to r = a + ǫ,

lim
ǫ→0+

{

a
∂V̂T

∂r
(r = a + ǫ) − a

∂V̂T

∂r
(r = a − ǫ)

}

= −jkhη0Î

2π
, (A9)
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we find V̂T (a) = ZRÎ where

ZR = −jkhη0

2πka

H
(2)
0 (ka)J0(ka)

W (ka)
(A10)

and W is the Wronskian,

W (ka) = J0(ka)H
(2)′

0 (ka) − J ′
0(ka)H

(2)
0 (ka) = −2j/(πka). (A11)

Representing the Hankel function in terms of the Bessel functions of the first and second kind

H
(2)
0 = J0 − jY0, we have

ZR =
khη0

4
[J2

0 (ka) − jY0(ka)J0(ka)]. (A12)

Comparison of (A5) and(A11) leads to Eq. (40).
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APPENDIX B: LORENTZIAN DISTRIBUTION FOR ξ

In this appendix we discuss the probability density distribution for ξ in Eq. (42)

ξ =
N

∑

n=1

ηn, (B1)

where ηn = −w2
n/[π(k2 − k2

n)] and we have dropped the superscribed tilde on the notation for

the normalized wavenumber. In Eq. (B1) the wn are Gaussian random variables with zero mean

and unit variance, and, for a Poisson level distribution, each of the values k2
n are independently

uniformly distributed in the interval [0, N ]. This prescription maintains the mean spacing between

k2
n values at unity. With this assumption on the statistics of k2

n and wn the variables ηn are

independent and identically distributed. Therefore, Pξ(ξ), the probability density function of ξ, is

Pξ(ξ) =

∫

dη1..dηNδ(ξ −
∑

n

ηn)
N
∏

i=1

Pη(ηi). (B2)

We will investigate the characteristic function of the random variable ξ, i.e. the Fourier transfor-

mation of Pξ(ξ),

P̄ξ(t) =

∫

dη1..dηNe−jt
∑

n
ηn

N
∏

i=1

Pη(ηi) = [P̄η(t)]
N , (B3)

where

P̄η(t) =

∫

dηe−jtηPη(η)

=

∫ ∞

−∞

dw
1√
2π

exp(−w2

2
)

∫ N

0

dk2
n

N

∫

dηe−jtηδ[t − w2/π

k2 − k2
n

]

=

∫ N

0

dk2
n

N

1

[1 + 2j t
π

1
k2−k2

n

]−
1

2

.

(B4)

Note that P̄η(−t) = P̄ ∗
η (t) from the reality condition, so it is sufficient to evaluate the integral

above for the case of positive t.

The integrand in (B4) has singularities of k2
n = k2 and k2

n = k2+2jt/π. The integration contour

(defined to be along the real k2
n axis) passes through the singularity at k2

n = k2. However, this

singularity is weak, (k2 − k2
n)1/2, and we can regard the contour as passing below the singularity.

Thus, for t > 0 we may deform the integration contour into a large semicircle in the lower half k2

plane starting at k2
n = 0 and ending at k2

n = N . For each point on this contour 2t/[π(k2
n − k2)] is

small and we can Taylor expand the integrand for |k2
n − k2| ∼ N

P̄η(t) =
1

N

∫ N

0
dk2

n[1 − j

2

2t

π(k2
n − k2)

] + O(
t2

N2
)

= 1 − t

N
− j

t

πN
log |N − k2

k2
| + O(t2/N2).

(B5)
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The sign of the term −t/N is determined by deforming the contour into the lower half plane below

the pole k2
n = k2. In the limit of N → ∞ we may drop the term O(t2/N2). Also, recalling the

reality condition P̄η(−t) = P̄ ∗
η (t), (B5) yields

P̄η(t) ∼= 1 − |t|
N

− j
t

πN
log |N − k2

k2
|, (B6)

Therefore, P̄ξ(t) is:

P̄ξ(t) = [1 − |t|
N

− j
t

πN
log |N − k2

k2
|]N

= exp[−|t| − j
t

π
log |N − k2

k2
|].

(B7)

Taking the inverse Fourier transform in t we find that ξ is a Lorentzian distributed random variable

with unit characteristic width and a mean value log |(N − k2)/k2|/π.
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APPENDIX C: VARIANCE OF CAVITY REACTANCE AND RESISTANCE IN THE

LOSSY CASE.

From Eq. (68), we obtain the expression for the complex impedance in the single part case,

Z(σ) =
1

π

N
∑

1

[
∆(k2

n)RR(k2
n)w2

n[k2
d + j(k2

n − k2)]

(k2 − k2
n)2 + (k2

d)
2

]

= R(σ) + jX(σ),

(C1)

where ∆ is the mean spacing 〈k2
n − k2

n−1〉, X(σ) and R(σ) are cavity reactance and resistance in

the lossy case and k2
d = k2σ. In this section, we are going to evaluate the mean and variance of

X(σ) and R(σ) as well as their covariance.

We first investigate the mean of R(σ).

E[R(σ)] =
1

π

∫

. . .

∫

dk2
1 . . . dk2

NPJ(k2
1, . . . , k

2
N )

N
∑

n′=1

RR∆〈w2
n′〉k2

d

(k2 − k2
n′)2 + k4

d

, (C2)

where PJ is the joint distribution of eigenlevels (k2
1, . . . , k

2
N ) assuming they are unordered. Since

the levels are not ordered, in each term of the sum, we can integrate over all k2
n 6= k2

n′ , and obtain

N identical terms. Thus,

E[R(σ)] =
N

π

∫

dk2
n′P1(k

2
1)RR∆〈w2〉 k2

d

(k2 − k2
n′)2 + k4

d

(C3)

where P1(k
2
n′) is distrubtion for a single level. Here we have introduced an integer N representing

the total number of levels. We will take the limit of N → ∞. The single level probability

distribution then satisfies by definition,

P1(k
2
n′) =

1

N∆(k2
n′)

. (C4)

We next assume that the radiation resistance RR(k2
n′) is relatively constant over the interval of k2

n′

values satisfying |k2
n − k2

n′ | < k2
d and we will move it outside the integral replacing it by RR(k2).

Assuming that k2σ is not too large we can take the end points at the integral to plus and minus

infinity and evaluate Eq. (C3) as

E[R] =
RR

π

∫ ∞

−∞

dx
1

x2 + 1
= RR(k2), (C5)

where x = (k2
n′ − k2)/k2

d. Thus the expected value of the real part of cavity impedance is the

radiation resistance independent of the amount of damping. This is somewhat surprising since we

have previously asserted that in the lossless case, the cavity resistance is zero. The constancy of
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the expected resistance results from the resonant nature of the cavity impedance. When losses are

small k2σ ≪ 1 for almost all frequencies the resistance is small however for the small set of the

frequencies near a resonance the resistance is large. This is evedent in the histograms of Fig. (10b).

In order to obtain the variance of R(σ), we calculate the second moment of R(σ),

E[R(σ)2] = (
1

π
)2

∫

. . .

∫

dk2
1 . . . dk2

NPJ(k2
1, . . . , k

2
N )

N
∑

n′,m′=1

∆2RR(k2
n′)RR(k2

m′)〈w2
m′w2

n′〉k4
d

((k2 − k2
m′)2 + k4

d)((k
2 − k2

n′)2 + k4
d)

= I1 + I2.

(C6)

Following the arguments advanced to calculate E[R(σ)], we note that there will be N terms in the

double sum for which k2
n′ = k2

m′ giving

I1 =
N

π2

∫

dk2
n′P1(k

2
n′)

∆2R2(k2
n′)〈w4

n′〉k4
d

[(k2 − k2
n′)2 + k4

d]
2

(C7)

and N(N − 1) terms for which k2
m′ 6= k2

n′ giving

I2 = N(N − 1)

∫∫

dk2
n′dk2

m′

P2(k
2
n′ , k2

m′)∆(k2
n′)∆(k2

m′RR(k2
n′)RR(k2

m′)〈w2
n′〉〈w2

m′〉k4
d

[(k2 − k2
n′)2 + k4

d][(k
2 − k2

m′)2 + k4
d]

. (C8)

For the first integral we use (C4) for the single level distribution function, and making the smae

approximation as before, we obtain

I1 = R2
R(k2)

〈w4〉∆(k2)

2πk2
d

. (C9)

For the second integral we need to introduce the two level distribution function. For the spectra

that we consider, the two level distribution has the form

P2(k
2
n′ , k2

m′) = (
1

N∆
)2[1 − g(|k2

n′ − k2
m′ |)]. (C10)

Here the function g describes the correllations between two energy levels. For uncorrellated levels

giving a Poisson distribution of spacings we have g = 0. In the presence of level repulsion we expect

g(0) = 1 with (1 − g) ∝ |k2
n′ − k2

m′ |β for small spacing, and β = 1 for TRS and β = 2 for TRSB

systems. As |k2
n′ − k2

m′ | → ∞, g → 0 indicating loss of correllation for two widely separated levels.

The function g will be different for spectra produced by random matrices and spectra genergated

from sequences of independent spacings. Expressions of g for the spectra of random matrices can

be found in the book by Mehta ([18], Ch. 5 & 6). We will get an insight for the expression for g

for spectra generated by sequences of independent spacings later in this appendix.

Based on expression (C10) and the usual assumptions on the slow variations of RR and ∆ with

eigenvalue k2
n′ we obtain

I2 = (E[R])2 − Ig, (C11)
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where the first term comes from the 1 in C10 and the second term comes from the correllation

function g

Ig =
RR(k2)〈w2〉2

π

∫ ∞

−∞

dk̃2

k2
d

2

4 + (k̃2/k2
d)

2
g(|k̃2|). (C12)

The variance of R is thus given by

V ar[R] = E[R]2 − E[R2]

= R2
R

∆

k2
d

[
〈w4〉
2π

− 〈w2〉2
π

∫ ∞

−∞

dk̃2

∆

2g(|k̃2|)
4 + (k̃2/k2

d)
2
].

(C13)

Note, since w is a Gaussian random variable with zero mean and unit variance, 〈w2〉 = 1 and

〈w4〉 = 3.

Equation (C13) shows that the variances of R depends on k2
d/∆, the ratio of the damping width

to the mean spacing of eigenvalues. In the low damping case, k2
d/∆ ≪ 1, the integrand in (C13) is

dominated by the values of |k̃2| < ∆ and we replace g by its value g(0). Doing the integral we find

V ar[R] = R2
R[

∆

k2
d

〈w4〉
2π

− g(0)〈w2〉2]. (C14)

Since the damping is small, the first term dominates and the variance is independent of the eigen-

value correllation function. This is consistent with our previous findings. In the high damping

limit, k2
d > ∆, the integral in (C13) is dominated by k̃2 values of order ∆ and we have,

V ar[R] = R2
R

∆

k2
d

[
3

2π
− 1

π

∫ ∞

0

dk̃2

∆
g(|k̃2|)]. (C15)

The variance decreases as damping increases with a coefficient that depends on the correllation

function. Physically the correllations are important because in the high damping case a relatively

large number of terms in the sum (C1) contribute to the impedance and the sum is sensitive to

correllations in these terms.

The integral of the correllation function can be evaluated for different spectra. For spectra

generated from random matrices, we have

g(e) = s(e)2 − ∂s

∂e
[(

∫ e

0
de′s(e′)) − 1

2
sgn(e)] (C16)

for TRS matrices and

g(e) = s(e)2 (C17)

for TRSB matrices, where e = k̃2/∆. In both cases, we find

∫ ∞

0
deg(e) =

1

2
. (C18)
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However, to consider the TRSB case we need to repeat the calculation including complex values

of the Gaussian variable w. The result is

V ar[R(σ)] =
R2

R

π

∆

k2
d

[1 −
∫ ∞

0

dk̃2

∆
g(|k̃2|)] (C19)

For spectra generated by sequences of independent spacing distributions we will show
∫ ∞

0

dk̃2

∆
g(|k̃2|) = 1 − 1

2
〈s2〉 (C20)

where 〈s2〉 is the expected value fo the nearest neighbor spacing squared. This gives

∫ ∞

0

dk̃2

∆
g(|k̃2|) =











1 − 2
π for TRS,

1 − 3π
16 for TRSB.

(C21)

Note also that (C20) gives the required value of zero for Poisson spacing distributions.

We now derive the g-integral for spectra generated from independent spacings. We introduce a

conditional distribution Pm(s) that is the probability density that the mth eigenvalue is in the range

of [s, s + ds] given that eigenvalue at zero. When m = 1, P1(s) is reduced to spacing distribution

p(s). For convenience, here s is the normalized spacing with unit mean. Thus, 1 − g(s) stands

for the probability that there exists an eigenlevel at [s, s+ds] given one level located at 0, which

naturally can be expressed as the summation of Pm(s),

1 − g(s) =
∞

∑

m=1

Pm(s)

=
∞

∑

m=1

[

∫ m
∏

i=1

dsiP1(si)δ(s −
m

∑

i=1

si)].

(C22)

Doing Laplace transformation to both sides of Eq. (C22), it yields

1

τ
−

∫ ∞

0
dse−τsg(s) =

∞
∑

m=1

[P̄1(τ)]m =
P̄1(τ)

1 − P̄1(τ)
. (C23)

Because for small value of τ ,

P̄1(τ) =

∫ ∞

0
e−sτP1(s)ds

∼
∫ ∞

0
(1 − sτ +

s2τ2

2
)P1(s)ds

= 1 − τ〈s〉 +
τ2

2
〈s2〉,

(C24)

we can approximate the integration of g(s) to be
∫ ∞

0
dsg(s) = lim

τ→0

∫ ∞

0
dse−τsg(s)

= lim
τ→0

[
1

τ
− P̄1(τ)

1 − P̄1(τ)
]

= 1 − 1

2
〈s2〉

(C25)
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Put it back into the Eq. (C15), we finally express the variance of R(σ) in term of the lossy parameter

and spacing distribution,

V ar[R(σ)] = R2
R

∆

k2
d

(
〈w4〉
2π

− 〈w2〉2
π

(1 − 1

2
〈s2〉)). (C26)

Similar process can be carried out to get the variance of X(σ) as well as the covariance of R(σ)

and X(σ):

V ar[X(σ)] = V ar[R(σ)], Cov[R(σ), X(σ)] = 0. (C27)
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APPENDIX D: EVALUATION OF 〈|S11|2〉

In this appendix, we will start from the one-port case, and obtain an expression for the phase of

S in term of the reflection coefficient ρR defined in Eq. (75). Then, using Eq. (60), we can evaluate

〈cos(φ1 − φ2)〉 for the two-port in the TRS and TRSB cases.

In the one-port case, S can be expressed as

S = ejφ =
Z − Z0

Z + Z0

=
j(γX + ξ̃γR) − 1

j(γX + ξ̃γR) + 1
,

(D1)

where ξ̃ is a zero mean, unit width, Lorentzian random variable, which can be written as,

ξ̃ = tan θ (D2)

with θ uniformly distributed in [−π/2, π/2]. Putting Eq. (D2) into Eq. (D1), we get

ejφ =
(γR + jγX − 1)ejθ − (γR − jγX + 1)e−jθ

(γR + jγX + 1)ejθ − (γR − jγX − 1)e−jθ
. (D3)

Introducing ρR such that

γR + jγX − 1 = ρR(γR + jγX + 1), (D4)

and defining

e−jα =
γR − jγX + 1

γR + jγX + 1
, (D5)

we obtain a compact expression for φ in term of θ and ρR,

ejφ =
ρR − e−j(2θ+α)

1 − ρ∗Re−j(2θ+α)

= ejφRe−j2θ′ 1 + |ρR|ej2θ′

1 + |ρR|e−j2θ′
,

(D6)

where 2θ′ = (2θ + α + π + φR). Since α and φR depend only on the coupling coefficient γR and

γX , and 2θ is uniformly distributed in [0, 2π], the angle 2θ′ is also uniform in [0, 2π]. Thus,

Pφ(φ) = P2θ′(2θ′)|d(2θ′)

dφ
|

=
1

2π

1

1 + |ρR|2 − 2|ρR| cos(φ − φR)
.

(D7)

The relation between φ and 2θ′ also holds true for multi-port cases. Furthermore, from the joint

probability density function of 2θ1 and 2θ2 in Eq. (60), which is only a function of the difference of
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two angles, we find that 2θ′1 and 2θ′2 have the same joint distribution specified in Eq. (60). Thus

we can evaluate

〈cos(φ1 − φ2)〉 = Re[ejφ1−jφ2 ]

= Re[
e−j2θ′

1 + |ρR|
1 + |ρR|e−j2θ′

1

ej2θ′
2 + |ρR|

1 + |ρR|ej2θ′
2

],
(D8)

by using the joint distribution of 2θ′1 and 2θ′2, Pβ(2θ1, 2θ2) ∝ |ej2θ′
1 − ej2θ′

2 |β, where β = 1 corre-

sponds to the TRS case, and β = 2 for TRSB case.

Introducing ψ1 = 2θ′1, ψ2 = 2θ′2, and their difference ψ− = ψ1 − ψ2, we obtain for the average

of cos(φ1 − φ2),

〈cos(φ1 − φ2)〉 =

∫∫

dψ1dψ2

(2π)2
P (ψ1, ψ2)Re[

e−jψ1 + |ρR|
1 + |ρR|e−jψ1

ejψ2 + |ρR|
1 + |ρR|ejψ2

]

=

∫

dψ−

2π
P (ψ−)Re[

∫ 2π

0

ψ2

2π

e−j(ψ−+ψ2) + |ρR|
1 + |ρR|e−j(ψ−+ψ2)

ejψ2 + |ρR|
1 + |ρR|ejψ2

].

(D9)

The inner integral can be calculated by introducing a complex variable z = ejψ2 in terms of which

the inner integral becomes

1

2πj

∮

unitcircle

dzf(z)

z(z + |ρR|e−jψ−)
, (D10)

where f(z) = (|ρR|z + e−jψ−)(z + |ρR|)/(1+ z|ρR|). Evaluating this integral via the residues at the

two poles within the unit circle, z = 0 and z = −|ρR|e−jψ− , we obtain

〈cos(φ1 − φ2)〉 =

∫ 2π

0

dψ−

2π
P (ψ−)[1 − (1 − |ρR|4)(1 − cos ψ−)

1 + |ρR|4 − 2|ρR|2 cos ψ−
]. (D11)

For the TRS case, Pψ−
(ψ−) = π| sin(ψ−/2)|/2, and Eq. (D11) yields

〈cos(φ1 − φ2)〉 =
|ρR|4 + 2|ρR|2 − 1

2|ρR|2
+

(1 − |ρR|2)3
4|ρR|3

ln
1 + |ρR|
1 − |ρR|

. (D12)

For the TRSB case, Pψ−
(ψ−) = 2 sin2(ψ−/2) = (1 − cos ψ−), and (D11) yields

〈cos(φ1 − φ2)〉 = 1 − (|ρR|2 − 1)(|ρR|2 − 3)

2
. (D13)
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