

Statistical Properties of Wave Chaotic Scattering and Impedance Matrices

MURI Faculty:Tom Antonsen, Ed Ott, Steve Anlage,MURI Students:Xing Zheng, Sameer Hemmady, James Hart

AFOSR-MURI Program Review

Electromagnetic Coupling in Computer Circuits

Schematic

- What can be said about coupling without solving in detail the complicated EM problem ?
- Statistical Description ! (Statistical Electromagnetics, Holland and St. John)

• Coupling of external radiation to computer circuits is a complex processes:

apertures resonant cavities transmission lines circuit elements

- Intermediate frequency range involves many interacting resonances
- System size >> Wavelength
- Chaotic Ray Trajectories

Z and S-Matrices What is S_{ij} ?

- 1. Formally expand fields in modes of closed cavity: eigenvalues $k_n = \omega_n/c$
- 2. Replace exact eigenfunction with superpositions of random plane waves

Statistical Model of Z Matrix Frequency Domain

Model Validation Summary

Single Port Case:

Cavity Impedance: Radiation Impedance: $Z_{cav} = R_R z + jX_R$ $Z_R = R_R + jX_R$

Universal normalized random impedance: $z = \rho + j\xi$

Statistics of *z* depend only on damping parameter: $k^2/(Q\Delta k^2)$ (Q-width/frequency spacing)

Validation:

HFSS simulations Experiment (Hemmady and Anlage)

Normalized Cavity Impedance with Losses

Two Dimensional Resonators

 $H_x \xrightarrow{E_z} H_y \qquad \text{Only} \\ f < c$

Only transverse magnetic (TM) propagate for f < c/2h

- Anlage Experiments
- HFSS Simulations
- Power plane of microcircuit

Voltage on top plate $E_z(x, y) = -V_T(x, y) / h$

HFSS - Solutions Bow-Tie Cavity

Comparison of HFSS Results and Model for Pdf's of Normalized Impedance

Normalized Reactance

Normalized Resistance

 $Z_{cav} = jX_R + (\rho + j\xi)R_R$

EXPERIMENTAL SETUP

Sameer Hemmady, Steve Anlage CSR

- 2 Dimensional Quarter Bow Tie Wave Chaotic cavity
- Classical ray trajectories are chaotic short wavelength Quantum Chaos
- 1-port S and Z measurements in the 6 12 GHz range.
- Ensemble average through 100 locations of the perturbation

Comparison of Experimental Results and Model for Pdf's of Normalized Impedance

Normalized Scattering Amplitude Theory and HFSS Simulation

Actual Cavity Impedance:

Normalized impedance :

Statistics of *s* depend only on damping parameter: $k^2/(Q\Delta k^2)$

Experimental Distribution of Normalized Scattering Coefficient

Frequency Correlations in Normalized Impedance Theory and HFSS Simulations

 $Z_{cav} = jX_R + (\rho + j\xi)R_R$ $RR = \langle (\rho(f_1) - 1)(\rho(f_2) - 1) \rangle$ $XX = \langle \xi(f_1)\xi(f_2) \rangle$ $RX = \langle (\rho(f_1) - 1)\xi(f_2) \rangle$

Properties of Lossless Two-Port Impedance (Monte Carlo Simulation of Theory Model)

HFSS Solution for Lossless 2-Port

Comparison of Distributed Loss and Lossless Cavity with Ports (Monte Carlo Simulation)

Time Domain Model for Impedance Matrix

Incident and Reflected Pulses for One Realization

Decay of Moments Averaged Over 1000 Realizations

Prompt reflection eliminated

Quasi-Stationary Process

Histogram of Maximum Voltage

Progress

- Direct comparison of random coupling model with -random matrix theory ✓
 -HFSS solutions ✓
 -Experiment ✓
- Exploration of increasing number of coupling ports \checkmark
- Study losses in HFSS \checkmark
- Time Domain analysis of Pulsed Signals

 -Pulse duration
 -Shape (chirp?)

- Current

• Generalize to systems consisting of circuits and fields – Future

Role of Scars?

• Eigenfunctions that do not satisfy random plane wave assumption

- Scars are not treated by either random matrix or chaotic eigenfunction theory
- Semi-classical methods

Bow-Tie with diamond scar

Future Directions

Additional complications to be added later

HFSS simulation courtesy J. Rodgers