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Electromagnetic Coupling in Computer 
Circuits

connectors

cables

circuit boards

Integrated circuits

Schematic
• Coupling of external radiation to 
computer circuits is a complex 
processes:

apertures
resonant cavities
transmission lines
circuit elements

• Intermediate frequency range 
involves many interacting resonances

• System size >>
Wavelength

• Chaotic Ray Trajectories

• What can be said about coupling without 
solving in detail the complicated EM 
problem ?
• Statistical Description !
(Statistical Electromagnetics, Holland and 
St. John)



Z and S-Matrices
What is Sij ?
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S matrix
S = (Z + Z0 )−1(Z − Z0)

• Complicated function of 
frequency
• Details depend sensitively on 
unknown parameters

Z(ω) , S(ω)
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N ports  
• voltages and currents, 
• incoming and outgoing 
waves

V1, I1

VN, IN
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Random Coupling Model

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

integrable
chaotic A

s

chaotic B

3.  Eigenvalues kn
2 are distributed according

to appropriate statistics:

- Eigenvalues of Gaussian Random Matrix

sn = (kn+1
2 − kn

2) / ∆k2
Normalized Spacing

2. Replace exact eigenfunction with superpositions of random plane waves
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Random amplitude Random direction Random phase

1. Formally expand fields in modes of closed cavity: eigenvalues kn = ωn/c



Statistical Model of Z Matrix
Frequency Domain

Port 1

Port 2

Other ports

Losses

Port 1

Free-space radiation
Resistance   RR(ω)
ZR(ω) = RR(ω)+jXR (ω)

RR1(ω)

RR2(ω)

Zij (ω) = −
j
π

RRi
1/2(ωn )RRj

1/2(ωn)
∆ωn

2 winw jn

ω2(1+ jQ−1) −ωn
2

n
∑

Statistical Model Impedance

Q -quality factor

∆ω2
n - mean spectral spacing

Radiation Resistance   RRi(ω)

win- Gaussian Random variables

ωn - random spectrum

System
parameters

Statistical
parameters



Model Validation
Summary

Single Port Case:

Cavity Impedance: Zcav = RR z + jXR
Radiation Impedance: ZR = RR  + jXR

Universal normalized random impedance: z = ρ + jξ

Statistics of z depend only on damping parameter: k2/(Q∆k2)
(Q-width/frequency spacing)

Validation:
HFSS simulations
Experiment (Hemmady and Anlage)



Normalized Cavity Impedance with Losses

Port 1 Losses

Zcav = jXR+(ρ+jξ) RR

Theory predictions for
Pdf’s of z =ρ+jξ

Distribution of reactance fluctuations
P(ξ)

∆k2

Distribution of resistance fluctuations
P(ρ)

∆k2



Two Dimensional Resonators

• Anlage Experiments
• HFSS Simulations
• Power plane of microcircuit

Only transverse magnetic (TM) propagate for
f < c/2h

Ez

HyHx

h

Box with
metallic walls

ports

Ez (x, y) = −VT (x, y) / h

Voltage on top plate



HFSS - Solutions
Bow-Tie Cavity

Moveable conducting
disk - .6 cm diameter
“Proverbial soda can”

Curved walls guarantee all 
ray trajectories are 
chaotic
Losses on top and bottom 
plates

Cavity impedance 
calculated for 
100 locations of disk
4000 frequencies
6.75 GHz  to 8.75 GHz



Comparison of HFSS Results and Model
for Pdf’s of Normalized Impedance

Normalized Reactance Normalized Resistance

ξ

Zcav = jXR+(ρ+jξ) RR

ρ

Theory

Theory



EXPERIMENTAL SETUPEXPERIMENTAL SETUP

Sameer Hemmady, Steve Anlage CSR

Eigen mode Image at 
12.57GHz
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• 2 Dimensional Quarter Bow Tie Wave Chaotic cavity
• Classical ray trajectories are chaotic - short wavelength   - Quantum Chaos
• 1-port S and Z measurements in the 6 – 12 GHz range.
• Ensemble average through 100 locations of the perturbation
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Comparison of Experimental Results and Model
for Pdf’s of Normalized Impedance
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Normalized Scattering Amplitude
Theory and HFSS Simulation

Theory predicts: P( s ,φ) =
1

2π
Ps ( s )

Uniform distribution in phase

Actual Cavity Impedance: Zcav = RR z + jXR
Normalized impedance : z = ρ + jξ
Universal normalized scattering coefficient: s = (z −1)/(z +1) = | s| exp[ iφ ]
Statistics of s depend only on damping parameter: k2/(Q∆k2)



Experimental Distribution of Normalized 
Scattering Coefficient
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Frequency Correlations in Normalized Impedance
Theory and HFSS Simulations

Zcav = jXR+(ρ+jξ) RR

RR = <(ρ(f1)-1)(ρ(f2)-1)>

XX = <ξ(f1)ξ(f2)>

RX = <(ρ(f1)-1 )ξ(f2)>

(f1-f2)



Properties of Lossless Two-Port Impedance
(Monte Carlo Simulation of Theory Model)

Eigenvalues of Z matrix

det Z − jX1 = 0

X1,2 = XR + ξ1, 2RR

ξ1,2 = tan
θ1,2

2
⎛ 
⎝ ⎜ 

⎞ 
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Individually ξ1,2 are 
Lorenzian distributed

θ1

θ2

Distributions same as
In Random Matrix theory



HFSS Solution for Lossless 2-Port

θ2

θ1

Joint Pdf for θ1 and θ2

Port #1:

Port #2:

Disc



Comparison of Distributed Loss
and Lossless Cavity with Ports

(Monte Carlo Simulation)

Distribution of reactance fluctuations
P(ξ)

Distribution of resistance fluctuations
P(ρ)

ρ ξ
Zcav = jXR+(ρ+jξ) RR
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wn- Gaussian Random variables

ωn - random spectrum



Incident and Reflected Pulses
for One Realization
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Prompt reflection 
removed by matching Z0
to ZR

f = 3.6 GHz
τ = 6 nsec



Decay of Moments
Averaged Over 1000 Realizations 

<V(t)>

<V2(t)>1/2

|<V3(t)>|1/3

Linear Scale Log Scale
Prompt reflection eliminated



Quasi-Stationary Process

-1

-0.5

0

0.5

1

1.5

2

2.5

-1.5 10-8 -1 10-8 -5 10-9 0 5 10-9 1 10-8 1.5 10-8

<u
(t 1)u

(t 2
)>

t
1
-t

2

t1 = 1.0 × 10-7

t1 = 8.0 × 10-7

t1 = 5.0 × 10-7

Normalized Voltage
u(t)=V(t) /<V2(t)>1/2

2-time Correlation Function
(Matches initial pulse shape)
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Progress

• Direct comparison of random coupling model with 
-random matrix theory 
-HFSS solutions 
-Experiment 

• Exploration of increasing number of coupling ports 

• Study losses in HFSS 
• Time Domain analysis of Pulsed Signals

-Pulse duration
-Shape (chirp?)

• Generalize to systems consisting of circuits and fields

Current

Future



Role of Scars?

• Eigenfunctions that do not satisfy random 
plane wave assumption

Bow-Tie with diamond scar

• Scars are not treated by either random matrix
or chaotic eigenfunction theory

• Semi-classical methods



Future Directions

Bow-tie shaped cavity

Dielectric

Test port

Excitation port

• Can be addressed

-theoretically

-numerically

-experimentally

Features:
Ray splitting
Losses

HFSS simulation courtesy J. Rodgers
Additional complications to be added later


