

Gate Oxide Degradation

R. Jacob Baker and Bill Knowlton

1

Microwave test structures

- What's been done
- What we're doing
- □ The weakest link (gate oxide stress)
 - Motivation
 - Why oxide is the weakest link
- Experimental results
 - Device stress
 - Circuit stress
- Summary and publications

Design of Schottky diodes, first-chip
 Re-design due to spacing problems
 Characterized Schottky detector circuit below

Circuit Characteristics

Measured Results

- Several different types of test structures
- Measured the DC voltage out as a function of microwave power applied to the test structure.

We also looked at the frequency behavior of the circuit.

Current Activities

- □ We are now integrating the Schottky detector with various circuits to characterize change with DC bias
 - Pass Gate
 - Transmission Gate
 - Inverter
 - Self-Biasing Differential Amplifier
- □ Waiting for fabrication through MOSIS

□ Layout Schematics

□ Layout views

Pass Gate inset

□ Layout views cont.

□ Layout Schematics cont.

Inverter Schematic

Self-bias diff-amp Schematic

□ Layout views cont.

Inverter Layout

Inverter inset

□ Layout views cont.

Layout self-bias diff-amp

Inset diff-amp

Motivation

Motivation

transistors

Doubling of transistors every couple of years

Motivation

¹R. J. Baker, H. W. Li, and D. E. Boyce, "CMOS: Circuit design, layout, and simulation," IEEE Press, pp. 201-228, 1998.

Statement of Work

Investigate simple integrated circuit response to low-level leakage current degradation in 2.0 nm gate oxides

How defects accumulated over time in gate oxides affect circuits

Measured Results

Observed effects in 3.2 nm gate oxides:

What happens to 2.0 nm gate oxide circuits?

- Will comparable gate oxide degradation produce comparable circuit response?
- Will thinner oxide circuits prove more susceptible to oxide degradation?

Measured Results

3.2 nm Oxide Degradation

- Observed degradation and breakdown mechanisms:
 - Stressed induced
 leakage current (SILC)^{1,2}
 - Soft breakdown (SBD)^{3,4}
 - Limited hard breakdown (LHBD)⁵
 - Hard breakdown (HBD)

□ $W_P/L_P = 25 \mu m/25 \mu m$ □ $A_{OX} = 6.25 \times 10^{-6} \text{ cm}^2$

- ¹ D. J. DiMaria, JAP, vol. 86, pp. 2100-2109, 1999
- ² B. Ricco, et al., IEEE TED, vol. 45, pp. 1154-1555, 1998.
- ³ S. Lombardo, F. Crupi, and J. H. Stathis, IEEE IRPS, pp 163-167, 2001.
- ⁴ B. P. Linder, et al., IEEE EDL, vol. 23, pp. 661-663, 2002.
- ⁵ W. B. Knowlton, et al., IEEE International IRW, pp. 87-88, 2001.

Comparison of Oxide Degradation

BD Mechanisms less clear for 2.0 nm \rightarrow focus on low leakage regime

CVS Technique

□ Focus on low leakage regime

¹S. Lombardo, J. H. Stathis, and B. P. Linder, PRL, vol. 90, 2003. ²S. Lombardo, et al., "Breakdown transients in ultra-thin gate oxynitrides," presented at IEEE ICICDT, 2004. ³D. J. DiMaria, JAP, vol. 86, pp. 2100-2109, 1999. ⁴B. Ricco, et al., IEEE TED, vol. 45, pp. 1154-1555, 1998.

Experimental

Wafer-level stress and characterization

Experimental Procedure

Experimental Procedure

Inverter parameters defined

PMOSFET CVS and $I_G - V_G$

□ Observed gate leakage current increase (2.0 nm)

- Accumulation mode ~ 2 to 3 orders of magnitude
- Inversion mode < 1 order of magnitude</p>

Inverter Voltage Transfer Characteristics

Fresh \rightarrow E level degradation: $\square \Delta V_{SP} \sim 8\%$ shift left¹ \square Output behavior transitions from 1 to 0

Inverter Time Domain

BOISE Degraded Inverter Characteristics – Why?

What aspect of device characteristics may be causing the inverter to respond to the degradation in this manner?

PMOS $I_D - V_D$ (Drive Current)

Fresh \rightarrow E level degradation:

- ΔI_{Drive} ~40% decrease
- $\Delta V_{TH,P}$ ~17% to 20% shift
- $\Delta G_{M, MAX}$ ~16% to 19% decrease

2.0 nm pMOSFET

- Fresh \rightarrow E level degradation:
 - ΔI_{Drive} ~40% decrease
 - $\Delta V_{TH,P}$ ~17% to 20% shift
 - $\Delta G_{M, MAX}$ ~16% to 19% decrease

Typical logic process:

- ΔI_{Drive} ~6% decrease
- $\Delta V_{TH,P}$ ~10% shift
- $\Delta G_{M, MAX}$ ~7% decrease

Conclusions

- Dramatic decrease in inverter performance directly related to:
 - ΔI_{Drive} (decrease)
 - $\Delta V_{TH,P}$ (increase) and ΔG_M (decrease)
- □ For thinner oxides:
 - Inverter circuits more sensitive to degradation
 - Circuit failure may result before a definite BD event

Future Work

- □ NMOS degradation
 - Circuit operation effects
 - Devices effects
- Circuit level inverter stress
 - Circuit operation effects
 - Device effects
- Modeling inverter performance

2004 Publication Summary

Cheek, Betsy J., Stutzke, Nate, Santosh Kumar, R. Jacob Baker, Amy J. Moll and William B. Knowlton, *Investigation of Circuit-Level Oxide Degradation and its Effect on CMOS Inverter Operation Performance and MOSFET Characteristics*, in proceedings of the 2004 IEEE International Reliability Physics Symposium (April, 25-29, 2004) pp. 110-116.

M. L. Ogas, R. G. Southwick III, B. J. Cheek, C. E. Lawrence, S. Kumar, A. Haggag, R. J. Baker, W. B. Knowlton, *Multiple Waveform Pulse Voltage Stress (MWPVS) Technique for Modeling Noise in Ultra Thin Oxides*, poster presentation at 2004 IEEE Workshop on Microelectronics and Electron Devices (April 16, 2004).

Dorian Kiri, Michael L. Ogas, Ouahid Salhi, Richard G. Southwick III, Gennadi Bersuker, Betsy J. Cheek, William B. Knowlton, *Investigation of Ultra Thin Gate OxideReliability in MOS Devices and Simple ICs*, poster presentation at 2004 IEEE Workshop on Microelectronics and Electron Devices (April 16, 2004).

M. L. Ogas, R. G. Southwick III, B. J. Cheek, R. J. Baker, G. Bersuker, W. B. Knowlton, *Survey of Soft Breakdown (SBD) in 2.0 nm Gate Oxides in MOS Devices and Inverter Circuits*, accepted for oral presentation at 2004 IEEE International Integrated Reliability Workshop (Oct, 20-23, 2004).

Betsy J. Cheek, Santosh Kumar, R. Jacob Baker, Amy J. Moll and William B. Knowlton, *Examination of Transistor-Level Current Limited Hard Breakdown (LHBD) and Its Effect on CMOS Inverter Circuit Operation*, submitted for publication to IEEE Transactions on Electron Devices.