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Microwave test structures
◙ What’s been done
◙ What we’re doing

The weakest link (gate oxide stress)
◙ Motivation
◙ Why oxide is the weakest link

Experimental results
◙ Device stress
◙ Circuit stress
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What has been doneWhat has been done

Design of Schottky diodes, first-chip
Re-design due to spacing problems
Characterized Schottky detector circuit below
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Circuit CharacteristicsCircuit Characteristics

Schottky Detector Circuit

.control
destroy all
run
plot vin 
plot vout
.endc
D1 VD 0 dmod 30
C1 Vin VD .5p
R1 VD Vout 1k
C2 Vout 0 10p IC=0
Vin Vin 0 sin 0 500m 1G
.TRAN .1n 30u
.MODEL dmod D vj=0.3 cjo=0 tt=0 
rs=10
.end
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Several different types of test structures
Measured the DC voltage out as a function of 
microwave power applied to the test structure. 
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We also looked at the frequency behavior of the 
circuit.

Dcout vs Input Frequency
Power=-10dbM
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Current ActivitiesCurrent Activities

We are now integrating the Schottky detector with 
various circuits to characterize change with DC bias 
◙ Pass Gate
◙ Transmission Gate
◙ Inverter
◙ Self-Biasing Differential Amplifier

Waiting for fabrication through MOSIS 
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Layout Schematics

Pass Gate 
Schematic

Transmission 
Gate Schematic
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Layout views

Pass Gate Layout Pass Gate inset
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Layout views cont.

Transmission Gate Layout TG inset
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Layout Schematics cont.

Inverter Schematic Self-bias diff-amp 
Schematic
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Layout views cont.

Inverter Layout Inverter inset
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Layout views cont.

Layout self-bias diff-amp Inset diff-amp
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MotivationMotivation

Gate
+ VDrain

+ V
Source

VDD

Bulk
VDD

n-type

tox

Oxide

Gate
- VDrain

+ V
Source

VDD

Bulk
VDD

n-type

p+ p+
Oxide

p+ p+ +
+ +

+
+

+
++

++
+

+ +



14

MotivationMotivation

Doubling of transistors every couple of years

Gordon Moore. http://www.intel.com/research/silicon/mooreslaw.htm
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MotivationMotivation
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Statement of WorkStatement of Work

Investigate simple integrated circuit 
response to low-level leakage current 

degradation in 2.0 nm gate oxides

How defects accumulated over time in 
gate oxides affect circuits 
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Measured ResultsMeasured Results

What happens to 2.0 nm gate oxide circuits?

Observed effects in 3.2 nm gate oxides:

Will comparable gate oxide degradation produce comparable 
circuit response?
Will thinner oxide circuits prove more susceptible to oxide 
degradation?
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Measured ResultsMeasured Results

WP/LP = 25 µm/ 25 µm
AOX = 6.25 x 10-6 cm2

Observed degradation 
and breakdown 
mechanisms:
◙ Stressed induced 

leakage current (SILC)1,2

◙ Soft breakdown (SBD)3,4

◙ Limited hard breakdown 
(LHBD)5

◙ Hard breakdown (HBD)

3.2 nm Oxide Degradation3.2 nm Oxide Degradation

1 D. J. DiMaria, JAP, vol. 86, pp. 2100-2109, 1999
2 B. Ricco, et al., IEEE TED, vol. 45, pp. 1154-1555, 1998.
3 S. Lombardo, F. Crupi, and J. H. Stathis, IEEE IRPS, pp 163-167, 2001.
4 B. P. Linder, et al., IEEE EDL, vol. 23, pp. 661-663, 2002.
5 W. B. Knowlton, et al., IEEE International IRW, pp. 87-88, 2001.
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Comparison of Oxide DegradationComparison of Oxide Degradation

WP/LP = 25 µm/ 25 µm
AOX = 6.25 x 10-6 cm2

WP/LP = 10 µm/ 1 µm
AOX = 1 x 10-7 cm2

BD Mechanisms less clear for 2.0 nm BD Mechanisms less clear for 2.0 nm focus on low leakage regimefocus on low leakage regime

3.2 nm pMOSFET 2.0 nm pMOSFET
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CVS TechniqueCVS Technique
Focus on low leakage regime

1S. Lombardo, J. H. Stathis, and B. P. Linder, PRL, vol. 90, 2003.  2S. Lombardo, et al., "Breakdown transients in ultra-thin gate oxynitrides," presented at 
IEEE ICICDT, 2004.  3D. J. DiMaria, JAP, vol. 86, pp. 2100-2109, 1999.  4B. Ricco, et al., IEEE TED, vol. 45, pp. 1154-1555, 1998.  
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ExperimentalExperimental

◙ tOX = 2.0 nm 
◙ WP, N/LP, N = 10 µm/1 µm
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Experimental ProcedureExperimental Procedure
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CVS pMOSFETCVS pMOSFET
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End

1F. Crupi, et al., IEEE TED, vol. 48, pp. 1109-1113, 2001
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Experimental ProcedureExperimental Procedure
Inverter parameters 
defined
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PMOSFET CVS and IPMOSFET CVS and IGG--VVGG

Observed gate leakage current increase (2.0 nm)
◙ Accumulation mode ~ 2 to 3 orders of magnitude
◙ Inversion mode < 1 order of magnitude
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Inverter Voltage Transfer CharacteristicsInverter Voltage Transfer Characteristics

1R. J. Baker, H. W. Li, and D. E. Boyce, "CMOS: Circuit design, layout, and simulation," IEEE Press, pp. 201-228, 1998.

Fresh E level degradation:
◙ ∆ VSP ~8% shift left1

◙ Output behavior transitions from 1 to 0
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Inverter Time DomainInverter Time Domain

Fresh LHBD                       
∆ rise time1 ~32%

1R. J. Baker, H. W. Li, and D. E. Boyce, "CMOS: Circuit design, layout, and simulation," IEEE Press, pp. 201-228, 1998.

3.2 nm pMOSFET 2.0 nm pMOSFET

Fresh E level degradation         
∆ rise time1 ~36% to 62%
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Degraded Inverter Characteristics Degraded Inverter Characteristics ––
Why?Why?

What aspect of device characteristics may 
be causing the inverter to respond to the 

degradation in this manner?
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PMOS PMOS IIDD--VVDD (Drive Current)(Drive Current)

Fresh E level degradation:
◙ ∆ IDrive ~40% decrease
◙ ∆ VTH,P ~17% to 20% shift
◙ ∆ GM, MAX ~16% to 19% decrease

2.0 nm pMOSFET
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Relation to Logic TechnologyRelation to Logic Technology

Fresh E level degradation:
◙ ∆ IDrive ~40% decrease
◙ ∆ VTH,P ~17% to 20% shift
◙ ∆ GM, MAX ~16% to 19% decrease

Typical logic process:
◙ ∆ IDrive ~6% decrease
◙ ∆ VTH,P ~10% shift
◙ ∆ GM, MAX ~7% decrease

TPTN

FPFN

SPFN

FPSN

SPSN

“Corner Parameters”1

1MOSIS, “AMIS C5N/C5F Family Process: SPICE corner models, “4676 Admirality Way, Marina del Ray, California 90292-6695 USA, 2004.
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ConclusionsConclusions
Dramatic decrease in inverter performance 
directly related to:
◙ ∆ IDrive (decrease)
◙ ∆ VTH,P (increase) and ∆ GM (decrease)

For thinner oxides:
◙ Inverter circuits more sensitive to degradation
◙ Circuit failure may result before a definite BD event
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Future WorkFuture Work
NMOS degradation
◙ Circuit operation effects
◙ Devices effects

Circuit level inverter stress
◙ Circuit operation effects 
◙ Device effects

Modeling inverter performance



32

2004 Publication Summary2004 Publication Summary
Cheek, Betsy J., Stutzke, Nate, Santosh Kumar, R. Jacob Baker, Amy J. Moll and William 
B. Knowlton, Investigation of Circuit-Level Oxide Degradation and its Effect on CMOS 
Inverter Operation Performance and MOSFET Characteristics, in proceedings of the 2004 
IEEE International Reliability Physics Symposium (April, 25-29, 2004) pp. 110-116.

M. L. Ogas, R. G. Southwick III, B. J. Cheek, C. E. Lawrence, S. Kumar, A. Haggag, R. J. 
Baker, W. B. Knowlton, Multiple Waveform Pulse Voltage Stress (MWPVS) Technique for 
Modeling Noise in Ultra Thin Oxides, poster presentation at 2004 IEEE Workshop on 
Microelectronics and Electron Devices (April 16, 2004).

Dorian Kiri, Michael L. Ogas, Ouahid Salhi, Richard G. Southwick III, Gennadi Bersuker, 
Betsy J. Cheek, William B. Knowlton, Investigation of Ultra Thin Gate OxideReliability in 
MOS Devices and Simple ICs, poster presentation at 2004 IEEE Workshop on 
Microelectronics and Electron Devices (April 16, 2004).

M. L. Ogas, R. G. Southwick III, B. J. Cheek, R. J. Baker, G. Bersuker, W. B. Knowlton, 
Survey of Soft Breakdown (SBD) in 2.0 nm Gate Oxides in MOS Devices and Inverter 
Circuits, accepted for oral presentation at 2004 IEEE International Integrated Reliability 
Workshop (Oct, 20-23, 2004).

Betsy J. Cheek, Santosh Kumar, R. Jacob Baker, Amy J. Moll and William B. Knowlton, 
Examination of Transistor-Level Current Limited Hard Breakdown (LHBD) and Its Effect 
on CMOS Inverter Circuit Operation, submitted for publication to IEEE Transactions on 
Electron Devices.


