Exploiting Nonlinear Dynamics for Novel Sensor Networks (UMD-DUKE)

- Network of nonlinear optoelectronic nodes for sensing applications
- We have constructed, experimentally measured, and simulated coupled, time-delayed optical nonlinear systems with feedback.

Nonlinear Photonic Sensor Networks

- Adam B. Cohen (Phys, IREAP)
- Bhargava Ravoori (Phys, IREAP)
- Karl R. B. Schmitt (AMSC, IPST, IREAP)
- Thomas E. Murphy (ECE, IREAP)
- Rajarshi Roy (IPST, Phys, IREAP)

• Why photonics?

- High speed, precise localization of perturbations
- Compact, durable, efficient, eye-safe, lightweight, rugged
- Combination of photonics and electronics allows implementation of novel sync algorithms and information processing with state-of-the-art DSP (digital signal processing) technology

First year goals

- Design single (optoelectronic) system best suited for generation of wide range of signals
- Develop accurate numerical model
- Incorporate digital signal processing technology
 - wide range of time scales
 - exceptional ability to vary coupling and time delays in network
- Explore coupling schemes and synchronization properties

Nonlinear Optoelectronic time-delayed feedback loop

Loop delay: $\tau = 22.5$ ns, Bandpass filter: 1 MHz – 100 MHz

Mach-Zehnder electro-optic modulator

Principle : Interference of the optical signal along the two paths controlled electronically.

 V_{π} = voltage needed to produce a π phase shift

✓ Such a system had been considered before by Kouomou *et. al.*, PRL **95**, 203903 (2005)

The feedback strength β is given by

$$\beta = \frac{\pi}{2} \frac{P_0 RG}{V_{\pi}}$$

- P_0 = optical laser power (W)
- R = photodiode responsivity (A/W)
- G = transimpedance amplifier gain (V/A)
- V_{π} = modulator half-wave voltage (V)

Generalized Model, with Arbitrary Filters

Experimental system: $\mathbf{u}(t)$ is 14x1 state vector

- 7th order Butterworth bandpass filter

Comparison of experiment and computations

Data assimilation, synchronization, and prediction

 $\beta = 5.0$ T = 7634 ns D_L = 16.1 t = 0 to 8200 ns

Data assimilation, synchronization, and prediction

$$---- x_1(t) ----- x_2(t)$$

 $\beta = 5.0$ D_L = 16.1 *t* = 0 to 800 ns

Data assimilation, synchronization, and prediction

$$---- x_1(t) ----- x_2(t)$$

 $\beta = 5.0$ T = 7634 ns D_L = 16.1 t = 7200 to 8000 ns

Synchronization between experiment and model

Global maximal Lyapunov exponents and probability distribution of prediction times

Summary I

- Designed optoelectronic feedback system: a modular element for the photonic sensor network
- Developed an accurate model
- Demonstrated data assimilation by synchronization of numerical model to experimental data, and prediction for high dimensional chaotic systems
- Accepted for publication: PRL October 2008

Scaling the Speed of the System How FAST (or SLOW) can we go?

- Optical medium can support *any* modulation speed
- Advantages of using optical carrier
 - Low loss propagation (fiber: 0.2 dB/km)
 - Directionality (collimated beam)
 - Reduced size, weight, power
- Factors that limit speed:
 - Electrooptic modulator
 - Photoreceiver
 - Filters, amplifiers

Bandwidth: DC to 40 GHz

Scaling to Low Speed

GOAL: Slow down system by 10,000 X

- High frequency signals are not needed to sense static/slow moving objects
- Slower components are easier to engineer and model, exhibit near-ideal performance
- Retain advantages of an optical carrier
- Provide testbed for trying new ideas (before investing in costly RF components)

From VHF to Audio: Comparison

	VHF System	Audio System
Bandpass filter H(ω)	1 MHz – 100 MHz	100 Hz – 10 kHz
Time Delay (τ)	20 ns	200 µs
Propagation Distance (L)	4 m	40 km
Sampling Rate Required [†]	1 GS/s	100 kS/s

[†] in order to adequately resolve signal

Solution: Digital Signal Processing

R

- All digital delay (τ):
 - Limited only by memory:
 - Example: 16 Mb on-board SDRAM 16 bit ADC / DAC Sampling rate = 96 kS/s

Up to 88 seconds of digital delay, with 10 µs resolution

G

- All digital filter H(ω):
 - Can be precisely designed, controlled, matched
- Retain analog optical modulation, transmission, detection
 - Important for sensor applications

Advantages of DSP

- DSP systems are ubiquitous & inexpensive
 - Found in DVD players, cell phones, children's toys, etcetera
- Arbitrary filtering is possible (subject to Nyquist limit)
- Easier to simulate:
 - Continuous-time DDE \rightarrow Discrete map
- Easily scaled to MHz frequencies
- Adaptive control of filter, coupling, delays

Adaptive Control of System Parameters

• Feedback strength (β) slowly increased from 0 to 8

Coupling and Synchronization

Q: Under what conditions can these systems synchronize?

Synchronization – Method 1

Synchronization is guaranteed

Synchronization – Method 2

 Synchronization is *possible* but NOT guaranteed (depending on κ)

Bidirectional Synchronization

Synchronization Observed in Experiments

Synchronization at Low Speeds

Synchronization at Low Speeds

Sensor Networks (n≥3)

Scheme 1:

• Disturbance causes loss of synchronization

Scheme 2:

• Network dynamically adapts to maintain synchronization – Identification and tracking of β_{ij}

Unidirectional Synchronization (n=3)

Sensor Networks (n > 60,000)

- Take advantage of parallel modulation and detection
 - Only one laser needed
- Applications in image and motion recognition
- Reconfigurable delay and feedback via FPGA
- DURIP Proposal: "Complexity-Based Optical Sensor Networks: Design and Characterization" (under consideration)

Summary and Future Directions

SUMMARY

- Constructed and characterized modular optoelectronic feedback system
- Investigated synchronization between 2+ systems
- Implemented real-time DSP control of filters, couplings, and delays

FUTURE DIRECTIONS

- Investigate adaptive synchronization of networks
- More complex networks of systems
- Parallel modulation and detection using imaging technology:
 - Spatial light modulators
 - Focal plane array detectors

