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MOTIVATION 

• Real world networks often grow while embedded in Euclidean space, e.g., the 
network of neurons in the brain is embedded in 3 dimensional space and 
grows as the organism develops. 

• Motivated by biological considerations, we explore a class of models in which 
nodes are placed one by one in random locations in space and, after 
placement, form connections with nearby nodes. 

• Researchers have studied spatially embedded complex networks that are 
static, but here we investigate spatially embedded dynamic networks. 
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Conclusions 

• Our model for network growth achieves small-world features with a 
spatial embedding (the three criteria in panel 2 are satisfied). 

• We also find that the clustering coefficient scales inversely with the square 
of the dimension of the embedding space (i.e. C ~ d-2). 

Our Model 

Our work explores how spatial embedding affects the properties of growing 
networks. In each of our models we add a node at each time step, linking it to 
its m nearest spatial neighbors we then allow nodes to move to minimize a 
`potential energyɀɯÈÕËɯÈ××ÙÖßÐÔÈÛÌÓàɯÌØÜÈÓÐáÌɯÐÕÛÌÙ-node distances.: 

I. The Thomson Network Model  embeds nodes on the d-dimensional 
surface of a (d+1)-dimensional sphere with nodes acting as charges 
interacting through the appropriate Coulomb force; Ref. [2] considers 
an analogous model for d = 1. 

II. The Plum Pudding Network Model  embeds nodes in the body of an d-
dimensional ball with nodes behaving as negative charges embedded 
in a uniform-density cloud of positive charge. 

Fig 1. Degree Distribution  

• Theory (magenta line) and degree 
distribution on a semi-log plot.  

• Data sets are separated by an arbitrary 
linear offset since the theory predicts 
the same degree distribution for all of 
our models.  

Fig 2. Path Length  

• L ~ log N for all of our models.  

• L decreases with dimension, 
indicating that nodes are more 
effectively linked by shortcuts in 
higher dimensions. 

Fig 3. Clustering  

• The clustering coefficient approaches 
an asymptotic value invariant of N. 

• Clustering scales with d-2, suggesting 
that for large  dimensions nodes tend 
to be further away from their original 
neighbors than for small dimensions. 

Legend for Figs. 1-3 
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Background ς Important features of complex networks 
 

• The degree distribution specifies the probability that a network node 
selected at random has degree k (i.e., the node is connected to k others). 

• ,ÈÕàɯÙÌÈÓɯÞÖÙÓËɯÕÌÛÞÖÙÒÚɯÌßÏÐÉÐÛɯɁsmall -world ɂɯ×ÙÖ×ÌÙÛÐÌÚɯȻƕȼȭɯ3ÏÈÛɯÐÚȮ 

1. The average degree remains small relative to N, the number of nodes. 
2. The average shortest path between nodes is small (scales with log N). 
3. The clustering, ÞÏÐÊÏɯÔÌÈÚÜÙÌÚɯÛÏÌɯ×ÙÖ×ÌÕÚÐÛàɯÖÍɯÈɯÕÖËÌɀÚɯÕÌÐÎÏÉÖÙÚɯÛÖɯ

be linked to each other, is high. 

Lattice Small-world model Random 
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Nodes embedded on the unit disk 
for the 2D plum pudding model. 

• Nodes of all ages (indicated by 
color) are distributed throughout 
the space.  

• Older nodes tend to have higher 
degree since they have had more 
time to accumulate links.  

• Older nodes provide shortcuts 
across the network. 
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The Thomson network model in 1D for m = 2 

•Start with m+1  connected nodes (a), add nodes in random inter-node intervals (b & e) and 
connect them to their m nearest neighbors (c & f). 

•Equalize the space between nodes (d & g). 
•Repeat until the network has a large number of nodes N (h). 


