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ABSTRACT 

 
 
Title of Thesis: LONGITUDINAL EFFECTS AND FOCUSING IN  
 

SPACE-CHARGE DOMINATED BEAMS 
 
Degree candidate:  John Richardson Harris 
 
Degree and year:  Master of Science, 2002 
 
Thesis directed by:  Professor Patrick G. O'Shea 
 
    Department of Electrical and Computer Engineering 
 
 
 The purpose of this thesis is to investigate longitudinal effects in space-charge 

dominated beams, and to begin design of a longitudinal focusing system for the 

University of Maryland Electron Ring (UMER).  The longitudinal envelope equation is 

introduced and used to develop a longitudinal intensity parameter which is analogous to 

the transverse intensity parameter.  After solving for the free-expansion longitudinal 

envelope, the electric field necessary to properly focus a parabolic beam in a periodic 

longitudinal focusing lattice is determined.  The cold fluid model for space-charge 

dominated beams is then introduced, and results stated for the free expansion of a 

rectangular beam pulse.  A more general approach to find the electric field needed in a 

periodic longitudinal focusing lattice is then developed.  This approach is applicable, 

within certain  assumptions, to any beam profile for which the particle velocity and line 

charge density can be determined through theory or simulation.  The drift compression 

focusing scheme discussed heavily in the literature is explored and problems with this 

method are noted.  Some discrepancies and areas where further work is needed are also 

addressed. 
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1. Introduction. 

The behavior of charged particle beams and the focusing methods needed to 

control them depend in part on beam intensity.  Low intensity beams are characterized by 

low space-charge density, and their response to external focusing is governed primarily 

by thermal effects (emittance).  The transport of emittance dominated beams in focusing 

systems is similar to the transport of light through an optical focusing system.  High 

intensity beams are characterized by high space-charge density, and the electric forces 

between the particles in the beam govern its behavior in focusing systems.  Space-charge 

dominated beams behave like a plasma, with pronounced collective and nonlinear effects. 

The intensity parameter (χ) has been introduced to provide a measure of beam 

intensity[1].  This parameter is the ratio of the transverse space-charge force to the 

transverse focusing force in a beam, and is given by 

   
22

0 Rk
K

=χ ,      (1) 

where K is the generalized perveance of the beam, k0 is the betatron oscillation wave 

number in the absence of space charge, and R is the transverse beam envelope.  The 

generalized perveance is directly related to the space-charge density in the beam.  The 

value of χ ranges from zero (emittance dominated) to one (space-charge dominated);  it 

cannot exceed one, as the space-charge forces would exceed the focusing forces and the 

beam would no longer be confined by the focusing system.   

 Although most research has been done on emittance dominated beams, many 

current and planned applications require space-charge dominated beams.  These 
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applications include high power microwave sources, free-electron lasers, and heavy-ion 

inertial confinement fusion drivers (HIF)[2-5].   

The University of Maryland Electron Ring (UMER), a space-charge dominated 

beam transport system, is currently under construction, and will be used to improve the 

understanding of space-charge dominated beams.  Although the UMER beam is 

composed of electrons, it has been designed so that it will behave in a similar manner as 

the beams of heavy ions such as bismuth that will be needed for planned HIF 

machines[6].  As such, UMER is a scale model which allows research to be done in 

support of the HIF program in a university laboratory setting at considerably less expense 

than would be involved with the actual construction of a HIF driver.  A second, related 

goal for UMER is the investigation of space-charge wave propagation along the direction 

of travel of intense beams.  These longitudinal waves were first studied by D.X. Wang at 

Maryland in the early 1990's, but this research was limited by the length of the beamline 

available at the time[7].  Because UMER is a circular machine, the distance over which 

the beam can propagate is not limited by its physical size.  This will allow longitudinal 

waves to be studied for longer periods of time than were possible in previous machines.  

UMER also has improved diagnostics which will allow these waves to be studied in more 

detail than was possible in the past[8-10].     

Although UMER is designed to access the very intense region that will be needed 

for HIF drivers, it can also be tuned across a wide range of χ.  This allows it to access the 

emittance dominated region and the crossover region near χ = 0.5, where both emittance 

and space charge must be considered. 
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Fig. 1.  Space Charge Intensity Parameter (χ).  This graph relates the intensity parameter 
for transverse beam physics with the tune depression (k/k0) and the plasma frequency 
(ωp).  Beams with 5.00 <≤ χ  are considered emittance dominated, while beams with 

15.0 ≤< χ  are considered space charge dominated.  Existing rings are emittance 
dominated, and operate in the range to the left of the dashed line.  UMER is designed to 
operate across a wide range of intensity parameter values, from approximately 2.0=χ  to 
almost 1=χ .  The intended operating range for UMER extends to the right of the dash-
dot line. 
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Fig. 2.  The University of Maryland Electron Ring (UMER)[11].  
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Most of the work done on focusing in UMER has been concentrated on its 

transverse focusing system.  However, space charge will also drive an expansion of the 

beam along its axis of travel.  In order to control this longitudinal expansion, a 

longitudinal focusing system must be implemented.  This system will use induction gaps 

to apply an electric field to the beam along its direction of travel, which will compress the 

beam longitudinally.   

The purpose of this thesis is to investigate longitudinal effects in space-charge 

dominated beams, and to begin design of a longitudinal focusing system for UMER.  The 

longitudinal envelope equation will be introduced and used to develop a longitudinal 

intensity parameter which is the longitudinal analog to the intensity parameter of eq. (1).  

After solving for the free-expansion longitudinal envelope, the electric field necessary to 

properly focus a parabolic beam in a periodic longitudinal focusing lattice will be 

determined.  The cold fluid model for space-charge dominated beams will then be 

introduced, and results stated for the free expansion of a rectangular beam pulse.  A more 

general approach to find the electric field needed in a periodic longitudinal focusing 

lattice will then be developed.  This approach is applicable, within certain assumptions, to 

any beam profile for which the particle velocity and line charge density can be 

determined through theory or simulation.  The drift compression focusing scheme 

discussed heavily in the literature will be explored and problems with this method will be 

noted.  Some discrepancies and areas where further work is needed will also be 

addressed. 
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2.  Longitudinal Envelope Equation. 

2.1.  Introduction. 

One approach to investigating longitudinal effects in charged-particle beams is 

through the longitudinal envelope equation[12] 

    0~
~

~55
~~

3

2

20 =−−+′′ ′

zz
Kzz zzL

z
ε

κ ,   (2) 

where z~ is the RMS half length of the beam, 0zκ is the longitudinal focusing function, 

LK  is the longitudinal generalized perveance, and zz ′ε~ is the unnormalized RMS 

longitudinal emittance.  The generalized longitudinal perveance is given by  

    
2

0

2

52 42
3

mc
qgNK L πεγβ

=     (3) 

where N  is the total number of particles in the bunch, q  is the charge of the electron, 0ε  

is the permittivity of free space, m  is the mass of the electron, c  is the speed of light, and 

β  and γ  are the relativistic factors.  The focusing function 0zκ  can be related to the 

applied electric field, and may be a function of location and time.  The unnormalized 

RMS emittance is given by 

    [ ] 2/1222~ zzzzzz ′−′=′ε .    (4) 

 The geometry factor g  is given approximately by ⎟
⎠
⎞

⎜
⎝
⎛+≈

a
bg ln21 , where b  is the radius 

of the beam pipe and a  is the radius of the beam[7,12].  Note that both the RMS half-

length z~  and the true half-length mz  are measured from the centroid of the beam in the 

beam rest frame.  The distance traveled by the beam centroid through the laboratory 

frame is denoted s , and primed quantities indicate a derivative with respect to s .  
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Although β  and γ  appear throughout this thesis, UMER is strictly nonrelativistic, with a 

maximum β  of 0.2.  The presence of β  or γ  in an equation should not be taken to 

imply that the equation is correct for relativistic beams. 

 The longitudinal envelope equation was first derived by L. Smith[13], with 

additional work being done by Neuffer[14] and Sacherer[15].  Their derivations of the 

equation were directly applicable only to beams with uniform, parabolic, or Gaussian 

distributions.  Although the beams of interest to UMER are generally not uniform, 

parabolic, or Gaussian, the parabolic beam can be taken as an equivalent line charge 

density for a beam with the same number of particles, the same emittance, and the same 

RMS length[16].   

 Although the longitudinal envelope equation serves the same role in longitudinal 

dynamics that the transverse envelope equation serves in transverse dynamics, certain 

differences should be noted: 

 

1.  The longitudinal perveance is not dimensionless as in the transverse case, but rather 

has dimensions of meters.  This is also reflected in the extra factor of length in the 

denominator of the space-charge term in the longitudinal envelope equation as compared 

to the transverse envelope equation. 

  

2.  The relations between RMS and non-RMS quantities are different.  For the 

longitudinal envelope equation zzm
~5=  and zzzz ′′ = εε ~5 , while for the transverse 

envelope equation xxm
~2= and εε ~4=x . 
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3.  The angle referred to by the longitudinal emittance does not exist in real space, since 

z ′v  is parallel to the local direction of travel sv .  For transverse emittance, the angle does 

exist in real space since x′v  is perpendicular to the direction of travel of the beam. 

 

2.2.  Longitudinal Intensity Parameter. 

 Before actually solving the longitudinal envelope equation for specific cases, it is 

instructive to look in more detail at this equation.  The first term, z ′′~ , gives the 

"acceleration" of the beam edge.  Driving this acceleration are three terms:  zz
~

0κ  is a 

focusing term, which tends to make z ′′~  increasingly negative, resulting in a beam 

contraction;  and 
2~55 z

K L  and 
3

2

~
~

z
zz ′ε , which due to their signs tend to make z ′′~  positive, 

driving the beam expansion.  For beams which are strongly space-charge dominated, the 

emittance term can be neglected, while for beams which are strongly emittance 

dominated, the space-charge (perveance) term can be neglected.  In order to determine 

whether the beam is space-charge dominated or emittance dominated, a longitudinal 

intensity parameter can be introduced.  This parameter is the longitudinal analog to χ.  

For consistency with the transverse case the non-RMS longitudinal envelope 

equation[12] is used: 

    03

2

20 =−−+′′ ′

m

zz

m

L
mzm zz

Kzz ε
κ .    (5) 

This non-RMS equation describes the envelope of the extreme edge (half-length) of the 

beam, mz , and can be derived from the RMS equation by use of the relations between 

RMS and non-RMS quantities.  Since the transverse intensity parameter is the ratio 
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between the space-charge force and the focusing force for a matched beam, we take 

0=′′mz  to obtain the longitudinal matched beam envelope equation: 

    03

2

2
2

0 =−− ′

m

zz

m

L
mL zz

Kzk ε .    (6) 

Here, the focusing function 0zκ  has been replaced by the zero-current synchrotron wave 

number 2
0Lk  to indicate that focusing is continuous for a matched beam.  In general, the 

focusing function 0zκ  varies throughout the focusing system.  Then by analogy with χ, 

we take 

    
gal focusinlongitudin

cecharge foral spacelongitudin
L

−
=χ  

    
32

0 mL

L
L zk

K
=χ .     (7) 

Since the goal is to obtain a single number to describe the overall behavior of the beam, 

uniform focusing is assumed and χL is rewritten in terms of generalized longitudinal 

perveance, beam half-length, and longitudinal emittance, using eq. (6). 

    
2

3

2

2 m
m

zz

m

L

L
L

z
zz

K
K

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

=
′ε

χ  

    

m

zz
L

L
L

z
K

K
2

′+
=

ε
χ .     (8) 

Longitudinal emittance (unnormalized effective emittance) can be rewritten in terms of 

longitudinal energy spread, which can be measured[9,12,17].: 

    zzzz ′′ = εε ~5    
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3

~
5

βγ
ε

ε nz
zz =′  

    
2/1

2

3

3
~5

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=′ mc

Tk
z B

zz
||γ

βγ
ε    

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆=′ E

Ec
zzz

~~5
3 β

γ
βγ

ε  

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
=′ β

γ
γβγ

ε 23

~

5
5

mc
Ezm

zz  

    
232

~

5
5

mc
Ezm

zz
∆

=′ γβ
ε .     (9) 

Using this result in eq. (8) gives 

    

mL

L
L

z
mc

EK

K
2

232

~5
⎥
⎦

⎤
⎢
⎣

⎡ ∆
+

=

γβ

χ .   (10) 

Table 1 shows that, while UMER's transverse intensity χ can be adjusted across a wide 

range of values, from space-charge dominated to emittance dominated, the longitudinal 

behavior of UMER will always be space-charge dominated for practical operating 

parameters. 

The transverse intensity parameter is particularly useful because it can be related 

to other parameters used in beam and plasma physics through simple expressions.  This is 

also true for the longitudinal intensity parameter Lχ  as derived above.  For example, Lχ  

has the same relationship to the longitudinal tune depression that the transverse intensity 
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Table 1.  Longitudinal Intensity Parameter for UMER.  In Cases 1, 2, and 3, the beam is 
almost totally space charge dominated.  Cases 4 and 5 cannot be realized with UMER, 
but were included to show examples of operating parameters which would result in a 
longitudinal intensity different from χL ≈  1.  Note that the perpendicular temperature 
T⊥ is 1453.7 K, which shows that the beam will not normally be in thermal equilibrium 
between its transverse and longitudinal properties.  Thermal equilibrium is approximately 
achieved in Case 4.  Operating parameters assumed for UMER were:  β = 0.2, beam 
radius 1 cm, transverse normalized effective emittance 10 µm. 
 

  

 

 Case 1 Case2 Case3 Case4 Case5 

Current 100 mA 100 mA 1 mA 1 mA 1 mA 

Pulse 

Length 

100 ns 70 ns 70 ns 70 ns 70 ns 

Energy 

Spread 

10 eV 10 eV 10 eV 50 eV 100 eV 

χL 0.99979 0.99979 0.97957 0.65734 0.3241 

εzz' 0.00345 m 0.00241 m 0.00241 m 0.0121 m 0.0241 

T|| 53.26 K 53.26 K 53.26 K 1331.6 K 5326.3 

K 
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parameter χ  has to the transverse tune depression, namely  

L
L

L

k
k

χ−= 1
0

    (11) 

in the longitudinal case.  The synchrotron wave number with space charge ( Lk ) and the 

synchrotron wave number without space charge ( Lk0 ) are related by 

3
2

0
2

m

L
LL z

Kkk −=     (11a) 

where 

0
2

0 zLk κ= . 

For the transverse case, the betatron wave numbers with and without space charge ( k  and 

0k ) are used.  Betatron and synchrotron oscillations are analogous, with the former 

referring to transverse motion while the latter refers to longitudinal motion.  Eq. (11a) is 

derived from the longitudinal envelope equation by following the same procedure used to 

derive the transverse tune depression from the transverse envelope equation. 

A second transverse beam parameter, the plasma frequency pω , is related to the 

transverse intensity parameter through the relation   

χ
ω
ω

2
0

=p .     (12) 

The transverse zero-current betatron frequency vk00 =ω  relates the zero-current betatron 

wave number ( 0k ) to the beam velocity.  A longitudinal plasma frequency pLω  can also 

be defined.  A relationship between the longitudinal intensity parameter and the 

longitudinal plasma frequency can be written which is similar to that between the 

transverse intensity parameter and the transverse plasma frequency.  However, because 
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the dependence of the space charge term on position is different longitudinally than 

transversely, the analogous longitudinal equation is slightly different.  For transverse 

motion of a particle in a beam[12], 

m
qE

xx s
p 3

2

γ
ω ==&& ,    (13) 

where x  is the location of the particle, x&&  is the particle's acceleration, and sE  is the 

electric field due to space charge experienced by the particle.  This takes into account 

relativistic effects which reduce the force between electric charges.  For longitudinal 

motion, postulate 

     
m

qE
zz sz

pL 3
2

γ
ω ==&& .    (14) 

The longitudinal electric field due to space charge is normally taken as  

z
gEsz ∂

∂
−=

λ
γπε 2

04
,    (15) 

and for a parabolic beam the line charge density λ is given by[12],  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 2

2

0 1)(
mz
zz λλ ,    (16) 

where 0λ  is the peak line charge density and z  is the location in the beam.  Combining 

eqs. (14), (15), and (16), 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== 205

0

2 2
4 m

pL z
z

m
gqzz λ

γπε
ω&& ,   (17) 

so 

2
0

5
02

4
2

m
pL zm

qg
πεγ

λ
ω = .     (18)  
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But the average line charge density can be written in terms of the full length (twice the 

half length) of the beam and the number of particles as
mz

qN
2

~
0 =λ .  The relationship 

between the peak line charge density and the RMS average line charge density can be 

shown to be 00 30
4~ λλ = .  The plasma frequency can then be rewritten as 

3

2

2
0

52

2
2

6
30

42
3

m
pL z

v
mc

gNq
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

πεγβ
ω , 

or 

3

2
2

6
5

m

L
pL z

vK
=ω .     (19) 

This is similar to a form of the expression for the transverse plasma frequency 

2

2
2 2

m
p r

Kv
=ω ,      (20) 

except for the cubed dependence on position (needed because transverse perveance is 

dimensionless while longitudinal perveance has units of meters) and the factor of 
6
5 .  

The longitudinal version of eq. (12) can be found by dividing eq. (19) by the zero-current 

synchrotron frequency vk LL 00 =ω  and using the definition of Lχ  from eq. (7): 

LL
L

pL χχ
ω
ω

91.0
6
5

0

≈= .    (21) 

2.3.  Solutions of the Longitudinal Envelope Equation. 

 We now proceed to solve the longitudinal envelope equation for certain cases.  An 

approximate solution to the stationary equation ( 0=′′z ) has been found previously[18] to 

be  
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3/1

2
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⎟
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⎜
⎜
⎝

⎛
+≈ ′

L

L
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zz
m k

K
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z ε .    (22) 

However, the design of UMER, with longitudinal focusing applied at only three points, 

means that the beam will not be stationary. 

 To solve for the nonstationary case, we first rewrite the longitudinal envelope 

equation (eq. 2) as 

    z
zz

K
ds

zd
z

zzL ~
~
~

~55

~
03

2

22

2

κ
ε

−+= ′ ,    (23) 

where the derivative has been made explicit.  This equation cannot be integrated 

immediately.  Instead, we multiply both sides by 
ds
zd~

2 [19]. 

⎟⎟
⎠

⎞
⎜⎜
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In this equation, 0
~z  is the initial RMS length of the beam, and 0s  is the initial location of 

the beam center, usually taken as 00 =s .  For space-charge dominated beams with no 

focusing (free expansion), both the emittance and focusing terms in eq. (25) can be 
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Fig. 3.  Longitudinal Space Charge Intensity Parameter (χL).  This graph relates the 
intensity parameter for longitudinal beam physics with the longitudinal tune depression 
(kL/k0L) and the longitudinal plasma frequency (ωpL).  Beams with 5.00 <≤ Lχ  are 
considered emittance dominated, while beams with 15.0 ≤< Lχ  are considered space-
charge dominated.  Space-charge forces dominate the longitudinal physics of UMER for 
all practical operating parameters.  The operating range for UMER is indicated by the 
arrows at the extreme right of the graph. 
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neglected, and it can be rewritten as 

     1

2

~55
2~

c
z

K
ds
zd L +−=⎟

⎠
⎞

⎜
⎝
⎛ ,    (26) 

where the square of the initial rate of expansion 
2

,~
00

~
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡

szds
zd  and the initial value of the 

space charge term 
0

~55
2

z
K L  have been summed to form the constant 1c .  The non-RMS 

half length mz  is more intuitive, and the need to use RMS values decreases when the 

emittance is ignored.  Therefore, eq. (26) can be rewritten as 
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dz .  (26a) 

 Taking the square root of eq. (26a) gives 
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which can be directly integrated to find )( mzs : 

m

m
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LmmLm
LmLm KzczKzcc
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K
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zKzc

ss
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2222ln
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112/3
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⎢
⎢

⎣

⎡
−+−±

−
±+= . (28) 

Note that the rates of expansion 
00 ,sz

m

m
ds

dz
⎥⎦
⎤

⎢⎣
⎡ and 

ds
dzm  in eq. (26a) are squared, destroying 

some information about the beam.  To counteract this, the ± sign is introduced when the 
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square root is taken in eq. (27).  In eq. (28), the upper sign is taken when 0≥
ds

dzm , and 

the lower sign is taken when 0≤
ds

dzm . 

Referring to Fig. 4, note that 0=
ds

dzm only when the beam is at a longitudinal 

"waist," or local minimum length.  By assuming this condition in eq. (26a), and entering 

the full expression for 1c , an expression for the non-RMS minimum half length of a 

space-charge dominated beam undergoing contraction in the absence of external 

longitudinal focusing is found to be 

2

,0 00

2

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡+

=

sz

m

m

L

L
mw

m
ds

dz
z
K

Kz .   (29) 

 The longitudinal envelope calculated in eq. (28) for the UMER beam undergoing 

free expansion is shown in Fig. 6.  Note that the independent variable in eq. (28) is the 

distance traveled by the beam center, s , and the dependent variable is the non-RMS half-

length of the beam, mz , so when 0→
ds

dzm , ∞→
mdz

ds , and the graphing program will 

not plot the curve in its entirety.  However, the curves in these regions can be found by 

simply extrapolating the plotted curves.  Note also that the length referred to in Fig. 6 is  

the non-RMS full length, which is greater than the RMS half-length z~  by a factor of 

52 . 
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Fig. 4.  Longitudinal envelope for a beam with initial half-length 0z  and initial slope 

0
⎥⎦
⎤

⎢⎣
⎡
ds
dz , and with a "waist" of half-length wz when the beam center is located at ws . 

 

 

 

Fig. 5.  This figure shows a beam which is in the process of formation but which has an 

initial contraction ( 0
0

<⎥⎦
⎤

⎢⎣
⎡

ds
dz ) due to a velocity tilt imposed at the cathode.   

K represents the location of the cathode.  The length of the overall line represents the 
length of the beam which is taken into account by the theory.  Although only the 
portions of the lines to the right of the cathode actually exist, this is not accounted for 
by the theory.  Thus, it is possible to discuss a beam which is contracting even though it 
is in the process of creation at the cathode, and the overall length of the beam is 
increasing. 
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2.4.  Longitudinal Focusing for Parabolic Beams. 

 The longitudinal envelope equation can also be used to consider a beam where 

longitudinal focusing is present.  For this, we return to eq. (25).  If the beam is space-

charge dominated, the emittance term can be neglected, and eq. (25) can be rewritten as 

2
2

0

2
~

~55
2~

cz
z

K
ds
zd

z
L +−−=⎟

⎠
⎞

⎜
⎝
⎛ κ ,   (30) 

where  
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2
00

0
2

00
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~55

2
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡++=

sz
z

L

ds
zdz

z
Kc κ .   (31) 

Integration can be performed on eq. (30) to find the longitudinal envelope in the form 

)~(zs : 

∫
+−−±

+=
z

z
z

L zczzK
zss

~

~ 2
2

4
0

0

0 ~~
55

~2

~

κ

.  (32) 

The choice of sign depends on whether the beam is undergoing contraction or expansion.  

If the electric field applied at each gap was known as a function of time, ( )tsz ,0κ  could 

be determined, and the longitudinal envelope found directly from eq. (32).  However, 

since the goal is to determine the fields needed, the use of eq. (32) is not the most 

efficient method. 

The geometry of the UMER focusing lattice, which was decided early in its 

development, poses a constraint on the design of the longitudinal focusing system (Fig. 

7).  The longitudinal focusing lattice consists of three locations in the ring which are 

available for use by the induction gaps.  These locations are equally spaced along the 

ring, with the 
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Fig. 6.  Expansion of Parabolic Beam, showing that the UMER beam would completely 
fill the ring after the sixth revolution.  Solid curve is full beam length, dotted line is initial 
full length of beam, and dash-dot line is the circumference of UMER.  Note that the 
expansion becomes linear past about the seventh revolution. Current is 100 mA, pulse 
length is 100 ns.  Injector length is neglected.    
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Fig. 7.  Longitudinal Focusing Lattice, showing location of cathode K, induction gaps 
IG1 and IG2, midpoint between induction gaps M, and longitudinal envelope at each 
location 
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first location being about 2 m downstream of the gun, and with a spacing of about 4 m 

between each location in the ring.  This particular geometry is useful because its 

symmetry can be exploited in simplifying the design of the longitudinal focusing system, 

and because the results presented below are applicable to any space-charge dominated 

beam transport system with similar symmetry.   

At the cathode (K in Fig. 7), the beam has its initial length 0
~z  and divergence ′

0
~z .  

Between K and the first induction gap (IG1), a distance of about 2 m, the beam has 

undergone free expansion as given by eqs. (27) and (28), arriving at IG1 with new length 

1
~z  and divergence ′

1
~z .  In the thin lens approximation, the length of IG1 is very small, 

but not zero.  Accordingly, the beam emerges with length    

112
~~~ zzz ≈+= δ ,     (33) 

 where δ  is small but not zero, and with divergence ′
2

~z  given by eq. (30).  If the 

focusing effects of IG1 have totally overcome the space-charge-driven expansion of the 

beam, the beam will begin to contract, arriving at the midpoint between the gaps (M) 

with a new length 3
~z  and divergence ′

3
~z .  If 03

~~ zz =  and ′=′
03

~~ zz , and if the internal 

structure, entropy, etc., of the beam have remained approximately unchanged, the 

envelope from M to IG2 should be identical to the envelope from K to IG1.  The fluid-

analogy equations which govern changes in the beam are time-reversible[7,20], so we 

expect that we can produce conditions at M which are identical to those at K provided 

that 21
~~ zz =  and ′−=′

21
~~ zz .  Since the former condition is approximately fulfilled simply 

by the short length of the induction gap, the problem is to find the focusing strength at 

IG1 which will result in ′−=′
21

~~ zz .  From eqs. (30) and (31), 
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The negative sign was chosen because the beam is undergoing focusing, and therefore 

′<′
12

~~ zz .  For ′−=′
21

~~ zz ,  
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~55

2~
~55

2 2
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2
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− z

z
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z
K

z
L

z
L κκ .  (35) 

Combining eqs. (33) and (35) gives 

    zzzK
zzz

L ~~3~2
55

2 2
0

2
10

3
10 δκδκκ −−−=− .  (36) 

Taking the limit of eq. (36) as 0→δ  gives 

    
3

1
0 ~55 z

K L
z =κ ,      (37) 

the approximate focusing strength needed to achieve a stable longitudinal focusing lattice 

for a parabolic beam in UMER as shown in Fig. 7. 

 A critical step in this calculation was the assumption that the length of the first 

induction gap was small but not zero.  If its length were zero, the beam would be inside 

the gap for no period of time, meaning that no focusing would occur, and the beam 

properties before and after the first induction gap would be identical.  Since the gap 

length is not zero, the gap is able to apply focusing forces to the beam, causing it to begin 

to contract.  However, since the gap length is small, the beam length will only have 

changed by a very small amount, δ , during its transit of the gap.  Thus eq. (35) is a 

meaningful, nontrivial expression allowing us to calculate the focusing constant in the 

limit of the thin lens approximation. 
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 However, this does not take into account the relative lengths of the induction gap 

and the focusing period.  To account for this, eq. 37 must be multiplied by the ratio of the 

focusing period to the gap length: 

gap

periodL
z L

L

z
K

3
1

0 ~55
=κ .     (37a) 

Although this does not arise naturally out of the above treatment, it must be included to 

obtain the correct results. 

 From the expression for the focusing constant in eq. (37a), the actual electric field 

strength needed to properly focus a parabolic beam in UMER can be calculated.  The 

focusing constant itself is defined in terms of the applied electric field gradient in 

z , ′
azE [12]: 

3220 γβ
κ

mc
qEaz

z

′
= .     (38) 

In this case the prime denotes a derivative with respect to z , the distance in the beam 

frame where 0=z  at the beam center.  The applied electric field along z can also be 

written in terms of ′
azE : 

    ∫ ∫=′= dz
dz

dE
dzEE az

azaz .    (39) 

Solving for ′
azE  in eq. (38) and using eq. (39), 

    ∫= dz
q

mcE zaz 0

322

κγβ .    (40) 

From the relation between the focusing constant and the longitudinal perveance in eq. 

(37), 
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    ∫=
z

z gap

periodL
az dz

L
L

z
K

q
mcE

0

3
1

322

~55
γβ .   (41) 

Since 1
~z  is the actual RMS half length of the beam before it enters the first induction gap, 

it is not included in the integration, which yields 

    
3

1

0
322

mgap

period
Laz z

zz
L

L
K

q
mcE

−
=

γβ ,   (42) 

where 11
~5zzm =  is the non-RMS half length of the beam before it enters the first 

induction gap, z  is the location in the beam at which the field azE  is applied, and 00 =z  

is the center of the beam.  Eq. (42) can be further described in terms of fundamental 

quantities by using the definition of longitudinal perveance from eq. (3): 

3
1

2
042

3

mgap

period
az z

z
L

LgNqE
γπε

= .    (43) 

The applied focusing field can be written in terms of the electric field due to space 

charge, 

z
gEsz ∂

∂−
≈

λ
γπε 2

04
,     (44) 

where g  is a geometry factor.  Eq. (44) is only exact for certain distributions[12], but is 

approximately true for any distribution in the special case where 
z∂

∂λ  is small[21].  The 

geometry factor g  depends on beam radius, beam pipe radius, beam length, and location 

in the beam[12].  The exact value of g must be calculated numerically.  For beams whose 

length is much greater than the beam pipe radius, an average value for g is given 

approximately by 
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⎟
⎠
⎞

⎜
⎝
⎛+≈

a
bg ln2α ,     (45) 

where a  is the beam radius, b  is the beam pipe radius, and α  is a constant.  The value of 

α  is generally given as one[21], but other values have been proposed.  Where beam 

variation is slow[22,23], near the center of a long beam[12], or where the longitudinal 

electric field is being measured on the beam surface[7], α  has been given as zero.  When 

g  is averaged over the entire beam cross section, α  has been given as 0.67[12] or 

0.5[7,24,25].  Other authors indicate that g , and therefore α , is independent of radial 

position[20,23].  An experiment carried out by D.X. Wang at the University of Maryland 

found  16.001.0 ±=α [7].  These values are clearly inconsistent, and additional work is 

needed to determine the best value for α .      

Using eqs. (43) and (44), and assuming the parabolic line charge density of eq. 

(16), the applied field can be related to the space-charge field by 

[ ]sz
gap

period

m
az E

L
L

z
NqE

104
3
λ

≈ .    (46) 

Note that eqs. (42) and (43) are linear in z, which is expected since the beam pulse shape 

is parabolic.  Also note that the applied field needed to properly focus a parabolic beam 

in the UMER lattice is proportional to the longitudinal perveance (and therefore increases 

with space charge), and depends (slowly) on the ratio of beam diameter to beam pipe 

diameter through the geometry factor g. 

2.5.  Limitations. 

 Although the longitudinal envelope equation is directly useful in describing the 

behavior of parabolic beams, and in describing some fundamental behavior of 
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nonequilibrium1  equivalent beams, it does have limitations.  The longitudinal envelope 

equation does not directly give detailed information about the velocity distribution and 

line charge density in non-parabolic beams, which are necessary to design focusing 

systems for those beams.  Also, the longitudinal envelope equation is not the best format 

for describing the propagation of longitudinal space-charge waves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 The equilibrium distribution is the Boltzmann profile, which is parabolic for zero longitudinal 
temperature and Gaussian for high longitudinal temperature.  This distribution retains its shape during 
expansion[16]. 
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Fig. 8.  Applied electric field for focusing of parabolic beam in stable UMER longitudinal 
focusing lattice. 
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3.  One-Dimensional Cold Fluid Model. 

3.1.  Introduction. 

 The longitudinal envelope equation is a frequently used model for the longitudinal 

behavior of space-charge dominated beams.  However, this model has limitations and is 

not useful in all cases.  An alternate model, the cold-fluid model, makes use of the fact 

that the equations governing the behavior of space-charge dominated beams are similar to 

those governing cold, compressible fluids.  One application of this model which is 

particularly important is to the expansion of an initially rectangular beam.  This line 

charge profile is useful because its flat top could allow better measurements of space 

charge waves[26] and could provide the constant impedance necessary for induction 

linacs[16].  In this section the governing equations are introduced and results are given 

for the special case of an expanding, initially rectangular beam. 

3.2.  Governing Equations. 

For a space-charge dominated beam undergoing free expansion, it is possible to 

write two equations which govern the behavior of the particles in the beam.  The first is 

the continuity equation 

0=•∇+
∂
∂ J

t
rrρ ,     (47) 

which relates the volume charge density ρ  and the current density J
v

, and which can be 

derived directly from Maxwell's Equations[27].  If all behavior being considered is 

strictly longitudinal (along ẑ ) and if the beam has a constant cross-sectional area A , the 

line charge density ρλ A= , and the continuity equation can be rewritten in its one-

dimensional form 
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    0=
∂
∂

+
∂
∂ λλ v

zt
,      (48) 

since vJ rr
ρ= . 

 The longitudinal force exerted on a particle in a space-charge dominated beam 

undergoing free expansion is strictly due to space charge.  This field is taken as 

z
gEsz ∂

∂
−≈

λ
γπε 2

04
.     (49) 

The acceleration of particles in the beam has two physical origins:  a stationary term 
dz
dvv  

due to variation of the flow as particles pass through regions with different properties;  

and a nonstationary term 
dt
dv  which describes changes in the flow at any given 

location[28].  Thus 

szE
m

e
z
vv

t
vz

m
F

3γ
=

∂
∂

+
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∂

== && .   (50) 

Taking into account the approximate expression for space charge field given in eq. (49),  
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∂ λ

γπε 5
04

.    (51) 

This equation is known as the momentum equation[7,24].  The momentum equation and 

the one-dimensional continuity equation together fully describe the particle flow in one-

dimensional cold beams in most cases.  In compressible fluid flow, the momentum 

equation is replaced by the analogous Euler equation 

z
p

z
vv

t
v

∂
∂

−≈
∂
∂

+
∂
∂

ρ
1 ,      (52) 
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where p  is pressure and ρ  is volume mass density.  Bernoulli's equations for 

compressible and incompressible flow can be derived from this equation[28]. 

3.3.  Rectangular Beam Expansion and the Method of Characteristics. 

 One method of finding solutions to the momentum and continuity equations 

which was first developed for supersonic gas flow and which has been used by the beam 

physics community for some time is the method of characteristics[29-31].  In the method 

of characteristics, incremental changes in the fluid propagate through it as waves.  One 

application of the method of characteristics to beams is to the evolution of an initially 

rectangular beam pulse.  This solution is given elsewhere[7,24], and will not be repeated 

in depth here, although the underlying physical behavior will be discussed in general 

terms and its results will be given below. 

 For longitudinal focusing, it is important to understand the source of the beam 

expansion.  Consider the edge of a rectangular beam.  Inside the beam, far from the edge, 

the electric fields experienced by a charge tend to cancel, since there are opposite 

contributions from particles to the left and right of the particle under consideration.  At 

the edge, there will be a net field, since the contributions of charges to one side are not 

balanced by contributions of charges from the other side.  This results in a net force on 

charges near the edge of the beam, causing them to accelerate outward from the beam, 

causing the beam to expand.   

 Although this picture provides a rough understanding of the physics of beam 

expansion, it  does not immediately give a numerical description of the expansion.  For 

this quantitative understanding, we turn to the fluid analogy and the phenomenon of 

cavitation.  Consider an infinitely long pipe, filled with a fluid which is confined to 0≤z  
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by a massless piston at z = 0 (Fig. 9).  At t = 0, this phantom piston is moved towards the 

right at infinite speed.  Since the fluid consists of real, massive particles, it can only 

adjust to the new configuration at finite speed.  The fluid will adjust by producing two 

waves, one which travels into the body of the gas at the speed of sound in the gas, and the 

other which travels outward into the vacuum at a maximum speed, called the escape 

speed.  The speed of sound in a charged particle beam is given by[7,20] 

5
0

0
0 4 γπε

λ
m

Zqg
c = ,       (53) 

where Z  is the charge state of the particles in the beam, q  is the fundamental charge, 

and m  is the mass of the particles in the beam.  For a 100 mA electron beam with 

8.2=g  and 2.0=β , 
s
mc 6

0 1059.2 ×= .  The escape speed is given by[30]  

1
2

max0 −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
kc

u  

or 

0max 1
2 c

k
u

−
= ,     (54) 

where k = 2 for an electron beam[20].  Thus, the escape speed, also the speed of the 

expanding edge, is 

02cuedge = .      (55) 

This treatment is not valid at very low pressures, but it is appropriate for beams like that 

produced in UMER, since the fluid analogy of space-charge dominated beams are cold, 

high-pressure gasses. 
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This situation is identical to that of a beam which has just been produced at the 

cathode.  In that case, the flat top will shrink from each end with the speed of sound, 

while the beam will expand outward from each end with twice the speed of sound.   

 Further explanation of the behavior of an expanding, initially rectangular space-

charge dominated beam can be found by using the full method of characteristics to find 

),( tzλ  and ),( tzv .  When this is done, the following results are obtained: 

Zone I (Dead Zone)   0λλ =       (56a) 

     00 == vv      (56b) 

Zone II (Rarefaction Zone)  0

2

0

0

3
1

3
2),( λλ ⎟⎟
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⎞
⎜⎜
⎝

⎛ −
±=

tc
zz

tz    (56c) 

     ⎥
⎦

⎤
⎢
⎣

⎡ −
= 0

0

0

43
2),( λ

πε m
Zeg

t
zz

tzv m   (56d) 

Zone III (Vacuum)   no fluid present 

In eqs. (56), 0λ  is the initial line charge density of the rectangular pulse, 0v  is the initial 

velocity (in the beam frame) of the particles in the beam, which is taken to be zero, z  is 

the location in the beam with 0=z  at the beam center, 0z  is the initial location of the 

front or rear edge of the beam , and t  is the time measured from 0=t  when the phantom 

piston is removed.  The ±  and m  signs refer to the fact that there are two rarefaction 

zones, one formed by the erosion of the flat top from the front edge of the beam, and one 

formed by the erosion of the flat top from the rear edge of the beam.  The upper sign is  

used when the erosion is from the rear edge, and the lower sign is used if the erosion is 

from the front edge.  The equations presented above are only valid so long as the two 
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Fig. 9.  Fluid Analogy for expansion of rectangular electron beam.  Gas is initially at rest, 
confined to z < 0.  At t = 0, massless piston is removed to the right at infinite speed.  
Shockwaves propagate into the gas at the speed of sound c0, and into the vacuum at 
escape speed ce, forming a rarefaction zone where the compressible fluid is present but at 
lower density than in the undisturbed region to the left of the left going shockwave.  
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rarefaction zones have not connected.  At this point, the flat top has been eliminated, and 

the beam is "all edges."  A cusp will occur at the middle of the beam where the slope of 

the line charge density abruptly changes.  After this time, the shock waves which caused 

the flat top to erode begin to overlap, and the resulting nonlinear equations cannot be 

solved exactly.  An approximate solution is given elsewhere[7,20].  However, for the 

purposes of establishing a stable longitudinal focusing lattice, it is desirable to prevent the 

beam from reaching the cusp point, for reasons addressed in section 4.3.  For a 100 mA 

electron beam with 8.2=g  and 2.0=β , and an initial full length of 6 m the cusp will 

occur after 1.16 µs.  By this time the beam center will have traveled 69.6 m, and the new 

full length of the beam will be 18 m. 

3.4.  Coherent Energy Spread. 

 Coherent energy spread, the difference in kinetic energy between the fastest 

particle and the slowest particle in the beam, is an important consideration in the design 

of focusing systems.  In the expanding rectangular pulse, the particles at the extreme head 

and extreme tail are expanding away from the center of the beam (in the beam frame) at 

the escape velocity 02c .  The energies of particles at the beam center, at the extreme 

head, and at the extreme tail can be calculated nonrelativistically in the laboratory frame 

as 

( )2

2
1 βcmTcenter = , 

( )2
02

2
1 ccmThead += β , 

and 
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( )2
02

2
1 ccmTtail −= β . 

Nonrelativistically, the kinetic energy of the center particle in an electron beam traveling 

at 2.0=β , measured in the laboratory frame, is 10.2 keV.  If the initial beam current is 

100 mA, and 8.2=g , the energy of the particle at the extreme head of the beam, 

corresponding to its escape velocity, will be 12.1 keV, while the energy of the particle at 

the extreme tail of the beam will be 8.5 keV, for an extreme coherent energy spread of 

3.6 keV.  This calculation was repeated for an experiment currently being performed by 

Yupeng Cui at the University of Maryland.  In that experiment, the nominal electron 

beam energy is 5 keV, the actual beam center energy is 4.897 keV, the beam current is 

135 mA, and the geometry factor is approximately 3.7.  The speed of sound in the beam, 

calculated using eq. (53), is 
s
m61022.4 × .  The kinetic energy of the particle at the 

extreme head of the beam, headT , is 7.014 keV.  Simulations performed by Yupeng 

Cui[32] using the WARP 3D simulation code indicate that the kinetic energy of the 

particle at the extreme head is 7.109 keV, which indicates only a 1.34% difference 

between the one-dimensional theory and the three-dimensional simulation.   

The particles at the extreme head and extreme tail of the beam will never increase 

their velocity.  Since the expansion speed, and therefore the coherent energy spread, 

cannot be changed without changing the initial line charge density, it is more proper to 

think about the number of particles in the edges as opposed to the extreme coherent 

energy spread.  Due to the transverse focusing system, particles whose energies are 

different from the beam's design energy will be mismatched.  For particles whose energy 

falls within a certain range, their trajectories will simply differ from the design orbit of 
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the machine.  If their energies fall outside that range, their trajectories will be so different 

from the design orbit of the machine that they will be lost to the wall.  Because there will 

always be some particles traveling at the escape speed, if the escape speed is higher than 

the critical energy at which a particle is misfocused into the wall, there will be some 

particles lost from the beam.  However, the number of particles lost by the beam will 

depend on how many have achieved velocities in excess of the critical velocity, which 

depends directly on how long the beam has been propagating.  Therefore, although 

particle loss may not be avoidable, it is possible to limit the number of particles lost by 

applying longitudinal focusing to limit the length of the edge regions, and therefore the 

number of particles with an energy above the critical energy.  

3.5.  Discrepancies. 

 Some simulations and experiments have been conducted to determine whether a 

rectangular, space-charge dominated beam erodes according to the results of the cold 

fluid model, notably by D.X. Wang at the University of Maryland[7], and by A. Faltens 

at Lawrence Berkeley Laboratory[24].  Experimental data produced by Faltens and Wang 

agrees well with simulations performed by Wang.  Recent simulations, which were 

performed using the WARP simulation code for space-charge dominated beams, are also 

in good agreement.  These simulations and experiments uniformly show a line charge 

density which is qualitatively different from, but quantitatively similar to, the line charge 

density determined from the cold fluid model.  Specifically, simulations and experiments 

indicate that the transition from the flat top to the edge is not abrupt as shown in Fig. 10, 

but more gradual.  The magnitude of the discrepancy is small enough that it was not even 

mentioned by Wang and Faltens, but the fact that it appears consistently in two 
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independent experiments and two independent simulations suggests it is more than mere 

experimental error.  Although the source of this rounding is not yet understood, several 

assumptions of the cold fluid model are not exactly correct and may be to blame.  For 

example, the space charge field given in eq. (44) is only correct for a slowly-varying line 

charge, which is not the case early in the evolution of a rectangular beam pulse.  In 

addition, the cold fluid model assumes that all effects are one-dimensional while the 

actual beam is a three-dimensional object.  This discrepancy is currently under 

investigation.  
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Fig. 10 (a - d).  Line charge density (left) and electron velocity in the beam frame (right) 
for the front half of the beam, measured at s = 0 m (top) and s = 2 m (bottom).  Graphs at 
0 m correspond to initial conditions at cathode, while graphs at 2 m correspond to 
conditions at first induction gap.  Beam parameters:  100 mA current, 100 ns initial full 
pulse length, β = 0.2, g = 2.86. 
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Fig. 10 (e - h).  Line charge density (left) and electron velocity in the beam frame (right) 
for the front half of the beam, measured at s = 14 m (top) and s = 26 m (bottom).  Graphs 
at 14 m correspond to conditions after injection and one revolution without focusing, 
while graphs at 26 m correspond to conditions after injection and two revolutions without 
focusing.  Beam parameters:  100 mA current, 100 ns initial full pulse length, β = 0.2, g = 
2.86. 
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4.  Longitudinal Focusing in UMER:  A more general approach. 

4.1.  Introduction. 

 The one-dimensional cold fluid model is particularly useful for designing 

longitudinal focusing systems because it gives detailed information about the velocities 

of particles in the beam and the line charge density of the beam as the beam travels 

through the transport system.  This information, along with the periodicity of the 

longitudinal focusing system in UMER, can be exploited to calculate the necessary 

longitudinal focusing field in a more general way than was presented in connection with 

the longitudinal envelope equation.  The method described below has two advantages:  as 

input it requires only )(zv  and )(zλ  at the location of the gap, which can be found 

through any means, be it theory, simulation, or experiment;  and it is applicable to any 

space-charge dominated beam transport system exhibiting a longitudinal focusing system 

with periodicity similar to UMER. 

4.2.  Longitudinal Focusing. 

 As the beam expands from its initial length at the cathode, its line charge and the 

velocity distribution of its particles will change.  For some initial conditions, such as the 

rectangular beam, these properties can be calculated.  For other initial conditions, it may 

be difficult to calculate these properties, and simulations must be used.  In a longitudinal 

focusing lattice (Fig. 7), this expansion will proceed until the first induction gap has been 

reached, at which point some electric field, which may vary in time, is applied to the 

beam.  Because the momentum and continuity equations are time reversible[7,20], it 

should in principle be possible to reverse the beam's expansion by reversing the velocity 

(in the beam frame) of every particle in the beam by applying a carefully tailored electric 
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field at the first induction gap.  This converts the beam's expansion into contraction.  

Because this contraction is the mirror image of the beam's earlier expansion, it will reach 

a waist where the beam properties are identical to those at the cathode (assuming entropy 

does not increase).  Thus the expansion from this waist to the second induction gap is 

identical to the expansion from the cathode to the first gap.  Each expansion, each 

contraction, and each induction gap pulse will be identical if the velocity reversal is done 

perfectly. 

 The task is now to determine what electric field should be applied to reverse the 

velocity of each particle in the beam.  Assume a beam of half-length hz , centered at the 

origin in its rest frame.  A planar diode, with a hole in its center, will serve as a model for 

the induction gap.  The diode has a gap length l .  An electric field )(tE , which is 

uniform in space but variable in time, can be applied across the gap.  The entire diode is 

traveling with velocity βc−  in the rest frame of the beam.  As the diode moves past the 

beam, each point in the beam is exposed to the field in the gap ( )(tE ) for 
βc
l  seconds.  

)(tE  varies slowly enough that the field applied to any particle is approximately constant 

during its passage through the gap.  Because the beam consists of electrons, an impulse I  

is applied to each particle as it passes through the gap: 
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Note that this equation is nonrelativistic, so only the particles' velocities are affected, not 

their effective masses.  The location of the gap ( tczz h β−= ) in the beam frame has been 

used to describe the applied electric field in terms of spatial coordinates.  ( )zEsz  is the 
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Fig. 11.  Conceptual layout of induction gap in the rest frame of the beam.  The beam 
pulse may be any shape, and is not confined to parabolic. 
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electric field due to space charge, given approximately by eq. (15).   Thus, for a 

momentum distribution of )()( 00 zmvzM =  before the gap, the momentum distribution 

after the gap is 
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To take advantage of the focusing lattice symmetry, the velocities in the beam frame of 

every particle must be reversed, therefore: 

     )()( 0 zMzM −=     (59) 
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)(zEapp  is the electric field which will reverse the velocity of every particle in the beam, 

allowing the focusing scheme outlined above to work. 

 From this equation we can see that the function of appE  is twofold -- one part 

cancels the space charge field, while the other part reverses the particle velocity.  

However, in order to use this, )(0 zv  and )(0 zλ  must be known for every location in the 

beam.  This data can be determined through analytical means such as the method of 

characteristics, through simulations, or through careful experimental measurements of the 

beam properties at the intended location of the first gap.   

 Since UMER currently produces a beam pulse which is initially rectangular, it is 

useful to consider the application of eq. (61) to rectangular pulses.  If the longitudinal 

focusing lattice period is extremely short, the beam will still be almost rectangular when 
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it reaches the first gap.  Thus, 
z∂

∂λ  will be extremely large, while very few particles have 

been accelerated into the head or tail.  Accordingly, the space-charge field term in eq. 

(61) will dominate, and the electric field needed to properly focus the beam will increase 

as the longitudinal focusing period decreases.  If the longitudinal focusing period is long, 

the beam will have expanded significantly, so that 
z∂

∂λ   will be small, and the velocity 

term in eq. (61) dominates.  Because the maximum velocity of the particles in the beam 

frame is the escape speed, which is independent of the distance traveled by the beam, the 

maximum focusing voltage will also be independent of the distance traveled by the beam.  

For UMER, with 100 mA current, 100 ns initial full pulse length, and a gap length of 4 

mm, the peak focusing voltage will be 3.61 kV, about ten times larger than for a typical 

parabolic beam in UMER.  Note that the extreme coherent energy spread for a 

rectangular electron beam pulse with the same parameters is 3.6 keV.  This is not 

coincidence, but rather due to the fact that the induction gap reverses the velocity of 

every particle in the beam.  Thus, the electron at the extreme head of the beam, initially 

traveling with velocity 02c  in the beam frame, or energy 12.1 keV in the laboratory 

frame, has its velocity reversed by the gap and is then traveling at 02c−  in the beam 

frame, or 8.5 keV in the laboratory frame.  Because 02c−  is also the initial velocity in the 

beam frame of the electron at the extreme tail of the beam, the voltage equivalent of the 

extreme coherent energy spread of the beam, 3.6 kV, will also be the magnitude of the 

peak focusing voltage applied.  For the rectangular pulse, the applied voltage curves are 

piecewise linear.  This is because the velocity distribution is linear, and the line charge 
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density is quadratic.  Since the velocity distribution and  
z∂

∂λ  are used in eq. (61), the 

focusing voltage in either edge region will be linear.  A different initial distribution may 

require a nonlinear focusing voltage.  

 The voltage necessary to focus the rectangular pulse may be higher than is desired 

for UMER due to safety or other considerations.  It is possible to reduce this voltage by 

altering the initial shape of the beam pulse, which in turn will alter the shape of the beam 

pulse when it arrives at the first gap.  For this purpose, simulations can be performed to 

determine )(0 zv  and )(0 zλ at the location of the first gap for a given initial pulse shape, 

and eq. (61) can be used to find whether the voltage needed to focus the hypothetical 

beam is below the level desired. 

4.3.  Drift Compression. 

 Both focusing schemes discussed in this thesis are different from the drift 

compression scheme which has been discussed extensively in the literature and was used 

by D.X. Wang for his experiments in the early 1990's[7].  In the drift compression 

scheme, the space-charge dominated beam is allowed to expand until the edges have 

totally eroded and the flat top is totally gone.  Instead of a flat top, the line charge density 

forms a cusp where 
z∂

∂λ  reverses sign over a very short distance.  At this point, the 

velocity distribution of the particles in the beam is linear in z , and a focusing voltage 

which is also linear in z  is applied to focus the beam.  This focusing field is intended to 

reverse the velocity of every particle in the beam, causing the beam to reverse its 

expansion.  Although this scheme may seem good in principle, it encounters several 

difficulties in practice.  First, the amount of time it takes for the beam to reach the cusp 
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depends on the line charge density and the pulse length of the beam.  Since the induction 

gap is a physical device which must be placed at a particular location along the beamline, 

the operators would be strictly limited in their choices of beam current and pulse length 

once the location for the gap was chosen.  Second, the behavior of the beam becomes 

nonlinear as the cusp is reached, since the forward-going wave and the backward-going 

wave overlap.  It is possible that this may cause unwanted effects such as incorrect  

focusing and growth in beam entropy and emittance.  Finally, drift compression does not 

properly account for space-charge forces.  Ideally, drift compression is a special case of  

the focusing scheme presented in section 4.2, with induction gaps located exactly where 

the cusp occurs.  This can be taken into account in eq. (61) by taking a velocity 

)(0 zv which is linear in z .  This will naturally occur using the cavitation equation (56d) 

when the gap is located where the cusp occurs.  However, in the drift compression 

scheme a voltage is applied which is strictly linear in z .  This does not properly account 

for the space charge term in eq. (61), which will not be linear for an expanding, initially 

rectangular pulse.  Although this term is generally negligible, it becomes important near 

the center of the beam, where 0)(0 →zv .  Because the slope reverses sign at the cusp, 

the correct applied voltage curve will be broken, with a higher voltage applied at += 0z  

and a lower voltage applied at −= 0z .  The magnitude of the difference between these 

voltages is l
z

g
∂

∂ 0
2

04
2 λ

γπε
.  For D.X. Wang's experiment, with beam energy of 0.3 keV, 

pulse length of 7 ns, current of 3.3 mA, and gap length of 4 mm, this difference is 1.3 V.  

This difference is small compared to the peak voltage that would need to be applied 

according to eq. (61), 166 V.  However, near the center, the space-charge force correction 
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Fig. 12.  Voltages needed to properly focus rectangular beam pulse with different 
focusing period lengths.  First induction gap is located at s = 2 m, for period of 4 m (top 
left);  first gap at s = 6 m, for period of 12 m (top right);  first gap at s = 10 m, for period 
of 20 m (bottom left); first gap at s = 14 m, for period of 28 m (bottom right).  These 
locations were chosen because they are the actual location of induction gaps in UMER.  
Curves shown are for head of beam, and corresponding but inverted curves are necessary 
for focusing the tail of the beam.  These curves assume a beam current of 100 mA, initial 
full pulse length of 100 ns, and a gap length of 4 mm. 
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is dominant, and it is not clear that it can be neglected.  On the other hand, a linear 

applied voltage would be correct if the beam were parabolic.  In D.X. Wang's 

experiments, drift compression was used to compress an initially rectangular beam.  The 

resulting compressed beam profile was not rectangular, but rather parabolic.  This 

suggests that the beam may adapt to the external applied potential, adopting a profile 

which is in equilibrium for that potential.  It is also possible that nonlinear effects 

associated with the cusp caused the beam to adopt an equilibrium distribution.  Further 

research is needed in this area and will be conducted with simulation and the UMER 

longitudinal focusing system. 
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5.  Additional Effects. 

 There are several other effects which must be considered in the design of a 

longitudinal focusing system for UMER.  Due to time constraints, these issues have not 

yet been fully addressed, but will be the subject of future work. 

 The first such effect is due to the incoherent energy spread of the particles in the 

beam.  Throughout all the work described above, the beam was assumed to be perfectly 

cold, with emittance being entirely neglected.  In fact, although the beams under 

consideration are space charge dominated, their emittance and incoherent energy spread 

are not zero.  For UMER, the typical incoherent energy spread is about 10 eV.  When the 

particle velocities )(zv  are plotted against their locations in the beam z , this incoherent 

energy spread will have the effect of thickening the curve.  Some particles will have 

velocities greater than the average value of )(zv , while some particles will have 

velocities which are lower.  Because only a single value of )(zv  is used in eq. (61), the 

focusing field applied will only correctly focus those particles with velocities of exactly 

)(zv .  This means that about half the particles will be slightly underfocused 

longitudinally, while about half the particles will be slightly overfocused longitudinally.  

Although it is probably not possible to avoid this effect, it should be possible to 

determine how prominent it is through simulations. 

 Two additional effects are related to assumptions made about the nature of the 

induction gaps.  In the process of deriving both eqs. (43) and (61), the electric field in the 

gaps was assumed to be spatially uniform, as if the induction gap was a parallel plate 

capacitor.  In fact, induction gaps are normally just short gaps in the beam pipe across 

which a voltage is applied.  This means that the electric field in the gap will not be 
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uniform, but rather that the field strength and direction will be functions of space.  

Particles passing along the beam axis will experience more uniform but weaker electric 

fields than those farther from the beam axis.  The first result of this is that there will be a 

transverse component of the electric field which will cause transverse focusing.  If the 

gap length is small compared to the beam pipe radius, the gap behaves as a transverse 

focusing element with focal length f  given by 
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in the nonrelativistic case[12,33].  In this equation, 1V  and 2V  are the voltage equivalents 

of the momenta of the particles before and after passing through the gap, and the beam 

pipe radius is cmb 54.2= .  For a rectangular pulse in UMER, with 100 mA current, 

8.2=g , and 2.0=β , the initial kinetic energy of the particle at the extreme head of the 

beam before focusing is 12.1 keV, and the initial kinetic energy of the particle at the 

extreme tail of the beam before focusing is 8.5 keV.  During the process of longitudinal 

focusing, these energies are reversed, with the new energy of the particle at the extreme 

head being 8.5 keV and the new energy of the particle at the extreme tail being 12.1 keV.  

Thus, for the extreme head kVV 1.121 =  and kVV 5.82 = , while for the extreme tail 

kVV 5.81 =  and kVV 1.122 = .  Thus the transverse focal length for the particle at the 

extreme head of the particle is mf 27.2= , while the transverse focal length for the 

particle at the extreme tail of the particle is mf 71.2= .  The transverse focusing effect 

decreases from these maximum values at the extreme head and tail, to zero at the inside 

edge of the head and tail where the velocity (in the beam frame) of the particles drops to 

zero.  The discrepancy between the focal lengths for the head and the tail arises from the 
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factor of 
4
1

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
V
V .  Note that the focal length of the quadrupole magnets used in UMER is 

approximately 0.15 m[34].  This means that the transverse focusing effect of the 

induction gaps in UMER will be weak, but possibly not negligible. 

The second result is that the longitudinal component of the electric field will have 

a radial dependence, causing particles near the center of the beam to experience a 

different longitudinal focusing force than those particles far from the center.  This could 

cause a telescoping effect where portions of the beam closer to the beam axis are caused 

to contract faster than those portions far from the beam axis.  It is possible that the design 

of the gap can be altered to reduce these effects.      

 In addition, the actual geometry and transverse focusing of UMER is different 

than assumed here.  Instead of a linear geometry and uniform transverse focusing, UMER 

is predominately a circular machine and utilizes transverse quadrupole focusing.  Some 

work by previous researchers indicates that the circular geometry may affect the beam 

expansion[35].  In addition, quadrupole focusing causes the beam cross section to change 

area, an effect that was not taken into consideration here.  This effect may be similar to a 

mismatched beam in a uniform focusing channel.  Although this also results in envelope 

oscillations, simulations suggest that effects such as the local change in the geometry 

factor average out[36].      
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6.  Longitudinal Experiments. 

6.1.  Introduction. 

 This thesis has been primarily centered on theoretical aspects of longitudinal 

focusing in space-charge dominated beams.  However, there are a number of effects that 

can best be investigated directly through experiment.  In this section, a series of 

experiments are proposed that can be carried out before and after the induction gaps are 

actually installed. 

6.2.  UMER Facility and Diagnostics. 

 Because UMER was designed specifically for both transverse and longitudinal 

experiments, it features an array of diagnostic tools useful for the type of experiments 

described below.  In addition to the standard phosphor screens, which can be used to 

determine beam radius for calculating g , UMER will include over a dozen Beam 

Position Monitors (BPMs).  Although the primary function of these BPMs is to determine 

the location of the transverse centroid of the beam to aid in transverse steering, they were 

developed with the secondary purpose of finding the longitudinal line-charge density 

profile of the beam as it passes.  To this end a compromise was made between their 

transverse sensitivity and their rise time.  Although their rise time is 1-2 ns, through 

careful design they retain a superior transverse sensitivity[8].  Their fast rise time is 

particularly important, since the rise time of the beam itself is about 4 ns.  Additional 

line-charge density measurements can be made with fast current monitors, which are 

available for insertion into the ring.  The diagnostics chamber in the extraction system 

includes a Faraday cup, slit-wire system, and energy analyzer.  These tools allow the 

transverse emittance, beam charge, and longitudinal energy spread to be monitored.  
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However, because the location and numbers of these detectors are limited, longitudinal 

measurements, at least in regard to line charge density, will rely on the BPMs. 

6.3.  Longitudinal Experiments not requiring Induction Gaps. 

 Fortunately, there are a number of useful longitudinal experiments which do not 

require induction gaps, and which can be carried out immediately.  These experiments all 

involve free expansion of the beam.  Since the UMER beam is approximately a 

rectangular pulse, with a 4 ns rise time, the behavior outlined in section 3 should apply.  

Specifically, the expansion of the beam should be linear in time.  The whole beam should 

expand at a rate of 04c , which takes into account the escape speed of the particles at the 

head and at the tail.  The flat top should erode at a rate of 02c .  Accordingly, with 

standard beam parameters for UMER (100 mA current, 2.0=β , 8.2=g , and initial 

pulse length of 100 ns), the flat top should be totally eroded and the cusp should occur 

after 1.16 µs.  During this time, the beam center will have traveled downstream for 69.6 

m, or 6.1 turns of the ring (neglecting injection section length).  This expansion can be 

monitored using BPMs. Multi-turn operation is desirable but not necessary. 

 The values quoted above assume that 1=α , its generally accepted value.  If the 

observed expansion is linear in time, but occurs at a different rate, this could indicate that 

the value of g  is incorrect.  If 0=α , and 8.1=g , the new speed of sound in the beam 

will be 
s
mc 6

0 1008.2 ×= , or 80.3% of its value at 8.2=g .  In this case, the cusp will 

occur after 1.44 µs, or when the beam has traveled 86.4 m or about 7.6 turns (neglecting 

injector section length).  These differences are measurable, and will allow us to make an 

experimental determination of the value of α for UMER.   
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 The transverse quadrupole focusing used in UMER, which causes transverse 

envelope oscillations, will alter the ratio between the beam pipe radius b  and the beam 

radius a .  It is expected, based in part on simulations done previously on transverse 

mismatch oscillations[36] that the appropriate value of 
a
b  is the average value 

encountered by the beam as it travels through the system.  Because b  is essentially 

uniform in UMER, only the average value of a  must be determined from experiment.  

Even though the ratio of 
a
b  influences g  through a logarithm, beam expansion in 

UMER should be sensitive to changes in the average value of a .  If the nominal values 

of cma 1=  and cmb 54.2=  are used, 86.1ln =⎟
⎠
⎞

⎜
⎝
⎛

a
b .  However, a 50% increase in a  

gives 05.1ln =⎟
⎠
⎞

⎜
⎝
⎛

a
b , while a 50% decrease in a  gives 25.3ln =⎟

⎠
⎞

⎜
⎝
⎛

a
b .  In order to 

determine α, it will be critical to use an accurate value of the average beam radius.  In 

order to confirm the dependence of the speed of sound in the beam on the beam radius, 

apertures of varying sizes can be used to alter the initial beam radius.   

 In addition to varying g , it will be useful to vary the beam current.  Changing the 

beam current, and therefore the line charge density 0λ , should also allow us to control the 

speed of sound through eq. (53).  UMER's current range of 1 mA - 100 mA should allow 

a factor of 10 reduction in the speed of sound in the beam.  It should also be noted that at 

mAI 1= , UMER is no longer transversely space-charge dominated, although it remains 

longitudinally space-charge dominated.  It is normally assumed that the transverse and 

longitudinal dynamics are independent of each other.  However, this assumption is not 
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correct in all cases.  A comparison of the measured speed of sound in the beam to the 

speed predicted by the one-dimensional theory will provide a clue to whether this 

assumption holds for UMER when the longitudinal and transverse intensities are so 

different.  It will also be useful to monitor the transverse and longitudinal temperatures as 

the beam is allowed to travel over longer and longer distances, and to monitor these 

values at various beam currents.  The large difference between the longitudinal and 

transverse intensities may enhance the drive towards thermal equilibrium. 

 Preliminary measurements of the pulse length have been carried out using a 100 

mA, 10 keV beam with an initial pulse length of 100 ns.  At approximately 3.5 m 

downstream of the gun, pulse length measurements were taken with two separate 

systems, the Faraday cup and the slit-wire system.  The more accurate slit-wire system 

gave a pulse length of 110 ns, while the less accurate Faraday cup gave a pulse length of 

100 ns.  The value of 110 ns is in agreement with the expected expansion of the beam if 

8.2=g .  However, the distance over which the beam traveled before reaching the 

diagnostics chamber was only an estimate, simply intended to see if the one-dimensional 

theory gave beam expansion numbers roughly similar to those actually encountered in 

UMER.  Future experiments will be carried out in more detail. 

 Although it is useful to discuss measurements of the beam flat top and full length, 

in practice these values are hard to obtain consistently.  Instead, most measurements of 

beam length will be made at 10% and 90% of the peak value.  These measurements can 

easily be compared to the theoretical curves, either directly through eq. (56), or through 

the software used to produce Fig. 10. 
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 Another goal will be to look for the pulse rounding detected in the data of 

Faltens[24] and D.X. Wang[7].  If the source of this rounding is due to detector rise time, 

UMER's improved diagnostics will probably prevent its appearance.  It is more likely, 

due to its appearance in simulations, that this pulse rounding is due to the one-

dimensional nature of the cold fluid theory.  In either case, better data will be useful in 

the ongoing efforts to fully explain this discrepancy. 

 One of the intended purposes of UMER is to further investigate the propagation 

of space-charge waves, expanding on the efforts of D.X. Wang (longitudinal waves), and 

S. Bernal (transverse waves)[11].  Ultimately, perturbations will be added to the flat top 

through the pulser circuit and through combined thermionic and photoelectric 

emission[37].  Even before these systems are fully operational, it may be possible to get a 

preview of these effects using the perturbations that naturally occur on the flat top due to 

impedance mismatches in the pulser circuit.  Careful monitoring of the locations of these 

perturbations as the beam travels downstream should allow us to determine if these 

perturbations naturally launch longitudinal space-charge waves. 

 All of the experiments discussed above can be performed before a single 

induction gap is constructed, and most can be performed immediately, although increased 

beamline length and multiturn operation are desirable.   

6.4.  Longitudinal Experiments requiring Induction Gaps. 

 Once the induction gaps are constructed and placed in the ring, a whole new set of 

experiments will be possible.  As soon as the first gap is placed in the ring, tests can 

begin on pulse compression.  Initially, the goal will be to verify that eq. (61) gives the 

correct focusing field to provide periodic longitudinal focusing.  Although UMER 
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currently uses a beam pulse which is approximately rectangular it may be desirable to 

increase the rise time of this pulse so that the applied focusing voltage can be reduced to 

a more manageable level.  It should be noted that by simply reducing the current to 1 mA 

from 100 mA, the velocity term in eq. (61) can be reduced by a factor of 10.  If the 

decision is made to modify the gun pulse shape, theoretical and simulation efforts will be 

needed to determine the best compromise shape that:  1) retains a useable flat top, 2) 

reduces the focusing voltage requirements, and 3) is simple to produce at the gun. 

 Ideally, the induction gap will allow the initial pulse shape to be recovered.  

However, since fairly high voltages are applied to the beam over fairly short distances, it 

is likely that the beam entropy will increase somewhat with every pass through an 

induction gap.  One goal will be to see how well the pulse can be reconstructed, and 

whether emittance, which is related to entropy, will increase because of the presence of 

the induction gaps.  Monitoring any increase in emittance should be straightforward.  

First, the beam is allowed to travel a certain number of turns from the gun to the 

diagnostics chamber, where the transverse emittance is measured.  Longitudinal energy 

spread, which is related to longitudinal emittance by eq. (9), is measured using the energy 

analyzer.  Then, over additional shots, the induction gap voltage is slowly increased to 

the highest desired level while the waveform shape is retained.  Every time the voltage is 

increased, additional emittance measurements are taken, as well as line-charge pictures 

using the BPMs.  If multiturn operation is available or if multiple induction gaps are 

installed, further testing can be done. 

 Multiturn operation or the presence of multiple induction gaps will also be 

beneficial to looking at irreversibility associated with the cusp.  When the cusp occurs, 
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the forward-traveling and backward-traveling waves overlap, and the system becomes 

nonlinear.  However, it is not clear if this nonlinearity begins to arise before the cusp 

occurs.  In this set of experiments, the beam is allowed to expand for increasingly long 

periods of time before the induction gaps are used to focus it.  The line charge profile will 

be monitored using the BPMs, and transverse and longitudinal emittance will be 

monitored using the diagnostics chamber.  As the beam is allowed to expand for longer 

and longer periods of time before focusing, it is expected that longitudinal emittance will 

increase, and the fully focused beam profile will be less and less like the initial shape, due 

to increasing entropy.  Specifically, we expect the beam to adopt the Boltzmann 

distribution, which is an equilibrium distribution.  This series of tests has particular 

significance for the design of HIF drivers, since the number of induction gaps may have 

to be increased in order to reliably and reproducibly refocus those beams. 

 A third set of longitudinal experiments that can be carried out when the induction 

gaps are installed involves using the induction gaps to modify the line charge profile in 

ways other than simply refocusing it.  If the beam entropy increase is slow enough, it may 

be possible that the beam shape will come into equilibrium with whatever induction gap 

pulse is applied.  This conjecture seems to be supported in part by the longitudinal 

focusing experiments of D.X. Wang, in which a rectangular beam was allowed to expand, 

and then was refocused as a parabolic shape.  A related experiment would be to only 

apply focusing to the interior of an expanding rectangular beam, and see if some new 

arbitrary shape could be carved from it. 
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 Throughout all these experiments, it will be important to monitor the longitudinal 

and transverse temperatures, in order to determine which processes drive the beam 

towards thermal equilibrium, and how strong those effects are. 
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7.  Conclusion. 

 The purpose of this thesis has been to explore theoretical aspects of longitudinal 

focusing in space-charge dominated beams.  This began with a brief discussion of beams 

which are transversely space-charge dominated, as indicated by the intensity parameter χ.  

The longitudinal envelope equation was introduced, and used to derive a longitudinal 

intensity parameter χL, which is the longitudinal analog to χ.  The longitudinal intensity 

parameter was used to show that UMER will be longitudinally space-charge dominated 

for all practical operating parameters, although it is able to operate in both the transverse 

emittance dominated and transverse space-charge dominated regimes.  The longitudinal 

envelope equation was then used to solve for the free-expansion envelope for a space-

charge dominated beam, and used to find the focusing field needed for the periodic 

longitudinal focusing of parabolic beams.  The limitations of the parabolic beam profile 

and the longitudinal envelope equation led to the use of the one-dimensional cold fluid 

model for modeling rectangular beams.  The line charge density and particle velocity 

distribution derived using the one-dimensional cold fluid model were stated, and used to 

determine the longitudinal expansion rate, the flat top erosion rate, and the coherent 

energy spread for a space-charge dominated rectangular beam.  To use the line charge 

and velocity distribution data produced by the one-dimensional cold fluid model, a more 

general approach to solving for the applied field in a periodic longitudinal focusing 

system was developed.  This method is not limited to use with the rectangular beam, but 

is applicable for any beam profile for which the line charge density and the velocity 

distribution are known as functions of position in the beam.  The peak voltage needed to 

focus a 100 mA, 10 keV rectangular beam in UMER was found to be 3.61 kV.  
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Comparison was made to the conventional drift compression longitudinal focusing 

scheme, and some problems with that scheme were noted.  Several additional effects 

were noted and a number of longitudinal experiments were proposed. 

 Future efforts will concentrate on expanding the one-dimensional cold fluid 

model to non-rectangular line charge distributions;  more fully explaining the 

discrepancies between the one-dimensional cold fluid theory and the three-dimensional 

simulations and experiments; designing an induction gap system for UMER; and 

performing longitudinal experiments both with and without the induction gaps. 
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