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We investigate the nonlinear dynamics of three extended systems: chaos fronts,

rare intense events, and growing networks.

As the first example, we study the dynamics of the front separating a spatio-

temporally chaotic region from a stable steady region using a simple model ap-

plicable to periodically forced systems. In particular, we investigate both the

coarsening of the front induced by the inherent ‘noise’ of the chaotic region, and

the long wavelength dynamics causing the front to develop cusps.

As the second example, we study the statistics and characteristics of rare in-

tense events in two types of two dimensional Complex Ginzburg-Landau (CGL)

equation based models. Our numerical simulations show finite amplitude collapse-

like solutions which approach the infinite amplitude solutions of the nonlinear



Schrödinger (NLS) equation in an appropriate parameter regime. We also de-

termine the probability distribution function (PDF) of the amplitude of the CGL

solutions, which is found to be approximately described by a stretched exponential

distribution, P (|A|) ≈ e−|A|η , where η < 1. This non-Gaussian PDF is explained

by the nonlinear characteristics of individual bursts combined with the statistics

of bursts. Our results suggest a general picture in which an incoherent background

of weakly interacting waves, occasionally, ‘by chance’, initiates intense, coherent,

self-reinforcing, highly nonlinear events.

As the last example, we consider models for growing networks incorporating

two effects not previously considered: (i) different species of nodes, with each

species having different properties (such as different attachment probabilities to

other node species); and (ii) when a new node is born, its number of links to old

nodes is random with a given probability distribution. Our numerical simulations

show good agreement with analytic solutions. As an application of our model, we

investigate the movie-actor network with movies considered as nodes and actors

as links.
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Chapter 1

Introduction

In this dissertation we investigate the nonlinear dynamics of extended systems.

Examples of extended systems occur in many real situations, three of which are

studied in this dissertation: chaos fronts (Chapter 2), rare intense events (Chapter

3), and growing networks (Chapter 4). In the first two situations, we observe non-

trivial collective behaviors in systems that are spatially extended (spatiotemporal

chaotic patterns in Chapter 2 and “bursts” in Chapter 3). The third situation is

representative of another type of extended system (Chapter 4), which might be

designated topologically extended, which occurs when many units are connected to

form a large network.

In Chapter 2 we study the dynamics of the front separating a spatiotempo-

rally chaotic state from a stable steady ordered state. We construct a Continuum

Coupled Map (CCM) model to incorporate the essential feature that both a sta-

ble steady homogeneous attractor and a spatiotemporally chaotic attractor exist.

Using our CCM model, which has two stable competing patterns in the same pa-

rameter regime, we numerically investigate the coarsening of the front due to the

inherent ‘noise’ associated with the spatiotemporal chaos and cusp formation in-

duced by initial long wavelength perturbations of the front location from the flat
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state.

In Chapter 3 we study the phenomena of rare intense events (“bursts”) which

is reported in many spatiotemporal dynamical systems. The characteristic feature

of rare intense events is a non-Gaussian tail in the event size probability distri-

bution function, which can result from strong nonlinearity of the events. The

enhancement of the event size tail might be expected if large amplitudes are non-

linearly self-reinforcing. Such nonlinear self-reinforcements is present in the non-

linear Schrödinger (NLS) equation. In the limit of small dissipation/instability the

complex Ginzburg-Landau (CGL) equation displays a solution similar to the NLS

solution. Furthermore, over a sufficiently large spatial domain, these events occur

intermittently in space and time. Thus, in this limit, the CGL equation may be

considered as a model for the occurrence of rare intense events. The probability

distribution function (PDF) of the amplitude of the solutions is observed to be

non-Gaussian in our numerical experiments. This non-Gaussian PDF is explained

by the nonlinear characteristics of individual bursts combined with the statistics

of bursts. Our results lead us to the following picture for the occurrence of rare

intense events in our system. Linear instability and nonlinear wave saturation lead

to an incoherent background of small amplitude waves. This background is respon-

sible for the observed Gaussian behavior of our probability distribution functions

in the small amplitude region. When, by chance, the weakly interacting waves

locally superpose to create conditions enabling nonlinear, coherent self-reinforce,

a localized collapse-like event is initiated. Collapse takes over, promoting large,

rapid growth and bursting of amplitude. This is followed by a burn-out phase in

which the energy is rapidly dissipated due to the generation of small scale struc-

ture by the burst. We believe that elements of the above general picture may be
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relevant to a variety of physical situations where rare intense events occur.

In Chapter 4 we study a growing network in which structual complexity orig-

inates from dynamical evolution of the network. The most common feature of

growing networks is power law distributions (e.g., the number of nodes with k

links is observed to be nk ∼ k−ν, where ν is a scaling exponent). We attempt

to construct general growing network models featuring two effects which have not

been considered previously: multiple species of nodes and initial link distribu-

tions. As an application of our model, we investigate the movie-actor network

with movies considered as nodes and actors as links (i.e., if the same actor appears

in two movies there is a link between the two movies). Moreover, we consider the-

atrical movies and made-for-television movies to constitute two different species.

We believe that the effect of multiple species nodes and initial link probability may

be important for modeling other complicated networks.

3



Chapter 2

Chaos Fronts

2.1 Preview

In this chapter we study the dynamics of the front separating a spatiotemporally

chaotic state from a stable steady ordered state. Such situations occur in many

experimental settings. In an experiment on a vertically vibrating granular mono-

layer of spheres [1] both a state at rest on the plate and a chaotically bouncing

state are stable. When a small perturbation is applied to the stationary state, the

chaotic state is observed to invade the stable state through a propagating front. In

a Rayleigh-Bénard convection experiment [2] both straight rolls and spiral defect

chaos are stable under some conditions and it is observed that a region of straight

rolls is invaded by a region of spiral defect turbulence.

For our study we employ a type of model called a Continuum Coupled Map

(CCM) introduced in Ref. [3]. Models of this type (Sec. 2.2) are appropriate to

periodically forced systems (such as that in the experiment of the Ref. [1]). In

common with other generic models, like the complex Ginzburg-Landau equation or

the Swift-Hohenberg equation, CCM models are meant to incorporate the minimal

basic properties capable of reproducing the phenomena of interest. With this in
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mind we construct our CCM model to incorporate the essential feature that both

a stable steady homogeneous attractor and a spatiotemporally chaotic attractor

exist. Using our CCM model, we numerically investigate two phenomena: (i) the

coarsening of the front due to the inherent ‘noise’ associated with the spatiotem-

poral chaos (Sec. 2.3), and (ii) cusp formation induced by initial long wavelength

perturbations of the front location from the flat state (Sec. 2.4).

With respect to (i), an important concept used to study various coarsening

processes is scaling. For a large number of systems (e.g., see Ref. [4]), it is found

that the interface width due to roughening, w(t), increases as a power of time,

w(t) ∼ tβ. The width eventually saturates at a value that increases as a power of

the system size, w(Lx) ∼ Lα
x . These scaling properties are also observed in our

model, and we determine and discuss the scaling exponents α and β that we find.

With respect to (ii), we argue that on long scale [i.e., long compared to w(t)],

our fronts propagate at constant speed in a direction locally normal to the interface.

We show that this basic property explains the mechanism of cusp formation and

the evolution of the shape of the fronts observed in our numerical simulations.

2.2 CCM Model

As in reference [3], we consider a CCM model which maps a field ξn(~x) forward

from time n to time n + 1. With reference to a system driven periodically in time

(e.g., as in [1]), we may think of ξn(~x), with n = 1, 2, · · · , as being the system state

stroboscopically sampled once each period. Furthermore, we consider ~x = (x, y) to

be two-dimensional, and, for simplicity, we take ξn to be a scalar field. The CCM

model mapping ξn to ξn+1 consists of two steps: The first step is a nonlinear local

operation in which a one-dimensional map M is applied to ξn(~x) at each point in
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u vξ
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ξ′
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Figure 2.1: Schematic (not to scale) of the model map.

space,

ξ′n(~x) = M(ξn(~x)). (2.1)

The second step is a translationally invariant linear operation coupling the dynam-

ics at nearby spatial locations. The most general such coupling is conveniently

expressed in terms of the spatial Fourier transform. If ξ̂n(~k) is the spatial Fourier

transform of ξn(~x), then we write ξ̂n+1(~k) as

ξ̂n+1(~k) = f̌(~k)ξ̂′n(
~k), (2.2)

from which ξn+1(~x) is obtained by inverse Fourier transforming.

The model is then specified by the choice of the nonlinear map M and the

linear spatial coupling f̌(~k). We make these choices so as to include the minimum

properties that we hypothesize are relevant for the investigated phenomena [5].

Since we desire the simultaneous existence of a stable steady state as well as a
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spatiotemporally chaotic state, we choose the map M to have a stable fixed point

attractor and a chaotic attractor. A convenient choice having this property is given

by

M(ξ) = rξ + Aexp[−(ξ − 1)2/σ2] − Aexp(−1/σ2). (2.3)

Referring to Fig. 2.1, we see that this map has a stable fixed point at ξ = 0,

for r < 1. Moreover, any initial point in ξ < u is attracted to this point. We also

see from Fig. 2.1 that the interval u < ξ < v is mapped into itself. Thus there is

(at least) one attractor in this interval. For the parameter values A, r, and w that

we investigate (A = 7.0, r = 0.4, σ = 0.29) there is one attractor in u < ξ < v and

it is chaotic.

Our choice of the spatial coupling f̌(~k) is similarly motivated by a desire for

simplicity. We assume that the coupling is isotropic. Thus we can write f̌ as

f̌(~k) = f(k), where k = |~k|. Taking f(k) ≥ 0 we write

f(k) = exp[γ(k)], (2.4)

where γ(k) is a wavenumber-dependent growth/damping rate per period. Since

we want the spatiotemporal chaos to have a finite spatial correlation scale, such a

scale must be reflected in our choice of γ(k). Denoting this scale by k−1
0 , we make

the following simple choice [3] for γ(k),

γ(k) =
1

2

(

k

k0

)2
[

1 −
1

2

(

k

k0

)2
]

. (2.5)

Thus γ(k) > 0 (growth) for k < k0, γ(k) has its maximum value at k = k0, and

γ(k) becomes strongly negative (damping) as k becomes large.

Our numerical implementation of this CCM model employs doubly periodic

boundary conditions with periodicity lengths Lx in x and Ly in y. The nonlinear
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Figure 2.2: Spatiotemporal chaos of CCM model for A = 7.0, r = 0.4, and

w = 0.29: (a) A snapshot of ξn(~x). Bright regions indicate large amplitude.

(b) Wavenumber power spectrum, averaged over 100 frames. ξ̂(~k) is the Fourier

transformation of ξ(~x). (c) Time correlation function C(τ), Eq. (2.7).

map operator is applied at points on a square grid, while the spatial coupling

operator (2.2) employs fast Fourier transforming from ~x to ~k and back.

That ξ(~x) = 0 is an attractor can be seen by introducing an initial perturbation

at wavenumber ~k, δξ0exp(i~k · ~x). Linearization of the CCM model about ξ0(~x) = 0

then shows that this perturbation evolves with time to δξnexp(i~k ·~x), where δξn =

δξ0[M
′(0)f(k)]n, M ′(ξ) ≡ ∂M/∂ξ. For the parameters we choose M ′(0)f(k) < 1

for all k (in particular M ′(0)f(k0) < 1). Thus the homogeneous state ξ(~x) = 0 is

an attractor for the system. We also find that, as we had anticipated, for other

initial conditions there is another attractor which is spatiotemporally chaotic.

Figure 2.2 shows the properties of the spatiotemporal chaos produced by our

model. Figure 2.2(a) shows the spatial pattern ξn(~x) at a representative time. This

picture applies to a time n = 45 evolved from an initial condition where ξ0(~x) was

chosen randomly with uniform distribution between ξ0 = 0 and ξ0 = 7.5. Visually,
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we observe that the pattern appears to have a characteristic scale of the order of

k−1
0 . This is confirmed by the wavenumber power spectrum, Fig. 2.2(b). We note

that the only length scales in our model are k−1
0 , the system size L ∼ Lx ∼ Ly,

and the grid size δ, and that, by our choice L � k−1
0 � δ, we had sought to obtain

spatiotemporal chaos with properties independent of L and δ. (In whta follows we

use a definition of length such that δ = 1, and we choose k−1
0 = 6.3 for all our

numerics.) Figure 2.2(b), which evidences variation on the scale k0, conforms with

this expectation. Further discussion of the form observed for |ξ̂(k)|2 is given in

the appendix. To characterize the temporal variation of the patterns, Fig. 2.2(c)

shows a plot of the time correlation function C(τ) defined as

C(τ) =
1

NxNy

NxNy
∑

i,j

Ci,j(τ), (2.6)

Ci,j(τ) =
< (ξi,j(t + τ) − ξ̄i,j)(ξi,j(t) − ξ̄i,j) >

< ξ2
i,j(t) − ξ̄2

i,j >
, (2.7)

where < ... > means time average, ξ̄ =< ξ >, Nx,y = Lx,y/δ, and (i, j) denotes the

(x, y) location of a grid point. As can be seen from Fig. 2.2(c) the time correlation

function decays to zero with increasing time τ (where τ is an integer), confirming

that the temporal behavior is chaotic.

We have also examined other parameter values for which (2.1)-(2.5) yields

spatiotemporal chaos, and we find behavior similar to that in Figs. 2.2.

2.3 Propagation of a Flat Front

The main objective of our investigation is to characterize the dynamics of the

interface between a spatiotemporally chaotic state and a stable steady state. In

our first set of simulations we focus on an initially flat interface, y = y0 at t = 0.
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Figure 2.3: Coarsening of a flat front. Lx = 1024.

After we generate an initial spatiotemporally chaotic state [Fig. 2.2(a)], we create

the interface by setting the amplitude ξ of all grid points with y < y0 to the stable

steady state value ξ = 0. During further iterations, the front between the chaotic

and steady state moves downward, i.e., the chaotic state propagates into the stable

steady state, and the front coarsens (see Fig. 2.3). In order to examine the front

dynamics for long times and save computational time, we use a shifting method:

On every iterate, we reset ξ to zero in the region adjacent to the bottom (y = 0)

of the periodic box, and, when the front comes close to y = 0, we shift the whole

system upward in the y direction. Due to the periodic boundary conditions, after

this shift there will be a region below the front and above y = 0 that is in the

spatiotemporally chaotic regime, and we then set ξ = 0 in this region.

After an initial transient, the scaling properties of the front are studied using the

following definition of the interface width. First, we calculated the average value

of ξ at fixed y, ξ̃(y) =
∫ Lx

0
ξ(x, y)dx/Lx. We then note that the basin boundary

between the two attractors of the one dimensional map M is at the unstable fixed

10



point, u = 0.4824 (Fig. 2.1), and that the average ξ for the spatiotemporally

chaotic state [Fig. 2.2(a)] is approximately four times the critical value. Thus, we

define a lower boundary of the front, y1, by ξ̃(y1) = u and an upper boundary of

the front, y2, by ξ̃(y2) = 3u. The width of the front is then defined as (y2 − y1).

Because of the inherent ‘noise’ generated in the spatiotemporally chaotic region,

the proper quantity to study is the ensemble averaged mean of the front widths.

We calculate ensembles using many different random initial conditions. Our results

for the ensemble averaged width w of the front are obtained by averaging (y2 − y1)

over 10 runs for the largest system Lx = 1024 and over 500 runs for the smallest

Lx = 64. The typical coarsening of the front is shown in Fig. 2.3.

One observation from our simulations is that the propagation velocity of fronts

is constant, except for a few transient initial iterations. That is, the velocity does

not depend on time or system size. A constant propagation front velocity is also

observed in the experiments in Refs. [1] and [2]. To minimize the effect of the

initial transient, we redefine time as the total increase in the area of the chaotic

state.

As is typical for a front coarsening problem [4], the time and system size de-

pendence of the mean front width w can be described by a scaling function g(u),

w(t) = tβg(
t

Lz
x

). (2.8)

Here g(u) is constant for u � 1 and g(u) ≈ u−β for u � 1. For t � Lz
x, the

width saturates at w ∼ Lα
x where α = βz is the roughness exponent. Barabási

and Stanley [4] have summarized the values of the scaling exponents z, α, and β

that are obtained for several experimental systems as well as relevant theoretical

results.

In Fig. 2.4(a), we show w versus t for different system sizes. These data show
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Figure 2.4: Scaling of width with the size: (a) unscaled, (b) scaled with α =

0.49, z = 1.81 from which β = α/z = 0.27. Circles (Lx = 64), diamonds (Lx =

128), squares (Lx = 256), triangles (Lx = 512), and stars (Lx = 1024). Ly = 256

for all cases.

two characteristic regimes: power law growth, followed by saturation. The growth

exponent, β, is calculated by measuring the slopes of straight line fits to the data

before saturation, and the roughness exponents α is calculated by comparing the

saturation widths. Figure 2.4(b) shows w/Lα
x versus t/Lz

x, where α and z have been
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adjusted to α = 0.49 and z = 1.81 (corresponding to β = α/z = 0.27). Consistent

with Eq. (2.8), we find collapse of the data in Fig. 2.4(a) to a single scaling

function. The exponent values we obtain are roughly consistent with those of

both the two dimensional Eden model (α ∼= 0.5, β ∼= 0.3) and the two dimensional

Kardar-Parisi-Zhang equation (α = 1/2, β = 1/3) [4, 6].

2.4 Evolution of a Non-flat Front

We now consider the evolution of a front on large length scale. Specifically, we

are interested in the case where the front is initially not flat; that is, the position

of the front is initially given by y0 = h(x0). Furthermore, we assume that, as the

front evolves, the scale on which the front position varies, l ≈ (h/h′), remains large

compared to the front width,

l � w. (2.9)

To analyze this situation, we consider that a point on the front moves with a

normal velocity ~v whose magnitude, |~v| = v, is constant in time. This assumption

also implies that the direction of ~v following the trajectory of a point on the front

is constant in time. This is because the slope of the front, dx/dy, following a

trajectory does not change with time; i.e., it depends only on the initial location

x0 on the front and not on t. This is illustrated by the construction in Fig. 2.5(a).

As shown in the figure, the trajectory line segments are straight, are all of the

same length, vt, and are normal to both the initial front and to the evolved front.

Considering an initial front position given by y0 = h(x0), propagation at a velocity

13
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Figure 2.5: Geometrical picture of the trajectories given by Eqs. (2.10) and (2.11):

(a) for t < tc and (b) for t > tc.

~v normal to the front then yields

x(t) = x0 − (vt)h′(x0)[1 + (h′(x0))
2]−1/2, (2.10)

y(t) = h(x0) − vt[1 + (h′(x0))
2]−1/2. (2.11)

At any given time Eqs. (2.10) and (2.11) specify the front position parametrically

with x0 as a parameter. As an example consider the case of an initial sinusoidal

undulation of the front y0 = h(x0) = C cos(kx0). As the front propagates, the

initial sinusoidal curve becomes distorted so that the maxima become sharp and

the minima become broad. As can be seen from Fig. 2.5 (a) this arises because of

the converging (diverging) of trajectories that originate near maxima (minima).

Past a critical time t = tc a cusp develops at the maxima of the evolved front

[7]. The cusp formation time is determined by noting that dx/dx0 first becomes

zero at t = tc. From Eq. (2.10) we obtain

tc =
1

k2Cv
. (2.12)

For t > tc there are pairs of values of x0 for which the trajectories given by (2.10)

and (2.11) pass through each other. For a given time t greater than tc we refer to
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Figure 2.6: Comparison between theoretical curves and our 2D simulations for two

different system sizes. The front curve from our model is defined as the smallest y

value (for given x) at which ξ = u, where u = 0.4824 is the basin boundary point

depicted in Fig. 2.1.

the range of x0 for which this occurs as the unphysical range. The development of

the unphysical range is illustrated in Fig. 2.5 (b) where the dashed portion of the

curve shows the result of plotting (2.10) and (2.11) for the unphysical range.

Figure 2.6 shows how cusps develop in time. In Fig. 2.6 the noisy front curves

are from our simulations and the smooth curves are from Eqs. (2.10) and (2.11)

with x0 restricted to the physical range. The two cases shown in Fig. 2.6 (namely,

Lx = Ly = 128 and Lx = Ly = 1024) illustrate how front roughening becomes

of less influence as (2.9) becomes better satisfied. For both cases in Fig. 2.6 the

initial sinusoid has amplitude kC = 1 and wavenumber k = 4π/Lx. Thus from
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Figure 2.7: The map Eq. (2.13).

(2.12) we have tc ∼ 1/k ∼ Lx. At times t ∼ tc, the roughening is a small effect if

kw(tc) is small. Since w ∼ tβ (assuming t/Lz
x . 1), we see that kw(tc) ∼ 1/L1−β

x ,

and roughening will be inconsequential for the large scale front evolution if Lx is

sufficiently large. The good agreement of the Lx = 1024 numerical results from our

CCM model with the theory, Eqs. (2.10) and (2.11), confirms that the front does

indeed propagate at constant velocity in a direction perpendicular to the interface.

In particular, for long length scales l � w examined in Fig. 2.6 we see no evidence

for curvature dependence of the front velocity.

As a comparison, we have also considered the propagation of a front between

two steady homogeneous states. In particular, replacing M(ξ) in Eq. 2.3 by

M(ξ) = 0.1 + tanh(2ξ), (2.13)

we see (Fig. 2.7) that there are two stable fixed points, α and β, and one unstable

fixed point u. Using (2.13), (2.2) and(2.5) with a sinusoidal front with initialization
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of β above the front and at α below the front, we find that the front shape evolves

smoothly (with no roughening) according to Eqs. (2.10) and (2.11). Thus the

cases of a chaotic invading region and a nonchaotic invading region become similar

for large Lx (e.g., Lx � w � 1/k0).

2.5 Summary

We have introduced a continuum coupled map model for the study of the dynamics

of a front separating a region of spatiotemporal chaos from a stable steady region.

This model is applicable to periodically forced systems. We find that the front

roughens and that this coarsening obeys a scaling hypothesis, Eq. (2.8). We also

investigate the large length scale evolution of a nonplanar front. We find that this

evolution is consistent with the hypothesis that, on large scale, the front velocity is

constant and normal to the front. This hypothesis and our numerical simulations

indicate the formation of cusp structures in the front.

Appendix

We now comment on the specific form that we have found for |ξ̂|2 (Fig. 2.2(b)).

In this connection we note that in the limit of a wildly varying map M(ξ) with

Lyapunov exponent approaching infinity ξ ′n(~x) will be wildly varying in space.

This is because small variation of ξn(~x) with ~x are greatly amplified when M is

applied. Thus, in this limit, the spatial correlation function for ξ ′n(~x) will be a

delta function, and |ξ̂′n(k)|2 =< (ξ′n(~x))2 > independent of ~k. Thus from (2.2)

|ξ̂(k)|2 =< (ξ′n(~x))2 > f 2(k), (A.1)
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Figure 2.8: |ξ̂|2 versus k compared with Eq. (A.1).

which is plotted in Fig. 2.8 as the dashed line along with the data from Fig. 2.2(b).

It is seen that Eq. (A.1) provides a crude indication of the general form of |ξ̂(k)|2.
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Chapter 3

Rare Intense Events

3.1 Preview

Many spatiotemporal dynamical systems show rare intense events. One example

is that of large height rogue ocean waves [8]. Another example occurs in recent

experiments on parametrically forced surface waves on water in which high spikes

(bursts) on the free surface form intermittently in space and time [9]. Other di-

verse physical examples also exist (e.g., tornados, large earthquakes, etc.). The

characteristic feature of rare intense events is an enhanced tail in the event size

probability distribution function. Here, by enhanced we mean that the event size

probability distribution function approaches zero with increasing event size much

more slowly than is the case for a Gaussian distribution. Thus these events, al-

though rare, can be much more common than an expectation based on Gaussian

statistics would indicate. The central limit theorem implies Gaussian behavior for

a quantity that results from the linear superposition of many random independent

contributions. Non-Gaussian tail behavior can result from strong nonlinearity of

the events, and enhancement of the event size tail might be expected if large ampli-

tudes are nonlinearly self-reinforcing. Such nonlinear self-reinforcements is present
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in the nonlinear Schrödinger (NLS) equation. In particular, the two dimensional

NLS equation,

∂A

∂t
= −iα|A|2A − iβ 52 A. (3.1)

exhibits “collapse” when the coefficients α and β have the same sign [10]. In a

collapsing NLS solution the complex field approaches infinity at some point in

space, and this singularity occurs at finite time. The NLS is conservative in that

it can be derived from a Hamiltonian, ∂A/∂t = −iδH/δA∗, where H[A, A∗] =

1
2

∫

[α|A|4 + β| 5 A|2]dx. In the case of nonconservative dynamics, inclusion of

lowest order dissipation and instability terms leads to the complex Ginzburg-

Landau (CGL) equation [11]. The CGL equation has been studied as a model

for such diverse situation as chemical reaction [12], Poiseuille flow [13], Rayleigh-

Bénard convection [14], and Taylor-Couette flow [15]. In the limit of zero dissipa-

tion/instability the CGL equation approaches the NLS equation. For small nonzero

dissipation/instability, the CGL equation displays a solution similar to the NLS

collapse solution, but with a large finite (rather than infinite) amplitude at the col-

lapse time [10]. Furthermore, over a sufficiently large spatial domain, these events

occur intermittently in space and time. Thus, in this parameter regime, the CGL

equation may be considered as a model for the occurrence of rare intense events.

In this chapter we study the statistics and characteristics of rare intense events

in a two-dimensional CGL-based model. The probability distribution function

(PDF) of the amplitude of the solutions is observed to be non-Gaussian in our

numerical experiments. This non-Gaussian PDF is explained by the nonlinear

characteristics of individual bursts combined with the statistics of bursts. The
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model equation we investigate is

∂A

∂t
= ±A − (1 + iα)|A|2A + (1 − iβ) 52 A

+(δr + iδi)A
∗, (3.2)

where (δr + iδi)A
∗ is a parametric forcing term [16]. We will consider two cases:

one without parametric forcing (δr = δi = 0) in which case the plus sign is chosen

in front of the first term on the right-hand side of (3.2) (Eq. (3.2) is then the usual

CGL equation), and one with parametric forcing, in which case the minus sign is

chosen. As previously discussed, we choose our parameters so that our model, Eq.

(3.2), is formally close to the NLS equation (3.1). That is, we take α, β � 1, δr, δi,

and for our numerical solutions we will restrict attention to the case α = β. Note

that the coefficient ±1 for the first term, as well as the ones in (1+ iα) and (1+ iβ)

represent no loss of generality, since these can be obtained by suitable scaling of the

time (t), the dependent variable (A), and the spatial variable (x). In Section 3.2,

we discuss the amplitude statistics of our two-dimensional CGL models with and

without the parametric forcing term. We find that the PDFs are approximately

described by a stretched exponential distribution, P (|A|) ≈ exp(−|A|η), where η is

less than 1. In Section 3.3, we investigate the characteristics of individual bursts.

We compare our numerical CGL results with known collapse solutions of the NLS

equation. The maximum amplitude obtained by many bursts (or the “event size”

statistics) is discussed in Section 3.4. Section 3.5 presents further discussion and

conclusions.

Our results lead us to the following picture for the occurrence of rare intense

events in our system. Linear instability and nonlinear wave saturation lead to an

incoherent background of small amplitude waves. This background is responsi-

ble for the observed small |A| Gaussian behavior of our probability distribution
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functions. When, by chance, the weakly interacting waves locally superpose to

create conditions enabling nonlinear, coherent self-reinforce, a localized, collapse-

like event is initiated. Collapse takes over, promoting large, rapid growth and

spiking of A. This is followed by a burn-out phase in which the energy in rapidly

dissipated due to the generation of small scale structure by the spike. We believe

that elements of the above general picture may be relevant to a variety of physical

situations where rare intense events occur (e.g., the parametrically driven water

wave experiments in Ref. [9]).

3.2 Amplitude Statistics

3.2.1 2D model without a parametric force (δr = δi = 0)

We first consider Eq.(3.2) with δr = δi = 0 and with the plus sign in the first term

on the right hand side of the equation. Figure 3.1(a) shows a representation of

|A(x, t)| [from numerical solution of Eq. (3.2)] at a fixed instant t, where large

values are indicated by darker grey shades. As a function of time, the localized

dark shades occur in an seemingly random manner, become darker (i.e., increase

their amplitude) and then go away (become light). Furthermore, the maximum

amplitudes also display apparent randomness. [see Fig. 3.1(b)]. As shown in

the next section (Sec. 3.3), although the occurrence of these intense events is

apparently erratic in time and space, individually these events are highly coherent.

In this section, we will study the statistical properties of A(x, t).

Our numerical solutions of (3.2) employ periodic boundary conditions on a

256 × 256 grid. We choose the parameters, α and β, large enough (α = β = 30)

so that the solutions of our model are close to solutions of the NLS equation.
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Figure 3.1: Solutions of the CGL model. (a) Snapshot of the amplitude |A| for

L = 20π, α = β = 30, ∆t = 10−5, δr = δi = 0 and a 256× 256 grid. (b) Amplitude

profile versus time. Solid line indicates |A|max of the whole system, while thick solid

lines indicate maximum amplitude of the localized events(“bursts”). The dashed

line indicates the average amplitude of |A| over the whole system |A|avg ∼ 0.3.

We choose the time step small enough to satisfy the condition for unconditional

stability of our second-order accurate time integration(∆t = 10−5). We use ran-

dom initial condition (at t = 0, we generate random values for amplitudes and

phases at each grid point). Localized structures, “bursts”, develop very rapidly

and occur throughout the spatial domain. The typical life time of a burst (δt) is

approximately 0.2 time units. The maximum amplitudes of bursts are different for

different burst events.

Imagining that we choose a space-time point (x, t) at random, we now consider

the probability distribution functions for |A| (the magnitude of A), Ar = Re[A]

(the real part of A), and Ai = Im[A] (the imaginary part of A). We denote these
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Figure 3.2: Probability distribution functions obtained from numerical solution of

Eq.(3.2) using the same parameters as in Fig. 3.1. The circles are data for Pr and

Pi, while the pluses are the probability distributions P ′
r and P ′

i obtained from the

phase randomized amplitude.

distribution functions P (|A|), Pr(Ar), Pi(Ai), and we compute them via histogram

approximations using the values of |A|, Ar, and Ai from each of the 256× 256 grid

points at many time frames [17]. We find that these distributions are independent

of the periodicity length L used in the computation as long as it is sufficiently large

compared to the spatial size of a burst, but is not so large that spatial resolution

on our 256 × 256 grid becomes problematic. In our computations of P, Pr and Pi,

we choose L = 20π.

Figures 3.2 show the numerically computed probability distributions Pr(Ar)

[Fig. 3.2(a)] and Pi(Ai) [Fig. 3.2(b)] plotted as open circles. Since Eq. (3.2)

with δr = δi = 0 is invariant to the transformation A → A exp(iφ) (where φ is an

arbitrary constant), we expect the distribution Pr and Pi to be the same to within
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the statistical accuracy of their determinations. This is born out by Figs. 3.2. In

order to highlight the essential role that nonlinearity plays in determining these

distribution functions, we have also computed them after randomizing the phases

of each Fourier component. That is, representing A(x, t) as

A(x, t) =
∑

k

ak(t) exp(ik · r), (3.3)

where k = (2mπ/L, 2nπ/L), we form a new amplitude, A′(x, t) as

A′(x, t) =
∑

k

ak(t) exp(ik · r + iθk), (3.4)

where for each k, the angle θk is chosen randomly with uniform probability density

in [0, 2π]. The probability distribution functions for the real and imaginary parts

of the randomized amplitudes A′ are shown as pluses in Figs. 3.2. Note that

by construction, A and A′ have identical wavenumber power spectra. Due to

the random phases, A′ at any given point x can be viewed as a sum of many

independent random numbers (the Fourier components). Hence the Pr and Pi

distributions are expected to be Gaussian, log Pr,i ∼ [(const.)− (const.)A2
r,i]. This

is confirmed by the semi-log plots of Figs. 2, where the data plotted as pluses can

be well-fit by parabolae.

The above comparisons with the phase randomized variable A′ are motivated

by imagining the hypothetical situation where the amplitude is formed by the

superposition of many noninteracting linear plane waves. In that case we would

have an amplitude field of form

∑

k

bk(t) exp(ik · r + iωkt). (3.5)

Because ωk is different for different k, the phases become uncorrelated for suffi-

ciently large time t.
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Figure 3.3: Probability distribution functions before randomizing the phases of the

solutions (o) and after randomizing the phases (+). Note the horizontal axis is |A|η,

where the exponent η = 0.8 is chosen to yield approximately linear dependence of

log[P (|A|)] on |A|η for large values of |A|.

Comparing the data from A and A′ in Figs. 3.2, for small values of Ar and

Ai, the PDFs are nearly Gaussian. This can be attributed to near linear behavior

of small amplitude waves. On the other hand, for the tails of the distributions,

we note substantial enhancement relative to the Gaussian distributions. These

must be due to coherent phase correlations resulting from nonlinear interaction of

different wavenumber components of A. Such phase coherence is implied by the

observed coherent localized burst structures.

Figure 3.3 shows the numerically obtained distribution P (|A|) plotted as circles

and the probability distribution for the phase randomized amplitude |A′| plotted

26



as pluses. Again, the enhancement of the large amplitude tail is evident. Note that

the vertical axis in Fig. 3.3 is logarithmic, while the horizontal axis is |A|η. Here we

choose the power η = 0.8 so that the large |A| data in this plot are most nearly fit

by a straight line. That is, we attempt to fit P (|A|) using a stretched exponential.

The slope of the dashed straight line in the figure is chosen to match the large |A|

data. Thus, over the range of |A| accessible to over numerical experiment, we find

that the enhanced large |A| tail probability density is roughly fit by a stretched

exponential,

P (|A|) ∼ exp(−ζ|A|0.8). (3.6)

3.2.2 2D model with parametric forcing (δr, δi 6= 0)

We now report similar results for the case of parametric forcing, Eq. (3.2) with

δr, δi 6= 0 and the minus sign chosen in the first term on the right side of (3.2).

In this case, instability of small amplitude waves is caused by the parametric

forcing (nonzero δr,i) and the −A term represents a linear wavenumber independent

damping. This model for parametric forcing was introduced [18] and has been

used to model various situations. One such situation is that of periodically forced

chemical reactions [19]. Our motivation for considering this model is the Faraday

experiments on strong parametric forcing of surface water waves in Ref. [9]. In

that work intermittent formation of large localized surface perturbations results in

splash and droplet formation.

Parameters for our numerical simulations are the same as in Sec. 3.2.1 except

that now δr = δi = 5. Again coherent localized structures, ”bursts”, develop

rapidly and occur intermittently throughout the spatial domain, Fig. 3.4(a). As

in Sec. 3.2.1, the typical life time of a burst is less than 0.2 time units, and the

27



0 2

10
−5

(b)

|A|η

P(|A|)3

2

1

0

(a)

Figure 3.4: Solutions of the model with parametric forcing. (a) snapshot of |A|.

Dark regions have high amplitudes. (b) P (|A|) versus |A|η, where η = 0.8. (See

captions in Fig. 3.3.)

maximum amplitudes of bursts are different for different bursts.

The PDF, P (|A|) again shows a stretched exponential tail with exponent η =

0.8, Fig. 3.4(b). The circles in Figs. 3.5 show the PDFs of the real and imaginary

parts of A, while the pluses are data for the PDFs after randomizing the phase.

The shape of the PDFs around the central part are nearly Gaussian. In contrast, at

large amplitude the PDFs are significantly non-Gaussian. A major difference with

the case δr = δi = 0 is that, with parametric forcing, the model is not invariant to

A → Aeiφ, and thus Pr and Pi may be expected to evidence differences not present

for δr = δi = 0. This is seen to be the case in Figs. 3.5.
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Figure 3.5: Pr(Ar) and Pi(Ai) with parametric forcing. The numerical parameters

are the same as those for Fig. 3.4. The circles are PDFs for Ar and Ai before

randomizing the phases of the solutions, while pluses are PDFs after randomizing

the phases.

3.3 Characteristics of Individual Burst Events

Solutions of the CGL equation with large α and β may be expected to have fea-

tures in common with solutions of the NLS equation. It is known that the NLS

equation yields localized events which develop finite time singularities where the

amplitude becomes infinite [11]. While it is difficult to understand the dynamics

of the solutions of CGL equation from direct rigorous analysis, the solutions of the

NLS equation are relatively well understood. Thus, we analyze the dynamics of in-

dividual CGL bursts guided by the known localized self-similar collapsing solution

of the NLS equation.
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The NLS equation has a special solution [20] of the form

A = eiθtR(r), r =
√

x2 + y2, (3.7)

where the radial function R(r) satisfies

(

∂2

∂r2
+

1

r

∂

∂r

)

R − ξR + R3 = 0, (3.8)

∣

∣

∣

∣

∂R

∂r

∣

∣

∣

∣

r=0

= 0, R(∞) = 0,

where α = β, ξ = θ/β . Since (3.1) is invariant under the scaling transformation

[21],

A(x, t) −→ L(t)−1A(κ, τ)eiLL̇|κ|2/4, (3.9)

where L(t) tends to zero as t∗ −→ t, t < t∗ and

κ =
x

L(t)
, τ =

∫ t

0

1

L2(s)
ds, (3.10)

a family of collapsing solutions of the NLS is given by the rescaled solution of Eq.

(3.8).

With these considerations, we test the expected approximate self-similarity of

individual bursts observed in our numerical solutions of Eq. (3.2). We consider

three typical bursts that occur at different times and spatial positions. In partic-

ular, we choose these three as the three dark regions in Fig. 3.1(a) whose spatial

maxima have the time dependences shown as thick solid lines in Fig. 3.1(b).

In Fig. 3.6(a) we plot the x-dependence of |A| at constant y for each of these

bursts at the time that they reach their maximum amplitude (the positions in x

of the maxima have been shifted to x = 0 and the constant y value for each is

at the location of |A|max). Note that, when they reach their maxima, the three

bursts have different amplitudes and width. We rescale the amplitude and spatial
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Figure 3.6: Self-similar bursts. (a) Enlarged plots of a burst at t1(©) = 10.448, at

grid point (x, y) = (15.2, 22.1), and t2(4) = 10.530, at grid point (51.1, 25.5), and

t3(�) = 10.644 at grid point (57.4, 38.8). (b) Scaled profiles, where |Ã| = |A|/L,

x̃ = x/L, and L = |A|max at t1, t2, and t3. The solid line represents the radial

solution of Eq. (3.8).

coordinate as suggested by (3.9) and (3.10), |Ã| = |A|/L and x̃ = x/L, and we

take L = |A|max (which normalizes |Ã|max to one). The resulting data are plotted

in Fig. 3.6(b) along with the solution of Eq. (3.8). [We again rescale R(r) using

(3.9) and (3.10), and we note that, after this rescaling, the result is independent

of the value of ξ = 0.1 in Eq. (3.8).] The three burst profiles show evidence of

collapsing onto the theoretical radial solution.

Now, we consider the time dependence of a single burst. We select the burst

at the grid point (x, y) = (51.1, 25.5) (see caption to Fig. 3.6) and investigate the

evolution of its shape and height. We display profiles of the burst at 5 different

times in Fig. 3.7(a). Rescaling each profile using Eq. (3.9) and Eq. (3.10), and
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Figure 3.7: Self-similarity of single burst. (a) Enlarged plots of a burst at t1(©) =

10.50, t2(�) = 10.52, t3(4) = 10.53, t4(�) = 10.54, and t5(×) = 10.55. (b) Scaled

profiles, where |Ã| = |A|/L, x̃ = x/L, and L = |A(r)|max at t1, t2, t3, and t4. The

solid line represents the solution of Eq. (3.8).

defining L in the same way as before, the four profiles at the first four times

approximately collapse onto the radial solution of (3.8) as shown in Fig. 3.7(b).

When the burst reaches its maximum amplitude, the amplitude at some distance

away from the center becomes zero (see the amplitude profile at t = t3). After

that, the center decays very rapidly (see the amplitude profile at t = t5). (Note

that in this section and the next section, we present numerical results for (3.2) with

δr = δi = 0. However, we have also verified that the CGL model with parametric

forcing also has similar self similarity properties.)
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3.4 Statistics of Bursts

The self similar properties of bursts implies that the solutions of the CGL model

consist of self-similar bursts of various maximum heights. Thus, we expect that

the enhanced tail (the deviation from the Gaussian distribution) of the amplitude

probability distribution P (|A|) can be understood by the statistics of bursts. In

particular, we consider g(h), the frequency of bursts which have maximum height

h, and a distribution Pj(|A|) defined for an individual burst (burst j), as follows.

We define the time interval for each burst as the time between when its peak

value exceeds 2|A|avg and when its peak value drops below 2|A|avg [typically the

time duration of a burst is less than 0.2, see Fig. 3.1(b)]. Here |A|avg is the space

average of |A| over the entire spatial grid of the simulation at each time t [|A|avg is

approximately constant at about 0.3 over all time steps in the simulation, see the

dashed line in Fig. 3.1(b)]. Consistent with the observation that a typical burst

has radial symmetry, we define the domain of the burst to be a circular region of

radius reff centered at the burst maximum, where reff is the maximum radius of

a circle such that the average of |A| over the perimeter of the circle is greater than

2|A|avg (typically, 1.23 ≤ reff ≤ 4.91). In Fig. 3.8(a) we show the distribution

Pj(|A|) for the three bursts in Fig. 3.1(b) (thick solid lines). The first burst (j = 1)

has h = 4.52 and is plotted as the open circles in Fig. 3.8(a); the second burst

(j = 2) has h = 6.31 and is plotted as the open triangles; and the third burst

(j = 3) has h = 3.85 and is plotted as the open squares. These distributions are

obtained from histograms of the values of |A| at grid points in the domains and

time steps in the duration of each of these bursts. We obtain g(h) by counting

the number of bursts which have maximum heights between h and h + ∆h, where

∆h = 0.1 [see Fig. 3.8(b)]. (In Fig. 3.8(a) Pj(|A|) is not plotted for |A| < 2|A|avg,
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Figure 3.8: Statistics of localized events(“bursts”). (a) Phj
(|A|) at three different

times: t1(©) = 10.448 and h = 4.52, t2(4) = 89.0 and h = 6.31, and t3(�) = 94.0

and h = 3.85. (b) The frequency of bursts which have maximum height h, g(h).

The inset indicates C(h) versus h defined in Eq. (3.13).

since, by our procedure this range lacks meaning, and since we are interested in

the behavior at large values of |A|.) We note that the Pj(|A|) in Fig. 3.8 all

approximately coincide for |A| < h. Thus the only characteristic of the bursts on

which Pj(|A|) depends is the maximum burst amplitude h at which Pj(|A|) goes

to zero. To incorporate this fact, we replace Pj(|A|) by the notation Ph(|A|).

The above suggests that P (|A|) can be obtained from the following approxi-

mation [22]

P (|A|) ∼

∫ ∞

0

g(h)Ph(|A|)dh, (3.11)

where Ph(|A|) is a probability distribution of a single burst whose temporal maxi-

mum amplitude is h. Since Ph(|A|) vanishes for |A| > h and because the Ph(|A|)
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approximately coincide for |A| < h [see Fig. 3.8(a)], we approximate Ph(|A|) as

Ph(|A|) ∼ C−1(h)θ(h − |A|)P∗(|A|), (3.12)

C(h) =

∫ h

0

P∗(|A|)d|A|, (3.13)

where C(h) is a normalization factor [C(h) ∼ 1, when h > 1; see the inset on Fig.

3.8(b)], θ(h−|A|) is a step function, and P∗ is the distribution that we numerically

compute at the largest value of h that we considered (hmax = 6.31). Using (3.11)

and (3.13), we can further approximate P (|A|) as

P (|A|) ∼

∫ ∞

0

C−1(h)θ(h − |A|)g(h)P∗(|A|)dh

∼ P∗(|A|)

∫ ∞

|A|

C−1(h)g(h)dh. (3.14)

(The integral in (3.14) is the cumulative frequency of bursts which have maximum

height greater than |A|.)

Figures 3.8 show the numerically obtained g(h) and P∗(|A|). Inserting P∗(|A|)

into Eq.(3.13) and Eq.(3.14), we obtain the prediction for P (|A|) plotted as pluses

in Fig. 3.9 for |A| > 2|A|avg. This appears to agree well with the P (|A|) ob-

tained from our numerical solutions of (3.2) (open circles). (Note that we shift

the predicted P (|A|) (pluses) to the P (|A|) (open circles) obtained from (3.2) after

removing data points for |A| < 2|A|avg.)

3.5 Summary

We find that the large A behavior of the PDF obtained from our CGL solutions is

approximately described by a stretched exponential form, P (|A|) ≈ e−|A|η , where

η < 1. In addition, for small A, Pr(Ar) and Pi(Ai) are approximately Gaussian,

as is the case for a random linear superposition of waves. We also observe the
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and g(h) from Fig. 3.8, and Eqs. (3.11)-(3.14).

self similar properties of individual bursts, which allow us to consider the large

amplitude behavior of our CGL solutions as composites of coherent self similar

bursts. Based on this we explain the observed non-Gaussian P (|A|) using the

nonlinear characteristics of individual bursts Ph(|A|) combined with the statistics

of burst occurrences g(h).

These results lead us to conjecture the following picture of rare intense events

in our model. Linear instability leads to a background of relatively low amplitude

waves that are weakly interacting and result in a random-like, incoherent back-

ground and low |A| Gaussian behavior of Pr(Ar) and Pi(Ai). When, by chance,

this incoherent behavior results in local conditions conducive to burst formation,
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nonlinear, coherent, self-reinforcing collapse takes over and promotes a large growth

and spiking of A. We believe that this general mechanism may be operative in a

variety of physical situations in which rare intense events occur (e.g., the water

wave experiments of Ref. [9]).
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Chapter 4

Growing Networks

4.1 Preview

It is known that many evolving network systems, including the world wide web,

as well as social, biological, and communication systems, show power law distri-

butions. In particular, the number of nodes with k links is often observed to be

nk ∼ k−ν, where ν typically varies from 2.0 to 3.1 [23]. The mechanism for power-

law network scaling was addressed in a seminal paper by Barabási and Albert

(BA) who proposed [24] a simple growing network model in which the probability

of a new node forming a link with an old node (the “attachment probability”) is

proportional to the number of links of the old node. This model yields a power

law distribution of links with exponent ν = 3. Many other works have been done

extending this the model. For example Krapivsky and Redner [25] provide a com-

prehensive description for a model with more general dependence of the attachment

probability on the number k of old node links. For attachment probability pro-

portional to Ak = ak + b they found that, depending on b/a, the exponent ν can

vary from 2 to ∞. Furthermore, for Ak ∼ kα, when α < 1, nk decays faster than

a power law, while when α > 1, there emerges a single node which connects to
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nearly all other nodes. Other modifications of the model are the introduction of

aging of nodes [26], initial attractiveness of nodes [27], the addition or re-wiring of

links [28], the assignment of weights to links [29], etc.

We have attempted to construct more general growing network models featur-

ing two effects which have not been considered previously: (i) multiple species of

nodes [in real network systems, there may be different species of nodes with each

species having different properties (e.g., each species may have different probabili-

ties for adding new nodes and may also have different attachment probabilities to

the same node species and to other node species, etc.)]. (ii) initial link distributions

[i.e., when a new node is born, its number of links to old nodes is not necessarily a

constant number, but, rather, is characterized by a given probability distribution

pk of new links].

As an application of our model, we investigate the movie-actor network with

movies considered as nodes and actors as links (i.e., if the same actor appears in

two movies there is a link between the two movies [30]). Moreover, we consider

theatrical movies and made-for-television movies to constitute two different species.

4.2 Growing Network Model

We construct a growing network model which incorporates multiple species and ini-

tial link probabilities. Given an initial network, we create new nodes at a constant

rate. We let the new node belong to species j with probability Q(j) (
∑

j Q(j) = 1).

We decide how many links l the new node establishes with already existing nodes

by randomly choosing l from a probability distribution p
(j)
l . Then, we randomly

attach the new node to l existing nodes with preferential attachment probability

proportional to a factor A
(j,i)
k , where k is the number of links of the target node of
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species i to which the new node of species j may connect. That is, the connection

probability between an existing node and a new node is determined by the number

of links of the existing node and the species of the new node and the target node.

As for the single species case [25], the evolution of this model can be described

by rate equations. In our case the rate equations give the evolution of N
(i)
k , the

number of species i nodes that have k links,

dN
(i)
k

dt
=

S
∑

j=1

Q(j)k̄(j)

[

A
(j,i)
k−1N

(i)
k−1 − A

(j,i)
k N

(i)
k

]

∑

m

∑

k A
(j,m)
k N

(m)
k

+Q(i)p
(i)
k , (4.1)

where S is the total number of species and k̄(j) =
∑

l lp
(j)
l is the average number of

new links to a new node of species j, and t is normalized so that the rate of creation

of new nodes is one per unit time. The term proportional to A
(j,i)
k−1N

(i)
k−1 accounts

for the increase of N
(i)
k due to the addition of a new node of species j that links to a

species i node with k−1 connections. The term proportional to A
(j,i)
k N

(i)
k accounts

for the decrease of N
(i)
k due to linking of a new species j node with an existing

species i node with k connections. The denominator,
∑

m

∑

k A
(j,m)
k N

(m)
k , is a

normalization factor. If we add a new node with l initial links, we have l chances

of increasing/decreasing N
(i)
k . This is accounted for by the factor k̄(j) =

∑

l lp
(j)
l

appearing in the summand of Eq. (4.1). The last term, Q(i)p
(i)
k , accounts for the

introduction of new nodes of species i. Since all nodes have at least one link,

N
(i)
0 = 0.

4.3 Analysis of the Model

Equation (4.1) implies that total number of nodes and total number of links in-

crease at fixed rates. The total number of nodes of species i increases at the rate
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Q(i). Thus
∑

k

N
(i)
k = Q(i)t. (4.2)

The link summation over all species
∑

i

∑

k kN
(i)
k is twice the total number of links

in the network. Thus
S

∑

i

∑

k

kN
(i)
k = 2

〈

k̇
〉

t, (4.3)

where
〈

k̇
〉

=
∑

i

∑

k Q(i)kp
(i)
k =

∑

i Q
(i)k̄(i). Solutions of (4.1) occur in the

form(c.f., [25] for the case of single species nodes),

N
(i)
k = n

(i)
k t, (4.4)

where n
(i)
k is independent of t. Eq. (4.1) yields

n
(i)
k =

B
(i)
k−1n

(i)
k−1 + Q(i)p

(i)
k

(B
(i)
k + 1)

, (4.5)

where B
(i)
k is

B
(i)
k =

S
∑

j=1

Q(j)k̄(j) A
(j,i)
k

∑

m

∑

k A
(j,m)
k n

(m)
k

. (4.6)

To most simply illustrate the effect of spread in the initial number of links, we

first consider the case of a network with a single species of node and with a simple

form for the attachment Ak = A
(1,1)
k . In particular, we choose [25], Ak = k + c.

(Note that by Eq. (4.1) this is equivalent to Ak = ak + b with c = b/a.) Inserting

this Ak into Eq. (4.6), we obtain
∑

k(k + c)nk = 2
〈

k̇
〉

+ cQ and Bk = (k + c)/η,

where η = (2
〈

k̇
〉

+ cQ)/(Qk̄) = 2 + c/k̄ ≥ 2. (Note that
〈

k̇
〉

= Qk̄ for the single

species case.) Thus Eq. (4.5) yields

[(k + c)nk − (k + c − 1)nk−1] + ηnk = ηQpk. (4.7)

Setting pk = p1(k + c)−β, we can solve Eq. (4.7) for large k by approximating the

discrete variable k as continuous, so that

(k + c)nk − (k + c − 1)nk−1
∼=

d

dk
[(k + c)nk]. (4.8)
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Solution of the resulting differential equation,

d

dk
[(k + c)nk] + ηnk = ηQp1(k + c)−β, (4.9)

for nk with β 6= η+1 consists of a homogeneous solution proportional to (k+c)−(η+1)

plus the particular solution, [ηQp1/(η+1−β)](k+c)−β. For β = η+1 the solution

is nk = ηQp1(k + c)−(η+1) ln[d(k + c)], where d is an arbitrary constant. Hence, for

sufficiently large k we have nk ∼ k−(η+1) if β > η + 1, and nk ∼ k−β if β < η + 1.

Thus the result for β > η + 1 is independent of β and, for c = 0, coincides with

that give in Ref. [24] (η + 1 = 3 when c = 0). Solutions of Eq. (4.7) for nk versus

k in the range 1 ≤ k ≤ 104 are shown as open circles in Fig. 4.1(a) for initial link

probabilities of the form

pk =











p1k
−1 for 1 ≤ k ≤ 102

p1102(β̄−1)k−β̄ for k ≥ 102,
(4.10)

which are plotted as solid lines in Fig. 4.1(a). The values of β̄ used for the figure are

β̄ = 0.5, 1, 2, 3, 4, and ∞ (β̄ = ∞ corresponds to pk ≡ 0 for k > 102). For clarity nk

has been shifted by a constant factor so that n1 coincides with the corresponding

value of p1. Also, to separate the graphs for easier visual inspection, the value of

p1 for successive β̄ values is changed by a constant factor [since (4.7) is linear, the

form of the solution is not effected]. We note from Fig. 4.1(a) that nk follows pk

for k < 102 in all cases. This is as expected, since pk decreases slower than k−3 in

this range. Furthermore, nk very closely follows pk for k > 102 for β̄ = 0.5, 1.0, 2.0.

As β̄ increases deviations of nk from pk in k > 102 become more evident, and the

large k asymptotic k−3 dependence is observed. Thus, if pk decreases sufficiently

rapidly, then the behavior of nk is determined by the growing network dynamics,

while, if pk decreases slowly, then the behavior of nk is determined by pk.
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Figure 4.1: (a) nk and pk versus k for the single species network model. Solid lines

are the initial link probability pk and circles are the nk obtained from Eq. (4.7).

(b) n
(1)
k and n

(2)
k versus k for the two species network model. Circles (species 1)

and crosses (species 2) are log-binned data from our numerical simulation. The

total number of nodes in our numerical network system is 106. The dashed lines

are solutions obtained from (4.5) and (4.13).

To simply illustrate the effect of multiple species we now consider a growing

two species network with pk = δ1,k (i.e., pk = 0 for k ≥ 2). Then, Eq. (4.6)

becomes

B
(1)
k =

Q(1)A
(1,1)
k

∑

m

∑

k A
(1,m)
k n

(m)
k

+
Q(2)A

(2,1)
k

∑

m

∑

k A
(2,m)
k n

(m)
k

, (4.11a)

B
(2)
k =

Q(1)A
(1,2)
k

∑

m

∑

k A
(1,m)
k n

(m)
k

+
Q(2)A

(2,2)
k

∑

m

∑

k A
(2,m)
k n

(m)
k

, (4.11b)

where
∑

m represents summation of species 1 and 2 nodes.

In order to illustrate the model with our numerical simulations, we specialize

to a specific case. We choose attachment coefficients A
(1,1)
k = ak, A

(1,2)
k = ak,
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A
(2,1)
k = bk, and A(2,2) = 0. Thus a new species 1 node connects to either existing

species 1 nodes and species 2 nodes with equal probability, while a new species 2

node can connect to existing species 1 nodes only. Therefore, the first summation

term in Eq. (4.11),
∑

m

∑

k A
(1,m)
k n

(m)
k , becomes a

∑

k(kn
(1)
k + kn

(2)
k ), which is

a times the total increase of links at each time a × 2(Q(1) + Q(2)). Recall that

Q(1) + Q(2) = 1. In order to calculate the second summation term in Eq. (4.11),

∑

m

∑

k A
(2,m)
k n

(m)
k = b

∑

k kn
(1)
k , we define a parameter γ that is the ratio of the

total number of links of species 1 to the total number of links in the network.

Since the probability of linking a new species 1 node to existing species 1 nodes

is determined by the total number of links of species 1, this probability is exactly

same as γ. Thus, if we add a new species 1 node, the number of links of species

1 increases by Q(1) due to the new node and by γQ(1) due to the existing species

1 nodes that become connected with the new node, while the number of links of

species 2 increases by (1−γ)Q(1). But, if we add a new species 2 node, the numbers

of links increases by Q(2) for both species because a new species 2 node can link

to species 1 nodes only. Thus, the increase of species 1 links is (1 + γ)Q(1) + Q(2)

and that of species 2 links is (1− γ)Q(1) + Q(2). Since γ is the ratio of the number

of species 1 links to the total number of links, γ = [(1 + γ)Q(1) + Q(2)]/2 or

γ =
1

2 − Q(1)
. (4.12)

With this γ, Eq. (4.11) becomes

B
(1)
k =

Q(1)

2
k +

Q(2)(2 − Q(1))

2
k =

k

η(1)
, (4.13a)

B
(2)
k =

Q(1)

2
k =

k

η(2)
. (4.13b)

where obtain η(1) = 2/[Q(1) + Q(2)(2 − Q(1))] and η(2) = 2/Q(1).
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Proceeding as for the single species case, we approximate (4.5) by an ordinary

differential equation (c.f., Eq. (4.9)) to obtain n
(i)
k ∼ k−(1+η(i)). As an example, we

set Q(1) = Q(2) = 0.5, in which case Eqs. (4.13) give exponents 1 + η(1) = 2.6 and

1 + η(2) = 5. In Fig. 4.1(b) we plot, for this case, the analytic solution obtained

from (4.5) and (4.13) as dashed lines, and the results of numerical simulations as

open circles and pluses. The simulation results, obtained by histogram binning

with uniform bin size in log k, agree with the analytic solutions, and both show

the expected large k power law behaviors, n
(1)
k ∼ k−2.6 and n

(2)
k ∼ k−5.

4.4 The Movie-Actor Network

We now investigate the movie-actor network. We collected data from the Internet

Movie Data Base (IMDB) web site [31]. The total number of movies is 285,297 and

the total number of actors/actresses is 555,907. Within this database are 226,325

theatrical movies and 24,865 made for television movies. The other movies in the

database are made for television series, video, mini series, and video games. In

order to get good statistics, we choose only theatrical and television movies made

between 1950 to 2000. Thus we have two species of movies. We also consider only

actors/actresses from these movies. We consider two movies to be linked if they

have an actor/actress in common [32]. We label the theatrical movies species 1,

and the made for television movies species 2.

In order to apply our model, Eq. (4.1), we require as input Q(j), p
(j)
k and

A
(j,i)
k which we obtain from the movie-actor network data. For simplicity, we

assume these quantities to be time-independent [33]. We take Q(1) and Q(2) to be,

respectively, the fractions of theatrical and made for television movies in our data

base. We obtain Q(1) = 0.83 and Q(2) = 0.17. We now consider p
(j)
k . Suppose
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Figure 4.2: The initial link probability distributions pk of (a) theatrical movies and

(b) television movies. These plots are obtained using bins of equal width in log k

and dividing the number of nodes in each bin by the product of the bin width in

k (which varies from bin to bin) and the total number of nodes.

a new movie is produced casting r actors. For each actor s (s = 1, 2, ..., r) let ls

denote the number of previous movies in which that actor appeared. Then the

total number of the initial links of the new movie is
∑

s ls. From histograms of

this number, we obtain (Figs. 4.2) the initial link probability distributions p
(j)
k .

The attachment A
(j,i)
k can be numerically obtained from data via,

A
(j,i)
k ∼

〈∆(j; i, k)〉

δt
, (4.14)

where ∆(j; i, k) is the increase during a time interval δt in the number of links

between old species i nodes that had k links and new species j nodes, and < ... >

is an average over all such species i nodes [34]. In the movie network, we count all

movies and links from 1950 to 1999, and measure the increments in the number

of links for a δt of one year. We obtain attachment coefficient A
(1,1)
k ∼ 0.10k0.59
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Figure 4.3: Attachment coefficients for theatrical movies (a) A
(1,1)
k and (b) A

(1,2)
k ,

and for television movies (c) A
(2,1)
k and (d) A

(2,2)
k . All data are obtained using

log-binning without normalization (see caption to Fig. 4.2).

and A
(1,2)
k ∼ 0.04k0.85 for theatrical movies, and A

(2,1)
k 0 ∼ 0.02k0.71 and A

(2,2)
k ∼

0.04k0.77 for television movies. See Fig. 4.3.

Incorporating these results for Q(i), p
(i)
k and A

(j,i)
k in our multi-species model,

Eq. (4.1), we carry out numerical simulations as follows: (i) We add a new movie

at each time step. We randomly designate each new movie as a theatrical movie

with probability Q(1) = 0.83 or a television movie with probability Q(2) = 0.17. (ii)
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Figure 4.4: The probability distributions n
(i)
k of movies that have k links; (a)

theatrical movies n
(1)
k and (b) television movies n

(2)
k . Dots are n

(i)
k obtained from

the movie network while circles are from numerical simulation using Q(j) obtained

from our data base, p
(j)
k in Fig. 4.2 and A

(j,i)
k in Fig. 4.3. All data are obtained

using log-binning (see caption to Fig. 4.2).

With initial link probability p
(j)
k , we randomly choose the number of connections

to make to old movies. (iii) We then use the attachment A
(j,i)
k to randomly choose

connections of new species j movie to old species i movies. (iv) We repeat (i)-(iii)

adding 100,000 new movies, and finally calculate the probability distributions of

movies with k links.

Figure 4.4 shows n
(i)
k versus k obtained from our movie-actor network data

base (dots) and from numerical simulations using Eq.(4.1) (open circles) with our

empirically obtained results for Q(j), p
(j)
k , and A

(j,i)
k . The results are roughly con-

sistent with the existence of two scaling regions [35]. For small k (k . 102) the

two species exhibit slow power law decay with different exponents, n
(1)
k ∼ k−0.5,
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n
(2)
k ∼ k−0.2, while for large k the probabilities decay much more rapidly. Indeed,

the results of [25] suggest that the decay should be exponential for large k since the

attachment A
(j,i)
k grow sub-linearly with k. We showed in Sec. 4.3 for the single

species model with a linear attachment Ak ∼ k that nk follows pk when pk decays

slowly, while nk is independent of pk when pk decays sufficiently quickly. As we will

later show, this feature is also applicable to multi-species networks with nonlinear

attachments. As seen in Figs. 4.5(a) and 4.5(b), n
(i)
k follows p

(i)
k in the small k

region. However, it is not clear whether n
(i)
k follows p

(i)
k in the large k region. In

order to check the behavior of n
(i)
k in this region, we carried out another numerical

simulation using an initial link probability p̄
(i)
k which is cut off at k = 50. That is,

p̄
(i)
k = p

(i)
k /

∑

p̄
(i)
k when k ≤ 50 and p̄

(i)
k = 0 when k > 50. Using p̄

(i)
k in place of p

(i)
k ,

we obtain from our simulation corresponding data, n̄
(i)
k versus k, which are shown

in Figs. 4.5(c) and 4.5(d) as filled in circles. For comparison the data for n
(i)
k from

Figs. 4.5(a) and 4.5(b) are plotted in Figs. 4.5(c) and 4.5(d) as open circles. It is

seen that the cutoff at k = 50 induces a substantial change in the distribution of

the number of links for k > 50. Thus it appears that, in the range tested, the large

k behavior of the movie-actor network is determined by the initial link probability

p
(i)
k rather than by the dynamics of the growing network.

4.5 Summary

In this chapter we propose a model for the evolution of the distribution n
(i)
k of

links k per node of i species: a growing multi-species network with variable initial

link probabilities p
(i)
k . We have analyzed our model in two extreme cases. In

the case of a network with a single species of nodes, we found that the behavior

of nk is determined by the growing network dynamics if pk decreases sufficiently
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Figure 4.5: (a) and (b) are n
(i)
k (circles) obtained from numerical simulations using

p
(i)
k (dashed lines), while (c) and (d) show n

(i)
k from (a) and (b) (open circles) plotted

with results denoted n̄
(i)
k (filled circles) from simulation using a cutoff initial link

probability p̄
(i)
k (where p̄

(i)
k = p

(i)
k /

∑

p̄
(i)
k when k ≤ 50 and p̄

(i)
k = 0 when k > 50).

All data are obtained using log-binning (see caption to Fig. 4.2).

rapidly, while the behavior of nk is determined by pk if pk decreases slowly. In

the case of a network with two species of nodes with pk = δ1,k, we found that the

attachment coefficients determine the behavior of n
(i)
k . In particular, each species
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may show different power law behaviors. We have also investigated the movie-

actor network as an example. We believe that the effect of multiple species nodes

may be important for modeling other complicated networks (e.g., the world wide

web can be divided into commercial sites and educational or personal sites). We

also conjecture that the initial link probability is a key feature of many growing

networks.
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