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Abstract 

Using frozen hydrogen particles to observe rotating and  
quantized flows in liquid helium 

 
Gregory P. Bewley 

2006 

We present a novel technique for tracing liquid helium flows, and use this 

technique to make observations of fluid dynamics in both the normal fluid and the 

superfluid phases of liquid helium.  To visualize fluid motions, we create a suspension of 

frozen hydrogen particles with diameters on the order of one micron.  We show 

theoretically that the hydrogen particles we generate can be used to make quantitative 

measurements of local flow velocities in turbulent liquid helium, and that these particles 

are the only ones we know of that are suitable for this purpose.  In experimental work, we 

use the particles in normal liquid helium to examine the effect of the Coriolis force on the 

decay of classical turbulence using the Particle Image Velocimetry technique (PIV).  We 

observe grid-generated turbulence in a steadily rotating frame and find that the evolution 

of the flow depends intimately on boundary conditions because of the production in the 

fluid of standing inertial wave modes of the container.  Separately, we present what are 

very probably the first documented images of the cores of quantized vortices residing in 

the superfluid phase of liquid helium.  Filaments we observe in the fluid are probably 

formed by the particle-trapping action of the quantized vortices.  Although others have 

speculated how particles in superfluid helium could act as passive tracers of a flow, as 

they do in the normal fluid, our images indicate that the presence of particles in the 

superfluid may transform the topology of vortex tangles by stabilizing forks in the 

vortices.   
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Chapter 1 

Introduction 

 

A common objective unites the results presented in this dissertation: to make 

quantitative measurements of local flow velocities in liquid helium.  Liquid helium is an 

interesting test fluid for at least two reasons.  First, its viscosity is the smallest of all 

fluids, and second, it undergoes a phase transition to a superfluid state as it is cooled to 

very low temperatures.  As is well known, however, the material properties of liquid 

helium present challenges to the realization our objective.  In this chapter, we introduce 

the motivations for our experiments and the fundamental problems surmounted.   

We present a novel technique for tracing liquid helium flows, and use this 

technique to make observations of fluid dynamics in both the normal fluid and the 

superfluid phases of liquid helium.  To visualize fluid motions, we create a suspension of 

frozen hydrogen particles with diameters of the order of one micron.  Using these 

particles, we measure the decay rate of grid-generated turbulence at a higher Reynolds 

number than those reported earlier.  We also present what are very probably the first 

documented images of the cores of quantized vortices residing in the superfluid phase of 

liquid helium.  Filaments we observe in the fluid are probably formed by the particle-

trapping action of the quantized vortices.   
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Another uniting theme in this work is system rotation, which we use to observe 

the effect of the Coriolis force on the decay of classical turbulence, as well as to establish 

an interpretation of the particle-decorated filaments as quantized vortices in the 

superfluid phase of liquid helium.  In normal liquid helium, we observe grid-generated 

turbulence and find that container-sized scales of motion affect the evolution of both 

stationary and rotating turbulence, although such large scales are often ignored in 

experimental studies.  In particular, in a steadily rotating frame of reference we conclude 

that the evolution of the flow depends intimately on boundary conditions.  These results 

preclude experimental verification of general statements about homogeneous rotating 

turbulence.   

 

1.1  Scales of turbulent motion 
We approach our investigation from the perspective of classical turbulence.  The 

momentum equation governing the motions of a Newtonian fluid may be written as  

∂u/∂t + u · u = − P + 2u / Re,  (1.1.1) 

where u = u(x, t ) is the velocity field, which is a function of time, t, and space, x, and P 

is the pressure.  Combinations of U and L, the velocity and length scales characteristic of 

the flow, normalize all variables which results in the appearance in the equation of  

Re = UL /ν,  (1.1.2) 

the Reynolds number, where ν is the fluid’s kinematic viscosity.  Equation (1.1.1) is the 

Navier-Stokes equation, which, in conjunction with a statement about the conservation of 

mass, · u = 0, fully specifies the evolution of incompressible fluid motions, subject to 

the appropriate initial and boundary conditions.   
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Turbulence is often viewed as a collection of superimposed unsteady fluid 

motions occurring on a wide range of length scales (Frisch 1995).  The largest scales are 

shaped by the forcing mechanism of turbulence; it is at these scales that kinetic energy is 

typically ‘injected’ into fluid motions.  The largest scales are thought to evolve as in an 

inviscid fluid, and break up into successively smaller scales.  The process continues until 

the action of viscosity on a motion of a particular scale becomes significant, and energy is 

removed from the flow as heat.  By assuming that the behavior of the smallest scales are 

governed entirely by viscosity and the rate of energy dissipation, ε = −dE/dt, of the 

flow’s average kinetic energy per unit mass, E, Kolmogorov (1941) arrived at a measure 

of the smallest scales of motion:  

η = ν¾/ε¼.   (1.1.3) 

The Reynolds number, in this context, gauges the separation of the large and small scales, 

and governs the extent to which different length scale regimes of the flow can be 

considered statistically independent.  Frisch (1995) gives a more detailed introduction.   

 

1.2  Benefits of helium as a test fluid 

1.2.1  Classical hydrodynamics 

There is interest in data acquired at high Reynolds numbers, as it is only in this 

regime that certain statistics of the flow are expected to exhibit predictable scaling.  The 

argument for using liquid helium in experimental studies of fluid dynamics centers on its 

low kinematic viscosity, which is 40 times lower than that of water at room temperature, 

and lower than that of any other known fluid.  The properties of liquid helium are 

compared to common fluids in figure 1.1.  As can be judged from equation (1.1.2), 
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helium’s low viscosity enables flows with large Reynolds numbers to be generated on 

physical scales more easily realizable in the laboratory.  This property, along with others 

such as the large thermal expansion coefficient of cold gaseous helium, has led several 

research groups to pursue fluid dynamics experiments using helium (Skrbek et al. 1999, 

Sreenivasan and Donnelly 2001, Skrbek 2004, Niemela and Sreenivasan 2006).   
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Figure 1.1:  Viscosity and density for various fluids.  All properties are given at 

atmospheric pressure.  The properties of air are given at room temperature.  For liquid 

nitrogen and liquid helium, they are given at their boiling points, 77 K and 4.2 K, 

respectively.   

 

1.2.2  Quantum hydrodynamics  

Liquid helium undergoes a phase transition to a state exhibiting properties 

characteristic of a superfluid, as it is cooled below 2.177 K.  Using liquid helium, we may 

study behavior governed by quantum mechanics exhibited on a macroscopic scale.  In 

particular, there exist vortices with quantized circulation and a core diameter of the order 

of an angstrom, extending in length for many millimeters (Donnelly 1967).   
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Since the discovery of quantized vortices 50 years ago, scientists have prodded 

the coldest phase of liquid helium knowing that it contains distinct and enduring 

structures whose geometry they could only imagine.  No one has succeeded in visualizing 

the three-dimensional shape of quantized vortices.  It is a remarkable testament to the 

ingenuity of low temperature scientists that so much has been learned about quantum 

hydrodynamics without the flow visualizations and velocity measurement techniques that 

are routine in classical hydrodynamics.   

Quantized vortices are a close approximation to ideal line vortices, and a turbulent 

state of vortices has been studied analytically and numerically as such a system (e.g., 

Schwartz 1988).  Recently, however, it has been recognized that turbulence in superfluid 

helium appears on the large scale very much like classical turbulence, with the same 

scalings in frequency spectra and the same energy decay law (Maurer and Tabeling 1998 

and Smith et al. 1993).   

 

1.3  Available techniques for velocity measurement 

Direct observations of fluid dynamics in liquid helium are scarce because, aside 

from the technical difficulty of working at low temperatures, there are only a limited 

number of available measurement techniques.  Several research groups are adapting 

techniques used in common fluids to cryogenic ones.  These efforts include the 

adaptation of particle image velocimetry (PIV) by White et al. (2002) and Zhang and Van 

Sciver (2005), laser Doppler velocimetry (LDV) by Nakano and Murakami (1992), and 

hot wires by Castaing et al. (1992).  An additional technique called particle tracking is a 

promising alternative to PIV, although it has not been implemented in cryogenic fluids 
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(see Voth et al. 2002 who used it to measure the accelerations of particles in water).  

Adapting each of the tools poses a technical challenge, primarily because the use of 

cryogenic fluids requires great improvement in the spatial resolution of the probe.   

Following the example of our predecessor (White 2001), we pursue the 

development of PIV as a tool for observing the motions of liquid helium.  PIV allows 

large amounts of data to be gathered quickly and yields direct information about spatial 

structure that cannot be attained by other techniques.  PIV requires that a suitable passive 

tracer particle be found, which would also be useful for LDV or particle tracking.   

 

1.4  The difficulties of observing liquid helium flows  

1.4.1  Small length scales  

The same property, low viscosity, which makes liquid helium valuable for 

generating a high Reynolds number flow also makes the observation of its fluid motions 

difficult.  Increasing the Reynolds number of a flow without increasing its overall size 

forces the small scales to shrink.  The statement can be clarified by expanding in (1.1.3) 

the dissipation, ε.  By dimensional arguments, dissipation is proportional to U 3/L at large 

Reynolds numbers, where L is a characteristic measure of the large scales, and is 

therefore independent of viscosity (e.g., Sreenivasan 1984).  It is then seen that the small 

scale given by (1.1.3), and usually referred to as the Kolmogorov scale,  

η = ν¾/ε¼ ~ (ν3L /U 3)¼,  (1.4.1) 

shrinks with decreasing viscosity and with increasing U, for fixed L.  In order to resolve 

all scales of motion, our measurement probe must correspondingly shrink in size.  For 
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conditions typical in our apparatus, flow velocities are about 2 cm/s and the length scale, 

L, is about 0.5 cm, so that the Kolmogorov scale, η, is about 10 μm.   

 

1.4.2  Particle suspensions 

PIV is typically used to infer the velocity of a fluid from the motion of particles, 

in which case we require that the velocity of the particle be close to the local fluid 

velocity in the absence of the particle.  For making velocity measurements of the more 

common fluids, water and air, the choice of tracer particle is most frequently limited by 

imaging requirements.  The particle must be large enough that it can be imaged with the 

available illumination and detection equipment.  In cryogenic fluids such as liquid 

helium, there are at least three additional complications.   

First, the low viscosity of liquid helium demands that we be careful when 

considering the fidelity with which the particle follows the fluid motions.  In order for a 

particle successfully to trace the fluid, the size of the particle must be small, as already 

hinted in the previous section.  In fact, for solid particles made of readily available 

materials, the required particle size approaches the wavelength of visible light (about 

0.5 μm).  Such small particles are difficult to detect optically, since the light scattered by 

a particle diminishes dramatically with its size (Mie scattering).   

Second, the low density of liquid helium, which at its boiling point is one eighth 

that of water, compounds the problem of small viscosity.  This is because almost all solid 

materials known to us are significantly denser than liquid helium; many of the materials 

commonly considered less dense are porous, and it is difficult to manufacture very small 

particles that are porous.  A particle made of a dense material will sink.  In many cases, 
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this settling velocity is higher than it would be in air, despite the lower density of air.  We 

use hydrogen to make particles because the density of its solid, 0.088 g/cc, is within 50% 

of the density of liquid helium.   

Finally, we shall see that because liquid helium is non-polar and below the glass 

transition temperature of polymers, the usual methods of overcoming the mutual 

attraction of particles fail.  In water, researchers use surfactants to disperse particles, but 

none exist for liquid helium.  The particles inevitably form clusters that are too large to 

trace the flow accurately.  Our small hydrogen particles, however, permit us a window in 

time during which aggregation has not progressed to an unacceptable level.   

 

1.5  Summary 

The problem of demonstrating the feasibility of PIV in liquid helium lies 

primarily in the manufacture of suitable particles.  Although our predecessors have made 

progress, the need remains to develop a satisfactory tracer particle.  We mean this in the 

sense that further work is necessary in order that the measurement of particle velocities in 

liquid helium can be used to answer basic questions about turbulence dynamics.  We 

have found a solution by generating small frozen hydrogen particles.   

After the description of the experimental apparatus in chapter 2, the rest of the 

thesis is divided into four parts.  In chapter 3, we establish the need for new tracer 

particles and describe our technique for generating them.  In chapter 4, we show that 

measurements of particle velocities produce results generally consistent with expectations 

for decaying grid turbulence.  In chapter 5, we introduce rotating flows and the previous 

experimental efforts to observe rotating homogeneous turbulence.  We use the hydrogen 
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particles and PIV to demonstrate the presence of standing inertial waves whose 

frequencies are determined by the geometry of the container.  Finally, in chapter 6, we 

introduce superfluidity and present pictures of thin filaments that we argue are the first-

ever outlines of quantized vortex cores in a three-dimensional and random environment.   
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Chapter 2 

Apparatus and methods 

 

We now describe the apparatus common to all the investigations presented in this 

thesis, and offer an introduction to PIV.  Our apparatus allows the generation of intense 

turbulence and rapid rotation simultaneously.  The outside radius of the vessel containing 

the fluid is no more than 15 cm, yet we are able to generate flows with Reynolds numbers 

approaching the highest ones observed using a grid in an inertial frame.  The small size 

enables easy mechanical rotation so that the Rossby number (non-dimensional inverse 

rotation rate) can be quite small.  Much of the data we collect from the flows we generate 

is processed using PIV.  Other methods and further details specific to particular 

experiments are described in their respective chapters.   

 

2.1  The apparatus 

The cryostat, grid, and linear motor actuator are largely the same as used by 

White et al. (2002), and are described in White’s thesis (2001).  We review these 

systems, as well as an air bearing, camera, laser and optics installed for the current 

investigations.   
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Figure 2.1:  A picture of the apparatus showing the cryostat that rotates about the 

vertical axis on an air bearing, along with the camera and associated electronic 

equipment.  Also shown are the linear motor that draws a grid through the channel inside 

the cryostat, and the optics used to illuminate particles suspended in the fluid.  The 

cryostat is about one meter tall.   
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2.1.1  The cryostat 

At the center of the experimental apparatus is a cryostat designed to hold liquid 

helium in a cell that can be accessed optically.  The liquid helium can be maintained at 

pressures from slightly above atmospheric to vacuum and at temperatures from 4.2 K 

down to around 1.5 K.  The cryostat, whose vertical cross section is shown in figure 2.2, 

is modified from a standard Janis product.  The Janis cryostat has a 6 L reservoir at its 

core, and is jacketed by a 7 L annular reservoir for holding liquid nitrogen.  The inner-

most helium reservoir and the liquid nitrogen jacket are not mechanically joined, except 

where each is fixed along its upper perimeter to the top plate of the cryostat.  The vessels 

are suspended in a vacuum of about 10−5 Torr, in order to minimize heat transfer from the 

lab.  The vacuum is thought substantially to improve with the introduction of liquid 

helium to the cryostat, by the action of cryo-pumping (O’Hanlon 2003).   

 

2.1.2  The cooling protocol  

In order to perform an experiment, the vacuum jacket is first evacuated for up to a 

week using a mechanical vane-type pump and a turbo pump in series.  Concurrently, the 

helium reservoir of the cryostat is evacuated using a separate pump, and refilled with 

helium gas.  The process of evacuating and flushing the central reservoir is repeated 

several times to ensure that foreign gases will not condense and obscure the optical 

windows upon cooling of the cryostat.  Subsequently, the nitrogen jacket is filled with 

liquid nitrogen from a storage Dewar.  The helium reservoir cools for 24 hours through 

the vacuum space separating it from the liquid nitrogen jacket, and is supplied with 

helium gas to replenish the contracting gas.  Using liquid nitrogen in this way to cool the 



 13

cryostat conserves liquid helium, which is much more expensive.  Pumping of the 

cryostat’s vacuum jacket may continue until the cryostat is cooled with liquid helium, 

then the insulating vacuum space must be sealed.  Finally, liquid helium is introduced 

into the central reservoir from a storage Dewar.  The process of cooling the cryostat to 

liquid helium temperature expends about 20 L of liquid.  An additional 10 L are 

consumed each day to replenish the reservoir.  The cryostat may also be used with liquid 

nitrogen at its core.  In this case, liquid nitrogen is poured directly into the central 

reservoir, instead of liquid helium, all other steps being performed in the same manner.   

 
Figure 2.2:  The drawing shows the interior of the cryostat.  At the core is the 5 cm 

square channel through which we draw a grid.  The main helium reservoir above it, as 

well as the annular liquid nitrogen jacket and outer wall of the cryostat each have circular 

horizontal cross sections.  Between each concentric vessel is a common vacuum space.   
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2.1.3  The channel 

To the bottom of the helium reservoir is fixed a custom sample cell that was 

designed by Joe Vinen and Joe Niemela and built by Steve Predko at the University of 

Oregon for studying grid-generated turbulence.  As shown in figure 2.2, the cryostat is 

fitted at its core with a 25 cm long channel with a 5 cm by 5 cm square cross section.  

This channel communicates with the main liquid reservoir through a 1.5 mm tube, which 

allows it to remain full of liquid, as long as the reservoir liquid level is high enough.  

Windows on each face, 10 cm from the bottom of the channel, have an optical aperture of 

2.5 cm.  To generate turbulence, a grid is drawn along the length of the channel by means 

of a long stem exiting to the lab.  Two additional long tubes, parallel to the one 

containing the grid stem, provide access to the experimental chamber.   

 

 
Figure 2.3:  An illustration of the grid shows its mesh spacing, M, and the grid stem by 

which it is pulled through the channel.   

 

2.1.4  The grid 

The grid we used for the bulk of our experiments is made of bars with square 

cross section.  The grid is of biplane construction with orthogonal sets of bars lying on 
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top of each other in two layers.  The spacing between the centerlines of bars, M, is 

7.15 mm.  The width of the bars is such that the solidity of the grid, or the ratio of area 

occluded by the grid to the total cross sectional area of the channel, is 0.37.  This ratio 

was chosen to be similar to the solidity of grids used in historical experiments.  The 

distance from the centerline of the first bar from each edge is one half of the mesh 

spacing, ½M.   

 

2.1.5  The linear motor  

We actuate grid motion with a linear motor built by Trilogy Systems that is driven 

by a programmable computer manufactured by Parker Automation.  The linear motor is 

capable of large accelerations and velocities of several meters per second.  We typically 

initiate the grid motion using an acceleration of 4 g, followed by a period at a constant 

velocity up to 2 m/s, and ending in a 4 g deceleration.  In this way, the grid moves at a 

constant velocity for about 80% of its 10 to 15 cm trajectory along the channel.  The grid 

moves above the window by the same distance that it was initially below the window.   

The linear motor controller is also responsible for the timing of the experiment.  

This typically includes actuating an agitation of the particle suspension or stirring of the 

fluid, followed by a period of time to allow the flow to relax, executing the grid motion 

described above, and sending a signal to the camera controller to record the decay of 

turbulent motions.   

 

2.1.6  Air bearing  

The cryostat and camera are mounted on an air bearing manufactured by Pneumo 
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Precision, Inc.  Using 200 to 350 kPa (gauge) of air pressure, the equipment is suspended 

and confined to rotate about an axis fixed to within microns with very little friction or 

vibration.  The cryostat rotates freely about its symmetry axis along with other equipment 

including a camera.  Rotation rates of up to 2 Hz are achieved by limiting the voltage 

applied to a 24 VDC motor.  All of the rotating equipment is electronically self-

contained, and operates without a tether to the lab, without slip rings.   

 

2.1.7  Camera 

We use a Phantom v5.0 camera with 1 GB of onboard memory and a square, one 

megapixel CMOS sensor.  Pixels are 16 μm across, and we use a 105 mm Nikon macro 

lens with a magnification of one.  The camera observes an area of dimension 1.6 ×1.6 cm, 

representing about one third of the width of the channel, and more than twice the grid’s 

mesh spacing.   

The camera collects and stores 1012 image frames at up to 1000 frames per 

second.  The camera can also be slaved to an external trigger, with time between triggers 

varying from 1 ms to 50 ms.  Using a single board computer and a program that triggers 

the camera, we are able to choose arbitrarily the time between each movie frame and the 

next, and vary this inter-frame time continuously over the course of an individual movie.  

In this way, we can tailor the inter-frame time to the instantaneous time dynamics of the 

flow.  This, in turn, optimizes the quality of the resultant PIV data, and maximizes the 

total length of time a limited number of frames will span.  In the rotating frame, the 

signal for the computer to start triggering the camera is delivered by a phototransistor 

aimed at a ring of infrared light emitting diodes (LEDs) fixed in the lab frame.  The LEDs 
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are illuminated according to a signal provided by the programmable linear motor 

controller described in section 2.1.5; the linear motor controls the timing of the 

experiment.   

 

2.1.8  Laser and optics 

An argon ion laser illuminates suspended particles.  The laser can deliver up to 

6 W of polychromatic light, with two dominant wavelengths in the blue and green colors.  

The illuminating volume of light is shaped by lenses that expand the 2 mm beam in the 

vertical direction and focusing it in the horizontal direction, forming a thin sheet with 

almost constant intensity across its height of 1.5 cm.  The camera is aimed at the thinnest 

portion of the sheet.  The beam from an argon ion laser, such as the one we are using, is 

nearly Gaussian in profile and can be focused tightly.  According to Gaussian optics, the 

width of the waist of a focused beam is  

do = 2λf / πw,  (2.1.1) 

for λ, the wavelength of the light, f, the focal length of the optics, and w, the radius of the 

input beam.  For our laser and optics, do = 100 μm, though we expect imperfections in 

the beam and lenses to yield a slightly larger width in practice.   

In order to provide illumination that is stationary in the rotating frame, we transfer 

the beam to optics on the rotating table by passing it vertically along the axis of rotation, 

as depicted in figure 2.4.  A mirror on the rotating table collects the beam, and the sheet 

is formed in the rotating frame.  The beam is carefully aligned with the axis of rotation 

using two pinholes in the rotating frame, until we observe by eye that the beam does not 

wander when the table is rotated.  In practice, the alignment can be accomplished to 
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within about 100 μm.  Because the reflectivity of mirrors depends on the angle of its 

surface relative to the polarization of the reflected light, we circularly polarize the laser 

beam with a quarter-wave plate.  This ensures that the beam intensity remains constant as 

the apparatus rotates.   

 
Figure 2.4:  The line traces the path of the laser beam, and the circles represent mirrors.  

All fixtures below the air bearing are fixed to a table; everything above the air bearing 

rotates together, including the beam when it is carefully aligned with the axis of rotation.   

 

2.2  Particle image velocimetry  

2.2.1  Brief description  

Particle image velocimetry (PIV) is a technique for extracting the velocities of 

particle ensembles from images of particles captured at successive times; see Raffel et al. 

(1998).  Typically, velocity vectors are computed for each of a set of small sub-regions of 

a larger image.  The method is widely used, because of the relative simplicity of its 

implementation and the analysis of the resultant data.   

In our realization, separate images of particles in a fixed volume are made at 

successive times.  As illustrated in figure 2.5, the images are broken into smaller square 

regions, which we call interrogation areas.  Two interrogation areas at a particular 
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location in space, from images taken at successive times, are compared to find how the 

particles have moved in the time between the acquisitions of each image.  In this way, 

PIV yields a velocity vector, u(x,y) = u(x,y)êx + v(x,y)êy, for a series of points located at 

some value of x in the horizontal direction, êx, and y in the vertical direction, êy.   

 
Figure 2.5:  Examples of two images taken at successive times are shown at the top left.  

Small regions are taken from the images, called interrogation areas.  The cross-

correlation of the interrogation areas is computed, shown in the top right.  The location of 

the peak gives the relative offset, Δx, of the particles between the two interrogation areas.  

A vector is assigned to the center of the interrogation area, whose magnitude and 

direction are given by Δx/Δt.  This calculation is repeated for a chosen set of pairs of 

interrogation areas in the two images.   

 

The comparison of two interrogation areas is done by cross correlation.  That is, 

one interrogation area is shifted with respect to the other, in the plane, and the correlation 

coefficient is computed.  The correlation coefficient is computed for all possible relative 
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shifts of the interrogation areas.  In practice, this operation is done in Fourier space, 

where it can be done more efficiently.  The assumption is that for a large enough 

collection of particles, the maximum correlation will occur when the interrogation area is 

shifted by the opposite of the mean particle displacement in the area, −Δx.  This 

maximum presents itself as a peak in the cross-correlation plane.  A further refinement of 

the peak’s location can be made by fitting the peak with some model function, and using 

the peak of the model function.  The velocity assigned to the center of the interrogation 

area is Δx/Δt, where Δt is the time between the two images.  Velocity vectors are found 

for every interrogation area pair in the pair of images.   

 

2.2.2  PIV data processing  

Several special characteristics of our implementation are noted here.  We have 

employed additional refinements to the basic PIV algorithm.  These include multiplying 

adjacent correlation planes, and writing our code to exploit the multithreading capability 

of a 128 processor computer.   

The multiplication of correlation planes adjacent in space enhances signal to noise 

by accentuating the peak we seek relative to spurious correlations.  The displacement of 

particles in adjacent interrogation areas is highly correlated, because the interrogation 

areas are much smaller than the energetic scales of turbulent motion, whereas the 

spurious correlations between mismatched particles are random.  We use the position of 

the peak in the product plane to localize our search for a peak in the correlation planes of 

the individual interrogation areas.  The peak location, and Δx, are then computed from 

these individual (un-multiplied) correlation planes, as in normal PIV.   
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A multi-pass algorithm is used, where successive passes shift one of the pair of 

interrogation areas by the expected particle displacement, predicted by the previous pass.  

This minimizes the number of unpaired particle images that appear in the interrogation 

areas, and strengthens the correlation peak.  Successive passes are made at higher 

resolutions, with the first pass’s interrogation area being a 96 pixel square, the subsequent 

one having 48 pixels on a side, and the last, 24 pixels, for example.   

Because of the large number of images we produce with the high speed camera, 

we require that data processing be done at high speed.  A typical day of data collection 

results in 20 to 30 GB of image data.  We wrote a flexible multithreaded PIV algorithm 

that runs on an in-house 128 processor SGI/Cray supercomputer.  The code was written 

using OpenMP in the C programming language, and distributes the task of performing 

correlations among the processors.  The code performs multi-pass PIV with several error 

checking schemes and a noise filter at a rate of about 5 image pairs per second on 24 

processors, or about 3.5 min/GB.  This compares with 12 hrs/GB on a desktop PC.  This 

speedup is also crucial for improving data quality, since we can adjust the conditions of 

the experiment using the quick quantitative feedback of the PIV analysis.   

 

2.2.3  Limitation of the PIV technique at high Reynolds numbers 

The effective probe size, or resolution, inherent in PIV is better stated as the 

interrogation area size, rather than the particle size.  We have suggested that the particle 

itself should be smaller than all fluid length scales in order to be able to trace it 

accurately, an idea that is discussed in detail in chapter 3.  In order for our PIV 

measurement to be a faithful representation of the fluid motion, we may also require that 
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the volume of fluid and particles used to construct each vector be smaller than the 

smallest length scales in the flow, the Kolmogorov scale, η, see (1.4.1).  We do not meet 

this condition in the present measurements, but we can obtain useful data as we shall 

illustrate subsequently.  In addition to the constraints on the particles discussed in 

chapter 3, we require that the particle volume fraction be low enough that it does not 

affect the fluid’s physical properties.  However, we must introduce enough particles that 

the PIV algorithm finds a sufficient number in each small patch of an image to assess 

their displacement.  A typically accepted upper bound for the volume fraction of particles 

is 10−5.  In order to resolve η by using an interrogation area with linear dimension η/5, 

we must find five particles therein, and the particles’ maximum diameter can easily be 

found to be limited at about 20 nm.  Such a particle is difficult to detect optically, since it 

scatters very little light.  For this reason, PIV may in principle not be the appropriate 

technique for making accurate measurements of highly turbulent flows in liquid helium.  

However, the particles we introduce in chapter 3, while not small enough to allow 

resolution of the Kolmogorov scale, are useful for other techniques, such as individual 

particle tracking.   
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Chapter 3 

Particle selection 

 

Here we discuss the selection of particles suitable for turbulence measurements in 

liquid helium.  We outline a method for judging a particle in terms of its ability 

accurately to trace a fluid flow.  According to these conditions, we survey and evaluate 

commercial particles and previous work to establish that we must develop a new particle 

that is satisfactory for use as a tracer in liquid helium.  Although a parallel effort at 

Florida State University (Zhang et al. 2004) has recently produced a similar review, we 

answer several important questions in more detail including particle characterization and 

behavior in a cryogenic fluid.  In addition to specific guidelines useful for future 

researchers, we offer what we believe is the first practical solution to the problem of 

quantitatively tracing the motion of liquid helium using particles.  In order to do so, we 

develop a method to generate a mist of solid hydrogen particles.   

 

3.1  Tracer particle fidelity 

3.1.1  A method to evaluate a particle as a fluid tracer 

The dynamics of a particle in an unsteady flow and its evaluation as a faithful 

fluid flow tracer have been studied extensively (e.g., Mei 1996).  As has been suggested 
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before (White 2001), we consider the fidelity with which a particle follows the fluid flow 

to be measured by two parameters, the Stokes number and the Froude number.  These 

follow from an approximation to the equation of motion of the particle, whose full form 

is proposed by Maxey and Riley (1983).   

Consider that a particle’s inertia is balanced by the sum of the buoyancy force and 

the drag proportional to the velocity difference between the particle and the fluid.  This 

simple description yields the following equation for the change in momentum of a 

particle, with velocities and time normalized to characteristic scales of the flow, ufluid and 

τfluid respectively:  

τparticle / τfluid ∂v/∂t = usettle / ufluid − (u − v).   (3.1.1) 

For the velocity difference between fluid and particle, u − v, this equation may be written 

as  

u − v = Fr − St ∂v/∂t,   

with St = τparticle / τfluid,  (3.1.2) 

and Fr = usettle / ufluid,  

where St is the Stokes number, measuring the importance of the particle inertia, and Fr is 

the Froude number, measuring the importance of the particle settling velocity.  We infer 

from the above relation that the fractional error in measurement of the fluid velocity, 

u − v, is roughly the value of the Stokes or Froude number, whichever is larger.   

We can evaluate the Stokes and Froude numbers for candidate particles by using 

the particle response time and settling velocity,  

τparticle = d 2ρparticle / 18μ,  (3.1.3) 

and usettle = d 2Δρg / 18μ,  (3.1.4) 
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where d is the particle diameter, ρparticle is the particle density, μ is the fluid’s dynamic 

viscosity, Δρ is the difference in density between the particle and the fluid, and g is the 

acceleration of gravity.  These expressions follow directly from the equations of motion 

using Stokes’ formula for drag (Batchelor 1967) and the particle density times its volume 

for its inertia.  For the rotating experiments in this thesis, centrifugal acceleration due to 

rotation is at most 6 % of the gravitational acceleration, and we neglect it.  We choose the 

fluid time and velocity scales to be the Kolmogorov scales in the flow  

τfluid = (ν/ε)½,  (3.1.5) 

and ufluid = (νε)¼,  (3.1.6) 

which measure the finest scales of flow (Frisch 1995).  If a particle is able to respond to 

these motions, it will also trace the range of motions present in a turbulent flow.   

Although including additional terms in the particle equation of motion, (3.1.1), 

given by Maxey and Riley (1983) will result in additional parameters, we suggest that 

minimizing the Stokes and Froude numbers alone will minimize all contributions to 

deviations of the particle motion from the fluid motion.  For example, inclusion of the 

‘added mass’ term results in an additional parameter that is equal to ½St when the 

particle density and fluid density are comparable.   

Let us note in addition that the above results are derived for a spherical particle.  

A particle with a more complex geometry is likely to perform better than predicted by our 

model, in the sense that it will behave more like a fluid particle due to its increased drag.  

Finally, evaluating a particle according to the parameters St and Fr is cumbersome, 

because in an evolving flow, they are functions of both time and the initial conditions.  

We propose an alternative below.   
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3.1.2  Suggested alternate formulation 

We survey and study particle candidates in section 3.4 and would like our 

conclusions to be useful in a more general setting than our own application.  With this 

goal in mind, we recast the Stokes and Froude numbers in terms of the Reynolds number, 

Re = ul/ν.  We then find bounds in the Reynolds number for which a particular particle 

can be considered to represent a fluid parcel.  Here, we take u as the root-mean-square 

(RMS) velocity of the flow, and l as the integral of the normalized longitudinal two-point 

velocity correlation function, or the integral length scale.   

Consider that for a particular combination of the particle, the fluid, and the flow, 

there are some Stmax and Frmax, above which deviation of the motion of a particle from 

the motion of the fluid is too large, in a sense that we will propose in section 3.2.  Using 

Kolmogorov’s relation for homogeneous and isotropic turbulence, ε ≅ u 3/l, we regroup 

the definitions of St and Fr, and find that  

18 Stmax > (d/l )2 (ρparticle /ρfluid) Re 3/2,  (3.1.7) 

and 18 Frmax > (d 2gl /ν2) (Δρ/ρfluid) Re−3/4.   (3.1.8) 

We have chosen, in our introduction of Re, to remove the explicit appearance of the 

characteristic velocity, u, since it changes rapidly with time in the flows we present in 

chapters 4 and 5, though other choices are possible.  In our flows, and in many other 

flows of interest, the Reynolds number and the integral length scale do not change 

quickly, making our result easier to generalize.  Regardless of these considerations, we 

write our expressions equivalently in terms of limits on the Reynolds number:  

Remax
3/2 = 18 Stmax (l /d )2 (ρfluid /ρparticle)  (3.1.9) 

Remin
3/4 = (18 Frmax)−1 (d 2gl /ν2) (Δρ/ρfluid).   (3.1.10) 
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The minimum Reynolds number reflects the fact that turbulent intensity is required to 

keep the particle’s settling velocity from dominating its motion.  The maximum Reynolds 

number is due to the inertia of the particle resisting the large accelerations of an intensely 

turbulent flow.  Note that a neutrally buoyant particle can be used at arbitrarily low 

Reynolds numbers, and in this case Remax is the appropriate parameter.   

In order for there to be a range of Reynolds numbers for which the particle is 

useful according to these criteria, the ratio  

B = max

min

Re
Re

 = 
2 8/3
f

2 /3 4 /3 4 /3 4
p

ρ ν
ρ ρΔ g d

 (3.1.11) 

must be larger than one.  The ratio, B, does not depend on the integral scale, and is 

therefore independent of the flow.  The ratio depends only on the physical properties of 

the fluid and particle, and is particularly sensitive to the particle size.   

For clarity, we presented the argument above using a Reynolds number based on 

the large scales of the flow, but there are other Reynolds numbers more often employed 

in the literature.  The most useful Reynolds number for comparison to a wide variety of 

theoretical and experimental efforts is based on the Taylor scale, λ,  

Reλ = λu /ν.   (3.1.12) 

An intuitive way to understand Reλ is through the relation Reλ ≈ (15 Re)½ (Frisch 1995).  

This is the Reynolds number we will use for comparison in the following sections.  

Finally, we remind the reader that these results are strictly valid only for high Reynolds 

number homogeneous and isotropic turbulence, and in the limit of vanishing particle 

Reynolds number.   
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3.2  Large Froude and Stokes effects 

3.2.1  Vibrated particles 

In the case of a regularly oscillating velocity field, one might readily anticipate 

that a large Stokes number (or, particle inertia) will yield a measurement that is out of 

phase with the fluid velocity, but with the right frequency components.  Indeed, if we 

replace the nondimensional fluid velocity, u, in equation (3.1.1) by a simple oscillation 

with frequency ω, normalized by the Kolmogorov time scale, we find that the harmonic 

part of the solution for v, the particle velocity, has the same frequency.  In addition, the 

particle velocity exhibits a phase that is different from that of the imposed fluid velocity 

by tan−1(St ω).  The importance of this result will become evident in chapter 5, in our 

discussion of rotating flows, where in some cases we observe the regular oscillation of 

particles with Stokes numbers of order one.   

 

3.2.2  Measurement of large scale flow properties  

In liquid helium, almost any choice of particle will yield Stokes and Froude 

numbers near unity in easily obtainable flow conditions.  As shown in section 3.1, a given 

particle type places restrictions on the experimental parameter space we can explore with 

acceptable error in measurement.  In order to find the limits in Stokes and Froude 

numbers for which measurement error is tolerable, we consider the case where the Stokes 

number, or the Froude number, is not infinitesimal.  Several research groups have studied 

these limits, both directly and indirectly.  We now provide a brief review of the literature 

while keeping in mind accurate measurement of the basic large-scale flow characteristics, 

the fluid’s kinetic energy and integral length scale.   
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Wells and Stock (1983) vary the settling velocity, and thus Froude number, by 

applying an electric field to charged particles in a wind tunnel.  The Stokes number is 

varied by using two different particle sizes.  They find no change in the decay of 

turbulent kinetic energy behind a grid for St = 0.023, when compared with hot wire 

measurements.  However, for St = 3.0, the kinetic energy of particles is about 30% 

smaller than that of the fluid, and they observe a possible change in the slope of the 

energy decay.  In addition, Wells and Stock (1983) find that a large Froude number tends 

to increase the rate of de-correlation of velocities in space and time.  We estimate from 

their results that as Fr approaches one, the integral time scale measured by the particles is 

about 25% smaller than that of the flow.  Finally, they find that the Stokes number has 

only a small effect on correlations, and the Froude number has only a small effect on the 

energy decay law.   

Mei et al. (1990) analyze particles in isotropic turbulence, and confirm Wells and 

Stock’s (1983) finding that particle inertia has only a small effect on velocity correlation 

functions.  They also observe that a large settling velocity, and thus large Fr, sharply 

reduces the integral length scale.  We estimate from their charts that the integral length is 

15% smaller at Fr = 1, and 40% smaller at Fr = 2, when measured using tracer particles.   

Reeks (1977) defines an inverse Stokes number, although the scales used for 

normalization are unfamiliar from the standpoint of usual turbulence phenomenology.  If 

we take Reeks' measure of particle inertia to be equivalent to our own, one should require 

that the Stokes number be less than 0.35 to measure within 10% of the fluid kinetic 

energy, and less than 0.25 to be within 5%.   
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Voth et al. (2002) describe using particles with diameters comparable to the 

dissipation scale.  The range of particle sizes reported correspond to Stokes numbers 

ranging from 0.13 to about 40.  They find no change in the acceleration variance up to 

approximately St = 0.4.  They also have some evidence, based on varying fluid density, 

which suggests substantial settling velocity effects for Froude numbers as small as 0.1.  

Because these data correspond only to the largest Stokes number particles (St = 40), it is 

difficult to draw a strong conclusion.   

The collection of results suggests that using particles with Stokes and Froude 

numbers in the range 0.3 to 0.5 result in measurements that are within 5 to 10% of the 

fluid kinetic energy and integral length scale.  The evaluation of the large scale quantities 

is apparently robust, forgiving of large deviations of the particle’s motion from the fluid’s 

motion.  However, for negligible errors in velocity measurements due to particle 

dynamics, we target values that are an order of magnitude smaller.  We use  

Stmax, Frmax = 0.05.   (3.2.1) 

This, in turn, imposes constraints on our observable Reynolds numbers, as discussed in 

section 3.1.2.   

 

3.3  Particle clumping  

An additional problem complicating the use of particles as tracers in liquid helium 

is that particles stick to each other, and there are no readily available devices to counter 

this tendency.  In water, a surfactant will stabilize a suspension, but this technique is 

inapplicable in cryogenic fluids.  Here, we discuss the mechanism for particle 

aggregation and ways to mitigate the process.  Particles attract each other through the van 
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der Waals force.  In addition, particles in a turbulent flow may be both brought into 

contact and shorn apart by motions of the fluid.  We consider the balance of these 

interactions, and find that since the attractive van der Waals force is stronger than any 

other, particles aggregate into ever-larger clusters at a predictable rate.   
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Figure 3.1:  The van der Waals potential as a function of sphere separation is the dashed 

line.  We use Hamaker’s constant for polystyrene, A = 8 × 10−20 J, but the Hamaker 

constant for most materials is of the same order.  An exception is liquid helium, and since 

Hamaker’s constant for liquid helium is much smaller (Paalanen and Iye 1985), we do 

not need to account for it as the intervening fluid (Heimenz and Rajagoplan 1997).   

 

3.3.1  Comparison of forces  

First, we consider the consequence of two particles coming close to each other, or 

colliding.  The force that draws particles together is the same as the one that binds each 

particle’s constituent molecules together to form a solid.  These intermolecular forces 

include ionic interactions, hydrogen bonds, dipole-dipole interactions, and London 
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dispersion forces.  These are sometimes known collectively as van der Waals forces.  

Once particles are in contact, the force binding two particles overwhelms both the 

thermal energy of the particles, and separation due to fluid shear.   

The attractive potential between two spheres with center to center separation r and 

with radius a is  

2 2 2 2

D 2 2 2 2

2 2 4ln
6 4

⎡ ⎤⎛ ⎞− −
= + +⎢ ⎥⎜ ⎟− ⎝ ⎠⎣ ⎦

A a a r aU
r a r r

,  (3.3.1) 

and is a function of Hamaker’s constant, A (Vold and Vold 1983).  Thermal energy is 

measured by ET = kBT, where kB is Boltzmann’s constant, and T is the temperature.  At 

4.2 K, the thermal energy is  

ET = kBT ≈ 6 × 10−23 J.   (3.3.2) 

It is evident from figure 3.1 that for separations less than 2 diameters, it is unlikely that 

thermal fluctuations will separate particles under the influence of the van der Waals 

potential.   

We estimate the turbulent contribution to particle dispersion by considering the 

effect of a shear flow on a pair of particles in contact.  Note that at distances smaller than 

the Kolmogorov dissipation scale, velocity gradients are linear.  For particle separations 

much smaller than the dissipation scale, the difference in fluid velocities across a distance 

r are approximated by  

Δu  ≈ (r /η) ufluid = r (ε/ν)½ ≈ r (ν / l 2) Re 3/2,  (3.3.3) 

where η is the dissipation scale defined in (1.3.1), ufluid is the velocity scale defined in 

(3.1.6), and we have rewritten the expression in terms of a Reynolds number as in 

section 3.1.2.  We propose that an upper bound on the force the fluid can exert to separate 
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particles is the drag force given by Stokes for a sphere in a uniform flow (Batchelor 

1967) with velocity Δu.  We take the velocity difference to be that between the centers of 

two touching particles, such that r = 2a.  In this case, the drag force is  

 FS = 12πa2 (μ2/ρl 2) Re 3/2,  (3.3.4) 

where μ and ρ are the dynamic viscosity and density of the fluid.  The largest Reynolds 

number we can reach in our apparatus is about 10,000, giving a force of about 20 pN 

between 2 μm particles in liquid helium.   

The attractive force is calculated from the gradient of the potential given in 

(3.3.2).  For small sphere surface separations, the expression for the force reduces to  

FD = UD = Aa /12s2,  (3.3.5) 

where s = r – 2a and 0 < s << a.  Since the preceeding expression diverges for small s, 

we are faced with the problem of choosing a reasonable value for the separation of 

contacting particles.  If the particles were perfect spheres, the separation would be on the 

order of the dimension of its constituent molecules.  In fact, remarkably uniform 

polystyrene spheres are commercially available from Bang’s Laboratories or Polymer 

Microspheres.  Assume that some surface roughness separates the particles, and that this 

roughness is of the order of one percent of the particle diameter.  This distance is 20 nm 

for a 0.8 μm sphere.  Figure 3.2 depicts the ratio of the attractive force to the drag force 

for several values of the surface roughness.  It is apparent that the binding force is 

unlikely to be overcome by turbulent shear for particles with diameters less than 5 μm, 

even for larger values of the surface roughness.   
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Figure 3.2:  The ratio of the attractive van der Waals force to the fluid shear induced 

separation force for polystyrene spheres in a turbulent flow at Reλ = 400.  The ratio is 

given as a function of the sphere’s radius for several surface separations.  The surface 

separation is expressed as a fraction of the sphere radius, imagining that some surface 

roughness keeps the spheres further apart than if they were perfect spheres.  For particles 

smaller than a few microns, the van der Waals force is much larger than our estimated 

upper bound for the separation force.   

 

3.3.2  Rate of coagulation 

We show in the previous section that particles brought together are unlikely to 

separate.  Here, we estimate how often the combination of particles happens.  Fluid shear 

is a mechanism for breaking up particle aggregates, but the same mechanism causes 

particles to collide, and the two processes may reach equilibrium.  Vold and Vold (1983) 

give Smoluchowski’s differential equation controlling the process of shear coagulation, 

assuming that combined particles are inseparable:  

dN/dt = −(16/3)N0 a3(du/dz)N.   (3.3.6) 
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N is the total number of particles per unit volume, with initial value N0, and du/dz is the 

shear rate that we estimate in (3.3.3).  The solution to this equation is an exponential 

decay, with the time for the particle number to halve being given by  

τ½ = (π l 2 log(2)) / (4ΦνRe 3/2),  (3.3.7) 

where Φ is the volume fraction of particles relative to the fluid, and is 3N0 /(4πa3).   

For typical conditions after the fluid is agitated with a grid, the time constant 

given by (3.3.7) is about 1 min.  This result indicates that if particles of the desired initial 

size were somehow dispersed, there is a useful period of time during which we may use 

them as fluid tracers.  Notice, however, that τ½ is inversely proportional to the particle 

volume fraction.  Consider that the particles must be injected into the sample volume of 

fluid as a concentrated solution, and that this injection process is necessarily turbulent.  

At the time of injection and in the vicinity of the injector, the volume fraction of particles 

is larger than in the fully dispersed solution, perhaps by many orders of magnitude.  If the 

initial volume fraction is roughly 0.1, and we show in section 3.7.1 that this is a typical 

value, τ½ is reduced to a small fraction of a second.  This leaves us very little time to 

disperse the particles in the full volume before they have irreversibly clumped into 

effectively larger particles.   

 

3.3.3  Suspension stabilization 

There are two methods at our disposal for keeping particles from coalescing.  The 

first is to coat the particles with long chain molecules, a method known as steric 

stabilization.  This can be accomplished by manufacturing particles with a surface 

coating of a certain polymer, or by adding a surfactant that finds its way to the particle-
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solvent interface.  A surfactant is typically used in aqueous solutions.  The second 

method is to charge the particles, and rely on electrostatic repulsion.  In order to do this, 

one can permanently coat the surface of the particles with polar groups, or force the 

particles to accumulate free ions on their surfaces.  We briefly discuss each of these 

methods.   

The effectiveness of the solutions exploiting polymers depends on the flexibility 

of the polymer molecules (Vold and Vold 1983).  In cryogenic fluids, this mechanism is 

excluded, because the temperature of a cryogenic fluid is below the glass transition 

temperature of all polymers.  One can, however, strive to minimize the attraction by 

coating the particle with a layer of a fluorinated polymer.  Fluorinated compounds are 

highly non-reactive and the coating would alleviate the tendency to aggregate for the 

same reason that makes Teflon useful.  There would, however, still be a net attractive 

force between particles.   

The dissociation of an ion that allows the formation of a polar group in a solution 

requires a polar solvent, such as water.  Liquid nitrogen and liquid helium, the fluids of 

interest to us here, are non-polar.  Therefore, this solution is inapplicable.  The other 

technique of adding an electrostatic charge to particles in solution has been implemented 

successfully (Huber and Wirth 2003).  Experimentalists mixing spherical polymer 

particles using what is essentially a blender in liquid nitrogen found that the particles 

collected a net charge.  The result is potentially useful for dispersing solid tracer particles 

in cryogenic fluids, though long-range inter-particle forces may complicate the analysis 

of particle motion relative to the fluid.   
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3.3.4  Methods for dispersing particles 

We have sought methods for temporarily dispersing aggregated particles in 

cryogenic fluids.  The methods include ultrasound induced cavitation and fluid shearing, 

which we realized in various ways in our cryostat.  Ultrasonic cleaning baths use the first 

technique to remove debris from items immersed in water, and we found it effective at 

dispersing aqueous suspensions.  We attached the ultrasound transducer from such a 

cleaning bath to the channel inside our cryostat, but observed no effect on suspensions in 

liquid nitrogen.  We tried exploiting the second mechanism by vigorously agitating the 

grid, as well as constructing various kinds of high-speed mixers and propellers.  Again, 

we observed no effect on the size of particle aggregates.  It is possible that either method 

could work with a more concerted engineering effort.  We suggest that further attempts 

concentrate on pressurizing the fluid, in order to bring it temporarily away from its 

boiling point, as a first step in implementing either technique.   

 

3.4  Evaluation of available seeding techniques 

A careful review of products and previous work is required, since a quick review 

of the literature might lead the reader to conclude that particles that meet our 

specifications are readily available.  For example, hollow glass particles are referred to as 

being in the 1 to 5 μm diameter range (White et al. 2002, or Donnelly et al. 2002), and 

velocity measurements of micron-sized solid polymer particles are suggested as being of 

the individual particles rather than the velocities of particle aggregates (Zhang and Van 

Sciver 2005, or Zhang et al. 2004).  We shall see that these particles would indeed make 

suitable tracers but cannot be made to work well for technical reasons.   
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3.4.1  Commercially available particles – hollow glass spheres 

Hollow shells made of glass are manufactured by at least two companies, PQCorp 

and 3M.  The companies specify that a sample of particles include hollow glass spheres 

in a wide range of sizes, from around 10 μm to several hundred microns, and with a range 

of densities close to that of liquid helium, typically 0.14 to 0.19 g/cc (e.g., Potters 2006).  

The opportunity presented to the experimentalist stems from the possible existence of 

suitably small particles at one end of the size distribution.  They are not revealed in data 

supplied by the manufacturers.  According to our analysis, we require a particle smaller 

than 5 μm in diameter, and with a density of less than 0.14 g/cc.  Although the 

companies’ ability to make small particles with an almost perfect density match to helium 

is remarkable, we find that even the smallest particles are too large to trace a turbulent 

flow in liquid helium with the desirable level of fidelity.  We show a suspension of these 

spheres in liquid helium in figure 3.3.   

 

 
Figure 3.3:  An image of a suspension of hollow glass spheres in liquid helium.   
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A good example of the use of hollow glass particles as a tracer particle in liquid 

helium is provided by my predecessor’s admirable work.  White (2001) refined a 

technique for segregating small glass particles that resulted in the first PIV data taken in 

liquid helium.  At a first glance through a microscope, one can see particles that range in 

size from 1 to 30 μm.  Previous studies have used this observation as evidence that there 

exist small, hollow spheres.  However, a simple test reveals that even the smallest hollow 

particles are close to 10 μm across.  We introduce particles at the bottom of a graduated 

cylinder filled with methanol, and collect what rises to the surface after different periods 

of time from the time of injection.  The smallest particles that float range in diameter 

from 9 to 16 μm, and are mixed with a particles up to 35 μm.  At the bottom of the 

methanol column lie the smaller particles, between 1 and 15 μm in diameter.  These 

particles are either solid glass or incomplete shells.  As revealed in figure 3.4, the 

difference from the required size specification, though only a factor of two, is crucial 

since both the Stokes and Froude numbers depend on the square of the particle size.   

The great advantage of the hollow glass spheres is that they are apparently 

immune to the clumping problems that plague solid particles.  This may be because the 

attractive force between solid particles depends on the integral of the attractive forces 

between all the molecules in each particle.  However, for the hollow sphere at small 

separation distances, we find that the problem reduces to the attraction between only 

those parts of the thin shells that are closest to each other.  This allows for the possibility 

that a small hollow particle may in the future be manufactured that would be an accurate 

tracer of liquid helium flows.   
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Figure 3.4:  The chart shows the Stokes and Froude numbers as they evolve in a 

turbulent flow generated by a grid with 7.2 mm mesh spacing, M, drawn at U = 2.0 m/s in 

liquid helium.  The parameters are calculated for a 9 μm hollow glass sphere.  The 

horizontal line is the maximum value for either parameter determined in section 3.2, and 

that either one parameter or the other is larger at any moment indicates that the particle 

does not trace fluid motions accurately.   

 

3.4.2  Commercially available particles – solid beads 

Several manufacturers produce solid spherical particles that are available in a 

wide range of tightly controlled sizes, from nanometers to millimeters.  Experimentalists 

seeking tracers for water often use particles of this type.  Particle densities range from 

just over that of water, 1.06 g/cc for polystyrene micro-spheres, to several g/cc for solid 

glass micro-spheres.  In a turbulent liquid helium flow, a solid particle with such a 

relatively large density needs to be considerably smaller than a hollow one in order not to 

sink.  For typical turbulent flow conditions, we seek a solid particle that is smaller than 

1 μm.  Zhang and Van Sciver (2005) used such polystyrene particles to observe thermally 
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driven flows in liquid helium.  We have also tried making velocity measurements using 

particles of this type, made from a variety of materials.   

We find that the problem with using solid particles is that they are found in a 

cryogenic fluid only as tightly bound clusters.  We have tried several techniques for 

injecting and agitating them, as well as using particles made of different materials.  

Nonetheless, the particle images appear with a wide range of intensities typical of a 

polydisperse distribution (see figure 3.5, left), rather than the uniform appearance of 

monodisperse particles suspended in water (see figure 3.5, right), for example.  As 

suggested in our brief discussion of the physics of clumping in section 3.3, the particles 

probably encounter and bind to each other during injection, when they are necessarily 

highly concentrated.  Once they bind together, it is difficult to separate them.   

 
Figure 3.5:  On the left are clumps of 2 μm polystyrene particles in liquid helium.  On 

the right are identical particles in water, using a surfactant to disperse them.   

 

The Stokes and Froude numbers for a clump of particles will be larger than those 

for an individual particle.  We estimate based on the intensity of light scattered by the 
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particle clusters that the aggregates are roughly at least 3 particle diameters across.  

However, we emphasize that such a technique for measuring particle size cannot be relied 

on, except to say that the particle clumps must be larger than individual particles.  As 

suggested in figure 3.6, a three particle diameter clump is unsuitable for making 

quantitative measurements of flow velocities.   
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Figure 3.6:  The chart shows the Stokes and Froude numbers as they evolve in a 

turbulent flow generated by a grid with 7.2 mm mesh spacing, M, drawn at U = 2.0 m/s in 

liquid helium.  The parameters are calculated for a clump of polystyrene particles with a 

characteristic diameter of 2.4 μm.  The horizontal line is the maximum value for either 

parameter determined in section 3.2, and that either one parameter or both is larger at any 

moment indicates that the particle clump does not trace fluid motions accurately.   

 

In closing, we note that Zhang and Van Sciver (2005) report measuring the 

settling velocity of 0.8 μm polystyrene particles in liquid helium as 6 mm/s.  However, 

the settling velocity of individual 0.8 μm polystyrene spheres is predicted to be about 
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160 μm/s in liquid helium.  Their reported settling velocity is closer to that of a 5 μm 

particle, presumably a large cluster of the smaller spheres.   

 

3.4.3  Commercially available particles – other types of particles 

We have also considered the suitability of other commercially available particles 

and powders, and experimented with them.  These include silica aerogels, polymer 

micro-balloons, carbonized micro-balloons, Teflon powders, porous ceramic powders, 

frozen electrosprays, and pollen.  We determined that they could not be useful, usually 

because of particle diameter, although we will not rule out the possibility that any of 

these products could be made to work with greater effort.   

 

3.4.4  Review of previous work to make frozen particles 

The effort to seed liquid helium with a tracer particle dates back 50 years, when 

Chopra and Brown (1957) injected a mixture of hydrogen and deuterium into liquid 

helium through a heated nozzle.  They were able to make millimeter size particles, and 

noted that the particles tended to stick to each other and to the walls of the container.  

Subsequent efforts refined the procedure and reduced the size of the resultant particles.  

In each of the following cases, hydrogen gas was injected into the cryostat through a 

large nozzle of order 1 mm in diameter.  Chung and Critchlow (1965) report particles 

with sizes of several hundred microns and Kitchens et al. (1965) report 20 to 100 μm 

particles, each of the groups working in superfluid helium.  More recently, Murakami and 

Ichikawa (1989) and Nakano and Murakami (1992) report creating 1 μm hydrogen 

particles in superfluid helium, although they offer no evidence to support their claim on 
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the particle diameter.  Based on the experiments we describe below, we consider it 

unlikely that the particles they observed were in fact as small as they report.   

Celik et al. (2000) have undertaken an effort to make a hydrogen atomizer to 

generate smaller particles, though they do not estimate the resulting particles size.  Celik 

and van Sciver (2002) report the generation of 10 μm neon particles using a similar 

apparatus.   

A crucial breakthrough was made independently by several groups, including our 

own.  Boltnev et al. (2002) describe the dilution, at room temperature, of hydrogen with 

large amounts of helium gas.  This dilute mixture was then passed through a nozzle above 

the liquid helium bath, forming a jet that impinged on the free surface.  Boltnev et al. 

(2002) report the possible existence of submicron particles generated in this fashion.  

Their goal, however, is quite different from ours, since they had no interest in tracing 

fluid motions.  Our discovery was made without any knowledge of this work while 

observing the peculiar behavior of a liquid hydrogen nozzle of our own design, described 

below.   

 

3.5  The first hydrogen injector  

We attempted to produce a fine mist of hydrogen droplets by pushing pure liquid 

hydrogen through a tiny orifice at high pressure.  We were not able to do so, though the 

injector worked in a different way from that intended.  We found in an interesting 

accident that it is possible to produce a particle mist by diluting hydrogen with helium 

gas, and we used the nozzle in this way to obtain the results presented in chapters 4 and 5.  
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An improved injector, designed specifically for use with helium-diluted hydrogen, is 

described in section 3.6 and used to generate the data presented in chapter 6.   

 

3.5.1  The basic properties of hydrogen  

Hydrogen is a diatomic gas at room temperature.  As it is cooled, it liquefies and 

solidifies at temperatures above that of liquid helium, despite its smaller molecular 

weight than liquid helium.  This solidification occurs because the broken symmetry in the 

shape of its constituent molecules leads to stronger intermolecular forces.  Hydrogen 

condenses at 22 K and freezes at 14 K at atmospheric pressure, whereas helium liquefies 

at 4.2 K.   

 

3.5.2  First attempts to make hydrogen particles  

Our design for a liquid hydrogen injector is shown in figure 3.7.  The constraints 

on the design are that the injector must pass from the lab into the helium-filled channel 

through one of its access ports, which are 1 cm tubes that are 1 m long, and that the 

injector should allow free movement of the grid.  The injector is small enough to fit 

through an opening in the grid.   

We introduce gaseous hydrogen at the top of the injector, and it cools during its 

passage into the cryostat through the injector.  We arranged empirically for the hydrogen 

to exit the nozzle as a liquid by controlling heaters along the injector and at the nozzle.  

The mechanism of formation of small droplets from liquid exiting a nozzle is an active 

area of research that is applied, for example, in the optimization of diesel fuel injectors 

(e.g., Tanner 1997).  For our purposes here, it suffices to say that it is known that droplets 
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much smaller than the nozzle diameter can be formed by jet flow instabilities.   

 
Figure 3.7:  The liquid hydrogen injector consists of concentric stainless steel tubes that 

are kept from touching each other with Teflon spacers every 6 cm.  A vacuum develops 

between them when the injector is cooled.  Hydrogen gas is introduced at the top.  A wire 

along the length of the core and a wire wrapped around the nozzle can separately be 

heated to keep the interior of the injector above the freezing point of hydrogen.   

 

The nozzle itself is made from a commercial stainless steel tube with a 100 μm 

inner diameter.  This tube is embedded in copper, and wrapped with a heater wire 

embedded in thermally conductive epoxy.  These measures are taken to ensure that the 

entire length of the nozzle can be brought above the freezing temperature of hydrogen.  

The injector nozzle sprays sideways, because our first attempts with a simple downward 

facing nozzle failed.  The reason the downward facing nozzle failed was probably that the 

newly formed buoyant hydrogen droplets impeded the jet emanating from the nozzle.  

Finally, the entire passage of hydrogen from the laboratory to the nozzle is through tubes 
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that are insulated from the outside of the injector by an air-filled space.  The thought is 

that when the injector is placed in liquid helium, the air in this space freezes and leaves a 

vacuum in its place.  The resulting vacuum provides the hydrogen line with insulation, 

allowing the hydrogen to flow freely through the injector without freezing.   

The injector is used by first warming its core with varying amounts of current 

applied to its heaters, and then flowing hydrogen gas through it using varying amounts of 

pressure.  We use up to 15 W of heat along the length of the core, 1 W at the nozzle, and 

400 kPa of pressure.  As shown in figure 3.8, we observe vigorous jets of liquid hydrogen 

emanating into liquid helium, and the formation of hydrogen “snow” of all shapes and 

sizes.  Regardless of the combination of heat and pressure, the snow-like particles that 

result are about 50 μm in size, often much larger.   

 

 
Figure 3.8:  On the left is a liquid hydrogen jet in liquid helium.  On the right are the 

resultant solid hydrogen “snow flakes” that we estimate are typically about 50 μm in 

diameter.   
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Unfortunately, we were never able to produce a hydrogen mist using this 

technique.  However, we observed that the injector produces a mist if it can be made to 

ingest liquid helium from the cryostat prior to the injection of hydrogen.  The subsequent 

application of hydrogen pressure and heat to the injector expels a dilute gaseous solution 

of hydrogen and helium that condenses and forms countless tiny particles.  We explore 

this mechanism in section 3.6, below.   

 

3.6  The improved hydrogen injector  

We produce small hydrogen particles by strongly diluting hydrogen gas with 

helium at room temperature, and passing the mixture through a nozzle directly into the 

liquid.  Below, we describe how the injector works.  Most importantly, our procedure is 

performed with helium near its boiling point at atmospheric pressure – that is, in a 

classical fluid.  Previous experimenters making hydrogen particles have focused on their 

production below the transition temperature of helium to a state showing superfluidity.  

We believe our injector works differently because of this distinction.   

 

3.6.1  The injector  

The injector is shown in figure 3.9.  It is a straight tube extending from the lab to 

the channel filled with liquid helium through one of the cryostat’s access ports.  The inner 

diameter of the injector is 3 mm, and opens to the fluid at its full diameter – there is no 

nozzle.  The length of the inner tube is sheathed by a concentric tube of larger diameter, 

and the space between the tubes is sealed.  Atmospheric gases in this annular space 

condense and freeze when the injector is cold, forming an insulating vacuum jacket.   
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Figure 3.9:  The schematic shows the design of our diluted hydrogen injector.  

Hydrogen gas diluted with helium is introduced at the top, and enters the cryostat through 

the inner of two concentric stainless steel tubes.  The mixture cools on passage through 

the injector and exits below the free surface of liquid helium.   

 

3.6.2  Procedure 

A mixture of hydrogen and helium gas is prepared in a bottle at room 

temperature.  Typically, the bottle is flushed with hydrogen gas, allowed to vent to 

atmospheric pressure, and helium gas is added to a pressure yielding the desired mixture 

ratio.  The ratio was most often nearly 1 H2 : 10 He by volume, although we also used 

other mixture ratios.   

The mixture is introduced into the injector through a regulator supplying a small 

amount of pressure, about 30 kPa, which is further reduced through a needle valve.  The 

valve is opened slowly until the formation of particles is observed through the cryostat 

windows.  Valve position is maintained at this setting for one or two seconds, until it 

appears that the liquid helium is fully seeded with particles.   
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Figure 3.10:  Hydrogen particles generated by diluting hydrogen gas with helium in a 

1 : 10 ratio are shown.  The particle size distribution appears polydisperse, but overall the 

particles appear smaller and more numerous than those shown in figures 3.3, 3.5, or 3.8.   

 

3.6.3  Results 

An example of particles produced using the hydrogen mixture injector is shown in 

figure 3.10.  We find that the number of aggregates larger than 30 μm rises sharply for 

mixtures more concentrated than 1 H2 : 5 He by volume, and that particles become 

vanishingly small for mixtures more dilute than 1 H2 : 500 He.  In the dilute limit, we do 

not resolve individual particles by eye, or with a camera, but only observe diffuse 

scattered light from a beam traversing the liquid.  The liquid, prior to injection, does not 

visibly scatter light at the intensities we use (~100 W/cm2).  We find that a mixture ratio 

of 1 H2 : 200 He is the best compromise between particle size and number, although the 

majority of our data was collected before this optimization was accomplished, using 

1 H2 : 10 He.   
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3.7  Discussion 

3.7.1  Particle volume fraction 

We estimate, based on the rate at which our bottled mixture is consumed, that a 

typical injection introduces about 200 cc of gas at standard temperature and pressure into 

the cryostat.  This corresponds to about 0.2 cc of liquid helium and solid hydrogen inside 

the cryostat.  Using our most commonly used dilution ratio of 1 H2 : 10 He, the volume of 

solid hydrogen introduced to the channel, Vp, is about 105 times smaller than the volume 

of the channel, Vf = 625 cc.  If we assume that all of the introduced hydrogen ends up in 

the suspension of particles, the volume fraction of particles that results is  

Φ = Vp /Vf ≈ 3 × 10−5,  (3.7.1) 

which is small enough that the particles have a completely negligible effect on the fluid 

viscosity (Batchelor 1967).   

 

3.7.2  Particle size 

We can use the particle volume fraction, defined in section 3.7.1, to make a rough 

estimate of the size of the particles by counting how many particles we see in an image:  

4πNprc
3/3 = Vo Φ,  (3.7.2) 

where Np is the number of particles of characteristic radius rc in the image volume, Vo.  If 

most of the volume of hydrogen injected is carried by the largest particles, which are the 

ones we can see and count, then our estimate is reasonable.  By examining images of 

particles, we use Np = 50,000, corresponding to a mean particle separation of about 4 

pixels in the image, and believe this to be a conservative guess.  We estimate the image 

volume using the image dimensions given in section 2.1.7, and the illuminating sheet 
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thickness given by (2.1.1).  For a sheet thickness of 100 μm we find that the characteristic 

particle diameter is  

2rc = 3 μm.   (3.7.3) 

There could, however, be many particles of smaller size.  For example, 1,000,000 

invisible and uncounted 200 nm particles in the image would amount to only one-tenth 

the total volume of the counted particles.  This is not important for PIV in general, but 

may be relevant to the results presented in chapter 6.   
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Figure 3.11:  The chart shows the Stokes and Froude numbers as they evolve in a 

turbulent flow generated by a grid with 7.2 mm mesh spacing, M, drawn at U = 2.0 m/s in 

liquid helium.  The parameters are calculated for hydrogen particles with a diameter of 

3 μm.  The horizontal line is the maximum value for either parameter determined in 

section 3.2; note that the scale in this chart is different from in the comparable figures 3.3 

and 3.6.  In this example, the hydrogen particles are suitable for making quantitative 

measurements of local fluid velocities in the turbulent flow.   
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We have also obtained particle images with a long-range microscope, whose 

resolution is 2.7 μm/pixel.  The bulk of the particles in the images cannot be 

distinguished from point sources of light, suggesting they are smaller than the resolution 

of the optical system.  We show in figure 3.11 that 3 μm hydrogen particles make 

suitable tracers for a turbulent flow up to about 500 normalized time units.   

 

3.7.3  Model of injector function  

The mechanism we present by which the particles are produced is primarily 

conjectural, as we do not yet have a way to observe their formation, nor have we tested 

the conjecture.  The mixture of hydrogen and helium gas cools as it descends through the 

injector into the cryostat.  Heat is carried away through the injector walls by the cold 

helium gas in the cryostat, and by liquid helium at low enough levels in the injector.  The 

mixture supercools below the condensation temperature of hydrogen until hydrogen 

begins to precipitate from the gaseous mixture.   

The mechanism for the precipitation and freezing of hydrogen from the dilute 

mixture is unknown, but may, on general principle, be the result of either homogeneous 

nucleation, or condensation onto impurities that serve as nucleation sites.  Homogeneous 

nucleation of binary mixtures is known to occur (Wegener & Sreenivasan 1981).  At low 

enough temperatures, quantum tunneling may be responsible for crystallization (see Levi 

and Mazzarello 2001).  The freezing of hydrogen is an active area of research, as some 

scientists hope that supercooled hydrogen droplets will remain in a metastable liquid state 

at low enough temperature to show superfluidity (Seidel et al. 1986).  However, we 
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consider this outcome unlikely, as it is also possible that hydrogen forms a glass without 

overcoming the energy barrier associated with crystallization.   

We expect a wide distribution of particle sizes since the formation of nuclei and 

the growth and aggregation of existing nuclei can occur simultaneously.  The rate of 

aggregation of nuclei may be described as in section 3.3.2, and we expect that the 

characteristic size of particles depends inversely on the hydrogen concentration.  The 

process of precipitation continues until the mixture reaches thermal equilibrium with the 

liquid helium in the bath, and the particles are dispersed in the liquid.  Aggregation 

continues in the liquid, but under different conditions.   

 

3.7.4  Practical considerations  

A significant advantage of hydrogen particles is that we form them as an already 

dispersed suspension of small particles, so that we do not need to find a way to disperse 

them in the helium liquid.  Any other solid particle must be introduced as a concentrated 

solution with the attendant problems with aggregation.   

In addition, since the settling velocity of a particle is proportional to the square of 

its size (as shown in section 3.1), once the hydrogen particles have aggregated into 

particles too big to be useful, their buoyancy rapidly brings them to the free surface of the 

liquid, effectively removing them from the system.  In this way, aggregation and 

buoyancy act to clean the system of particles, and we can periodically generate a fresh 

batch of small particles.  The process of creating hydrogen particles is simple and swift, 

requiring little of the preparation required for other types of particles (see White 2001, 

Zhang et al. 2004).   
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Finally, aside from accurately tracing the smallest scales of the flow, the smaller 

particle allows us to increase the spatial resolution of our PIV processing.  We can 

introduce a large number of particles into the fluid, and thus find a sufficient number of 

particles in a smaller volume to construct a velocity vector.  In this way, we can acquire 

data at a spatial resolution two times better than previously achieved.   

 

3.7.5  A note on the injection of particles into superfluid helium 

In chapter 6, we describe observations of superfluid helium.  We have found, 

however, that we cannot use our injector in the superfluid.  The injector produces a 

vigorous jet, whose velocity cannot be accounted for by the mass flux emanating from 

the injector.  The vigorous jet persists even as we reduce the flow rate, and the hydrogen 

forms large clumps rather than a fine mist.  We explain in chapter 6 that the only way we 

find of observing the superfluid with a suspension of small particles is to generate the 

suspension at higher temperatures in normal helium, and then cool the helium to the 

desired superfluid state.   

 

3.7.6  Final analysis 

In table 3.1 we summarize the utility of the particles surveyed in this chapter, 

including the hydrogen particles we have produced.  We stress that we have used what 

we believe is the upper bound in size for the hydrogen particles.  Smaller particles will 

perform better.  In addition, individual polystyrene particles evidently will work, 

provided they can be suspended in liquid helium long enough.  We have not found a way 

to do this.   
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A B number greater than one, listed in table 3.1, indicates that there exists a range 

of Reynolds numbers for which the particles will trace the flow with adequate fidelity, as 

described in section 3.1.2.  In order to determine this range, one must specify some detail 

of the flow the particles must trace.  The integral length scale, l, of the flows we observe 

evolves, but is typically about 0.5 cm.  For a 3 μm hydrogen particle in liquid helium, the 

acceptable Taylor scale-based Reynolds numbers range from 145 to 590, according to 

(3.1.9) and (3.1.10).  For 1 μm hydrogen particles, the range is from 30 to 1230.  We 

show in chapters 4 and 5 that the Reynolds numbers of the flows we generate with a grid 

fall within this range.   

 

Table 3.1:   We list the B numbers, defined in section 3.1.2, for a variety of particles in 

liquid helium near its boiling point.  Particles that satisfy our condition that B > 1 are 

marked by a bold font.  The 4 μm hollow glass particles are hypothetical – we do not 

know of any that are manufactured.  As discussed in the text, it is unlikely that 

polystyrene particles can be suspended as individual particles, since they have a strong 

tendency to aggregate into larger clumps.  Therefore, the hydrogen particles are the only 

particles we know of that we can use to accurately trace the motions of liquid helium.   

 

Particle material diameter (μm) density (g/cc) B 

Hollow Glass 4 0.14 13 

Hollow Glass 9 0.14 0.5 

Polystyrene sphere 0.8 1.06 8.5 

Polystyrene clump 2.4 1.06 0.1 

Hydrogen 3 0.088 17 
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3.8  Conclusions 

We have shown that commercially available particles as well as those developed 

by our predecessors are inadequate for making precise measurements of turbulent 

velocities in liquid helium.  We have presented a simple way of making small hydrogen 

particles that are likely to be small enough to make such measurements.  We estimate that 

the particles are typically smaller than about 3 μm in diameter; further estimates of the 

particle size are made in chapter 6.  Along the way, we find that particles have a tendency 

to clump that is probably insurmountable in cryogenic fluids, and that this problem is 

most severe at the moment of particle injection.  We establish well defined limits in terms 

of fluid and flow properties for which particles of particular characteristics can be used.   
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Chapter 4 

Decaying grid turbulence 

 

Here we describe experiments providing an assessment of the utility of our new 

particles.  We motivate the study of decaying grid generated turbulence without any 

system rotation, and describe our methods for realizing and observing the flow.  Finally, 

we present data showing that the hydrogen tracer particles described in chapter 3 produce 

reliable results.  We generate turbulence at Rλ = 260, which is moderate in comparison to 

the full range of results found in the turbulence literature, but large for grid turbulence.  

The turbulence decays according to expectations for high Reynolds number 

homogeneous and isotropic turbulence.   

 

4.1  Background 

4.1.1  Homogeneous and Isotropic Turbulence 

The difficulties of predicting turbulence dynamics from the Navier-Stokes 

equations are well known (L’vov and Procaccia 1996).  Many theoretical results were 

arrived at using the assumption of scale invariance for homogeneous and isotropic 

turbulence (e.g., Kolmogorov 1941), that is, that the statistical properties of the flow are 

invariant to translations and rotations of space.  The assumption is usually made in 
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conjunction with the condition of large Reynolds number (Frisch 1995).  In turbulence 

research, both experimental and theoretical, freely decaying homogeneous and isotropic 

turbulence is used as a benchmark (Batchelor 1953).   

 

4.1.2  Grid Turbulence  

The closest experimental approximation to homogeneous and isotropic turbulence 

is the disturbance caused in a fluid by the passage of a grid.  Since Taylor (1935), there is 

a long tradition of studying grid generated turbulence, where the grid is usually 

constructed from crossed bars of square or round cross section (Dickey and Mellor 1980, 

give some examples).  The flow is characterized by the grid (or flow) velocity, Ug, and 

the grid’s mesh spacing, M.  The mesh Reynolds number is defined as  

ReM = UgM/ν.   (4.1.1) 

The scales Ug and M define the initial conditions.  That is, though there is some variation 

in results between trials in a particular apparatus, and between those obtained using 

different apparatuses, most data acquired using different grids or grid velocities are seen 

to follow common curves when using the grid parameters to normalize measurements.   

A grid will agitate a fluid in either of two basic configurations, one can move the 

fluid, or the grid.  In the first case, the fluid is circulated with a pump, steadied, and 

passed through a grid.  The flow evolves downstream from the grid, and measurements of 

the flow properties are made at different distances from the grid.  At any point in space 

the flow is steady, measurements are made for arbitrary lengths of time, and large data 

sets can be easily collected.  However, attempts to characterize turbulence far 

downstream of the grid are limited by the physical length of the test section.  The second 
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case, the towed grid, is realized by mechanically drawing a grid through a sample of 

quiescent fluid.  The flow is observed at varying times after the passage of the grid, and 

this time can be made arbitrarily large.  Such an experiment has the disadvantage of 

requiring many trials (many repetitions of the grid movement) in order to achieve 

convergence in the ensemble statistics of typical flow properties.   

We choose the towed grid configuration because it requires less space.  It is 

possible to build a channel with larger cross section within the confines of a cryostat, and 

a larger test section translates to larger Reynolds numbers.  We collect data using the PIV 

technique described in section 2.2, taking particle images in a plane that contains the 

direction of the grid motion.  Velocities are measured either parallel to the grid motion, 

the streamwise direction, or normal to the grid motion, the transverse direction, in 

reference to the geometry and motion of the grid.  The two components of velocity 

normal to the grid are expected to be indistinguishable, though it is known that there is 

some anisotropy in the stationary grid case when comparing streamwise and transverse 

statistics (Comte-Bellot and Corrsin 1966).  White (2001) found that in our apparatus, 

using more than 20 trials yields sufficiently converged mean square velocities.   

 

4.1.3  Theoretical predictions of the decay rate  

Though we know of no solutions that follow directly from the Navier-Stokes 

equations, several models for describing the decay rate of homogeneous and isotropic 

turbulence are outlined below.  In most cases, the kinetic energy is predicted to decay in 

time as a power law,  

u2 ~ t −n.   (4.1.2) 
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All theories presented here are intended to describe the decay of turbulence when the 

energy containing scales of motion are much smaller than the system size.  Once the large 

scales sense boundaries, other decay rates will occur (Batchelor 1953).   

Kolmogorov suggested a law for the kinetic energy in a homogeneous and 

isotropic flow that is allowed to decay freely from a high-Reynolds-number turbulent 

state (see Frisch 1995).  The derivation of the law is based on Kolmogorov’s vision of the 

energy spectrum in the inertial range, the intermediate range of scales, whose spectral 

intensity is proportional to ε2/3k −5/3, where k is the inverse of the flow scale, or the 

wavenumber.  The energy in the smallest wavenumbers, those between zero and the 

dominant energy containing scales, is assumed not to change with time.  Kolmogorov 

used a form for the spectrum in this regime proportional to k4.  The total kinetic energy is 

found by integrating the energy spectrum over all scales, resulting in a differential 

equation whose solution gives the time dependence for the energy, with n = 10/7 ≈ 1.4.  

However, the k4 behavior has since been thought to be incorrect.   

Versions of Kolmogorov’s calculation are still widely used (e.g., Stalp et al. 

1999), and all show sensitivity to the behavior of the largest length scales.  For example, 

a popular derivation uses a k2 spectrum at low wavenumbers (Saffman 1967), yielding a 

decay exponent n = 6/5.  According to the assumptions of this derivation, energy 

decaying as the inverse of time implies a linear small wavenumber spectrum.  However, 

we consider the dependence of the decay rate on the small wavenumbers to be an 

indication that the decay law may depend on initial and boundary conditions in any 

experiment, even when the energy containing scales are much smaller than the domain 
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size.  This is because the largest scales of motion will be constrained in their evolution by 

the size and shape of the container, dictating the form of the small wavenumber spectrum.   

It is enticing to seek a solution that is independent of initial and boundary 

conditions and is asymptotically approached in the limit of large Reynolds number.  A 

result is derived from von Kármán and Howarth’s (1938) expression for the propagation 

of the correlation function in homogeneous and isotropic turbulence, into which Lin 

(1948) substitutes Kolmogorov’s expressions for the correlation functions at high 

Reynolds numbers.  The resulting solution for the kinetic energy, u2,  

u2 – β ~ (t – t0)−1,  (4.1.3) 

is seen to decay inversely with time when u2 and t are each bigger than certain unknown 

constants, β and t0, respectively.  We explore this limit in section 4.3.5.   

 

4.1.4  Experimental observations  

A large number of experiments have been performed to study the decay of grid-

generated turbulence.  Many of these results are collected by Mohamed and LaRue 

(1990), who find that the average decay exponent for all experiments is n = 1.3, with 

deviations in either direction of 0.1.  However, these results are for low values of the 

mesh Reynolds numbers of between 6,000 and 68,000.  We know of no experiments at 

high Reynolds numbers comparable to the ones we reach (290,000) where the decay 

exponent was definitively established.  Kistler and Vrebalovich (1966) collect data at 

ReM = 106, but do not examine a large enough range of the energy decay to estimate the 

exponent of a power law fit, as in (4.1.2).   
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4.2  Methods 

4.2.1  Protocol 

Data are typically gathered in the following manner.  The grid is initially placed 

in the lower part of the channel, below the windows, and the laser beam is blocked from 

entering the cryostat by a pivoting mirror which directs the beam into a beam dump.  

Hydrogen particles are introduced, as in chapter 3.  The liquid helium reservoir and 

channel are sealed by closing a valve, and over the course of each trial, evaporation of the 

helium inside raises the internal pressure by 7 to 30 kPa.  After particle injection, the 

experiment is controlled by the programmable linear motor controller, which directs the 

following actions.  The particles are allowed to disperse and the fluid is allowed to settle 

for one minute.  Just after the grid is drawn vertically through the liquid, the pivoting 

mirror moves and gives the laser beam free passage into the cryostat, illuminating the 

camera’s image plane.  The camera trigger control computer is instructed to begin 

triggering the camera according to a programmed timing sequence, as discussed in 

section 4.2.2.  Once the camera’s memory is full, the laser beam is again blocked from 

entering the cryostat, and the grid is brought to its original position.  This completes the 

action of the linear motor program.  The pressure in the cryostat is allowed to vent, and 

the movie is downloaded from the camera to a computer where it is analyzed with a PIV 

algorithm reviewed in chapter 2.  During this time, the hydrogen particles float to the 

surface of the channel over a period of tens of minutes, as discussed in section 3.7.4.  

Once the volume of the channel is free of particles, the procedure is repeated from the 

beginning.   
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4.2.2  Image timing 

In each trial, images are taken with the high speed camera at a series of times, in 

packets.  In other words, we force the camera to acquire frames irregularly by driving its 

frame trigger with a computer, as described in section 2.1.7.   As illustrated in figure 4.1, 

a small number of images, usually five, are recorded with enough time between each 

frame to allow the particles to move just a few pixels in the image, this being a packet.  

Then the camera waits, and captures another packet of five closely spaced images.  

Within each packet, images are taken with a period between them roughly five times 

smaller than the Kolmogorov time scale defined by (3.1.5).  The inter-packet time is 

usually about equal to the Kolmogorov time scale.  Both of these times are set by 

empirical optimization.  These time scales are found to grow with time after the grid has 

passed, which is consistent with the nature of decaying turbulence.  The triggering 

procedure is designed to maximize the time span of the energy decay we observe using as 

few frames as possible, and also to maximize the quality of the data.  Within each packet, 

PIV analysis is performed on pairs of temporally adjacent images.   

 

 
Figure 4.1:  Images are taken at each tick mark.  Each set of five ticks is called a packet, 

and the image frames are equispaced in time within each packet.  We program the time 

between frames within each packet, and the time between packets, to grow larger as the 

turbulent velocities decay, such that the particles move a constant distance between 

images in a packet.   
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4.3  PIV measurements using hydrogen particles  

As validation for the utility of our new hydrogen particles in liquid helium, we 

observe the decay of turbulence behind a towed grid, without system rotation, and 

compare the results to expectations.  Data are collected for a series of times between 0.11 

and 3.7 seconds after the grid has passed.  The collection of trials, N = 23 in total, are for 

fixed grid velocity, Ug = 1.0 m/s, and for a single grid geometry with mesh spacing, 

M = 7.2 mm.  These values correspond to non-dimensional times, tM = t Ug /M, between 

16 and 512, and to a mesh Reynolds number, ReM, of 283,000.   

 

0 5 10 15
0

2

4

6

8

10

12

14

16

distance [mm]

di
st

an
ce

 [m
m

]

Figure 4.2  frame 30 of 812, tU
g
/M = 20, Δt = 1.0 ms

 
Figure 4.2:  PIV vectors computed from two images taken 1 ms apart about 140 ms 

after the grid has passed the field of view at 1.0 m/s.  Processing on images of hydrogen 

particles is done according to the description in section 2.2, with an interrogation area 

size of 24 × 24 pixels in the final pass.   
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4.3.1  PIV Data 

We extract PIV vector fields with 84×84 vector resolution using 24×24 pixel 

interrogation windows from the 1024×1024 pixel images covering a region of the flow 

1.6×1.6 cm in area.  The images, after processing with our PIV algorithm (see 

section 2.2), usually yield a vector for 90% of the interrogation windows.  In other words, 

10% of the vectors either could not be extracted from the image data and are missing, or 

were judged spurious and removed.   

 

4.3.2  Mean Flow 

In addition to stochastic turbulent motions, a grid drawn through a channel 

invariably generates a repeatable large scale flow, of a form illustrated in figure 4.3.  The 

energy in the container-sized flow must be small compared to that in the turbulent 

motions in order that the turbulence be approximately homogeneous and evolve locally 

and independently of the effects of the boundary.  In our small sampling area in the 

center of the channel, the large scale flow displays itself roughly as a mean flow, where 

the mean is taken over the whole observed area at each point in time as follows:  

umn(t ) = Σ〈u(r, t )〉 / N.   (4.3.1) 

Here, the brackets indicate an ensemble average taken over all points in space at one 

particular instant in time, and the sum is taken over the N independent realizations of the 

experiment.   

We find that in the apparatus’s initial configuration, the flow at the center of the 

channel is consistently in the direction of the grid motion, and bears energy comparable 

to the turbulent fluctuations.  After testing several possible sources for this current, by 
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addressing each with a likely solution, we have succeeded in controlling the mean flow.  

We used liquid nitrogen in our optimization of the grid geometry, since each modification 

of the grid required disassembly of the cryostat.  It is easier and faster to cycle liquid 

nitrogen, and we find that the solution also works in liquid helium.   

 
Figure 4.3:  A cross section of the channel, and a sketch of the large scale flow the grid 

generates as it is towed along the length of the channel.  In the area we observe through 

the window, the flow appears uniform, though it must recirculate down the sides of the 

channel.   

 

We initially suspected that the wake of the grid stem, fixed to the center of the 

grid, caused the mean current.  We therefore constructed a grid drawn from its corners, 

but found that the flow velocity was reduced by only 10 to 20%.  We also tested whether 

the recessed cryostat windows interfered with the regular development of the wake of the 

grid in its progression up the channel.  Vortices from fluids escaping around the grid are 

consistent with the observed current – the grid could conceivably form some channel-

sized eddies as its edge temporarily passed an opening.  We machined new windows 

from acrylic whose inside surfaces are within 0.6 mm of the channel wall, as shown in 



 68

figure 4.4.  The original windows were simple flats and recessed by 5 mm.  The grid was 

drawn by a rod from its center, as it was originally.  The results of these trials are shown 

in figure 4.5.   

 
Figure 4.4:  A sketch of one of four flush-fitting windows in the side walls of the 

channel.  The window aperture is 2.5 cm.  The fine line traces the outline of the original 

flat windows.  The grid passes on the right in this drawing, and the vacuum space is on 

the left.  The vacuum seal is formed by crushing an indium wire between the window and 

the channel wall.   

 

We found that flush-fitting windows exacerbated the problem.  The mean flow in 

the direction of the grid motion was initially of the same strength, but decayed more 

slowly than the mean flow in the original configuration.  We conclude that the recessed 

windows have little to do with the generation of the mean flow.  Although we seek to 

minimize the mean flow, the fact that recessed windows have an effect at all suggests that 

we should use flush-fitting windows.  If the shape of the container is important, our goal 

is to collect data in the simplest geometry possible.  We performed the remainder of our 

experiments in this thesis with flush-fitting windows, machined from sapphire according 

to the sketch shown in figure 4.4.   
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Figure 4.5:  The mean flow as a fraction of the grid velocity, Ug, using liquid nitrogen in 

the channel, and using different grid designs.  The solid lines are the for the grid in its 

original configuration, drawn from its center by a rod, the dashed lines are for the grid 

drawn from its corners, and the dotted lines are for the original configuration, but with 

flush fitting windows.  The strength of the flows is comparable despite the modifications.   

 

We discovered that the source of the current is at the interface between the edge 

of the grid and the wall.  The wall and an associated boundary layer disrupt the 

translational symmetry of a grid, and the long range of the pressure force causes the 

disturbance to influence the flow across the whole channel.  In other words, fluid leaks 

around the edge of the grid and rushes down near the wall, driving an upward 

recirculation in the center of the channel.  We control the behavior, and minimize the 

flow, by placing a wire of the right diameter, 0.33 mm, around the perimeter of the grid.  

The minimized mean flow is shown in figure 4.6.  We will see in section 4.3.3 that the 

mean flow is made significantly smaller than the RMS velocity of the turbulent 

fluctuations by this solution.  An interesting way to interpret this is that an addition to the 
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frontal area of the grid has resulted in a decrease of its total drag.  This type of 

counterintuitive phenomena is not uncommon in fluid dynamics (see, e.g., Strykowski 

and Sreenivasan 1990).   
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Figure 4.6:  The streamwise mean flow with a 0.33 mm wire around the perimeter of the 

grid, in both liquid nitrogen and helium.  The transverse mean flow remains largely 

unchanged, is always smaller than 1% of the grid velocity, and is not shown.   

 

4.3.3  Turbulent energy decay 

We find that the total kinetic energy in the turbulent fluctuations decays with time 

as a power law with exponent n ≈ 1.  The 5% difference between our exponent and 1.0 is 

probably attributable to lack of convergence of our data to the mean.  The total kinetic 

energy per unit mass is computed for N = 23 trials as follows:  

E(t ) = ½(u2 + 2 v 2)  (4.3.2) 

u2(t ) = Σ〈u2(r, t )〉 / N  (4.3.3) 

v 2(t ) = Σ〈v 2(r, t )〉 / N  (4.3.4) 

Here, the notation is as in the previous section, and the data are plotted in figure 4.7.   
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Figure 4.7:  The decay of kinetic energy per unit mass in the flow generated by a grid 

passing through liquid helium as a function of time since the grid has passed.  Variables 

are normalized by the grid parameters, the grid velocity, Ug = 1.0 m/s, and the mesh 

spacing, M = 7.2 mm.  The fit is to a power law as in (4.1.3) with β and t0 set to zero.   

 

With this result, we calculate the Taylor based Reynolds number,  

Reλ = λu/ν = u2 (15/νε)½,  (4.3.5) 

where the energy dissipation rate, ε = −dE/dt, is computed from the derivative of a power 

law fit to the data for the decay of the total kinetic energy given by (4.3.2).  We find that 

the average Reλ is 260, and does not show an increasing or decreasing trend with time as 

expected of a flow with energy decaying as t −1.  Its value fluctuates by about 10% over 

the observed time span.   

 

4.3.4  The strength of the mean flow 

We show that the energy of the mean flow is smaller than fluctuations by a factor 

of more than 10 for most of the decay (figure 4.8).  This corresponds to a fluctuating 



 72

velocity about three times larger than the mean.  Later in the decay, we begin to see the 

effect of convection caused by laser heating of the windows, as discussed in section 4.3.4.   

transverse
streamwise

 
Figure 4.8:  The fluctuating energy relative to the energy in the mean for the same flow 

as in figure 4.7.  The streamwise fluctuations are compared to the streamwise mean, and 

the transverse fluctuations are compared to the transverse mean.   

 

4.3.5  A comment on the magnitude of the observed variables 

The constants β and t0 in (4.1.3) are not constrained by Lin’s theory, nor is it clear 

what they physically represent.  In order for Lin’s decay law to resemble the one we have 

found, u and t as observed in our experiment must be large relative to the constants.  We 

offer here the suggestion that both u and t are indeed large when compared with physical 

scales.   

As turbulence decays, u2 is damped and approaches β while t eventually grows 

larger than t0.  As long as our assumption of large Reynolds number holds, the relevant 

scales are the root mean square flow velocity, u, and the integral scale, comparable to M.  

The velocity u scales with the grid velocity, Ug, so we can measure the distance from the 
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time origin in terms of the quantity M/Ug.  We show above that we do observe turbulence 

at large times in this sense.  Furthermore, as the turbulence evolves, the Reynolds number 

becomes smaller until viscosity affects the large scales, and a new decay law must be 

derived.  The viscosity-dependent velocity scale is the Kolmogorov velocity, given by 

(3.1.6), and we may relate β to the square of this quantity.  The degree to which the 

kinetic energy in the flow is larger than this value is then found to be the Taylor based 

Reynolds number given in (4.3.5):  

u2/ufluid
2 = Reλ /15½ ≈ 67.   (4.3.6) 

This suggests that β may become unimportant for large enough Reλ.  We have assumed 

that both β and t0 are equal to zero in finding that our data fit a power law.   

 

4.3.6  A note on thermal input 

The upturn in energy at the largest times seen in figure 4.7 is the beginning of a 

trend that continues at larger times than we have captured in this data set.  The feature is 

related to a steadily decreasing streamwise mean flow, as shown in figure 4.6.  The mean 

flow reverses direction at about tM = 200, and continues growing in the opposite 

direction, which is downward against gravity.  As can be seen in figure 4.8, this mean 

flow gains in strength relative to the turbulent fluctuations, and is comparable to them 

above tM = 400.  The mechanism driving the flow at late times is convection.  The laser 

beam impinging on the windows adds a small amount of heat at their surfaces and causes 

fluid to rise along the boundaries.  The fluid recirculates at the center of the channel, 

where we make our observations.  This problem is inevitable when using liquid helium, 

since its thermal expansion coefficient is large, about 1000 times larger than that of 
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water, for example.  The problem is exacerbated by using continuous illumination, as we 

do.  However, we have confined our observations to the region before this convective 

flow is comparable in strength to the turbulence generated by the grid.   

 

4.4  Conclusions  

We find that the hydrogen particles introduced in chapter 3 produce PIV data of 

high quality.  We observe that turbulence generated by a towed grid is sensitive to grid 

geometry.  We find that turbulence kinetic energy decays with a power law, as predicted 

by theory about homogeneous and isotropic turbulence.  In addition, the exponent of the 

decay we measure, −1, is comparable to the one found in previous experiments (surveyed 

in section 4.1.4).  However, its slightly less rapid decay may be attributable to the larger 

Reynolds number of the flow; the decay rate is a special case of a prediction for high 

Reynolds number turbulence.  We recognize, however, that further experiments are 

necessary for strong conclusions about turbulence.   
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Chapter 5  

Turbulence in a rotating container  

 

We attempt to generate homogeneous turbulence in a steadily rotating system.  

Our goal is to observe fully developed turbulence in a system that is rotating rapidly, in a 

sense that we clarify below.  We cause turbulence using a grid in rotating channels with 

both square and round cross sections using liquid helium, liquid nitrogen, and water as 

test fluids.  We are not able to approximate homogeneity in our rotating apparatus, and 

argue that it is difficult in any real system due to the presence of large scale inertial 

waves in the body of the fluid.  These inertial waves quickly sense the boundaries, and 

resonate at frequencies characteristic of the shape of the volume.   

 

5.1  Rotating flows 

Rotating flows are common in engineering and planetary settings.  Rotation 

controls the behavior of geophysical flows, such as in oceans and the molten outer core of 

the planet (Buffet 2000).  Flows in rotating machinery, such as turbines, also experience 

effects of rotation.  In these applications, as in most, the effect of rotation is compounded 

by other mechanisms, such as convection.  Here, we study the effect of rotation alone.  

There has also been some interest in arriving at a better understanding of energy 
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dissipation in non-rotating turbulence through an understanding of how system rotation 

interferes with the mechanism of energy transfer among scales of motion (Cambon et al. 

1997).  Because of these two approaches, the effect of rotation on fluid dynamics has 

been studied in usually one of two contexts.  The geophysics community, motivated by 

observations of large scale flows, such as the Gulf Stream, is usually interested in 

constructing steady state flows exhibiting some large scale phenomena (e.g., McEwan 

1970).  Taking the perspective of turbulence, other experimentalists have sought to 

generate a stochastic state comparable to the homogeneous one that was theoretically 

fruitful in an inertial frame of reference (e.g., Jacquin et al. 1990).  We present an attempt 

to reconcile the efforts of these two branches of study.   

 

5.1.1  The Coriolis acceleration and its effects  

The Coriolis term appears when the momentum equation is written, for 

normalized variables, in a steadily rotating frame of reference, as  

∂u/∂t + u · u + 2 Ω̂  × u / Ro = − P + 2u / Re.   (5.1.1) 

Here, variables are normalized as in chapter 1, except for the additional steady system 

rotation vector, Ω̂ , which is normalized by its magnitude, Ω.  This normalization yields 

the definition for the Rossby number,  

Ro = U/ΩL,  (5.1.2) 

for some characteristic velocity and length scales of the flow, U and L.  Just as the 

Reynolds number measures the relative importance of inertial to viscous terms in the 

equation, so the Rossby number measures the relative importance of the inertial term to 

the Coriolis term.  Specifically, the Coriolis force acts on each fluid parcel in a direction 
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normal to the plane containing the rotation axis and the direction of the parcel’s motion.  

The reader can consult Batchelor (1967) for a more complete description of Coriolis 

effects.  Our interest is in the opposite extremes of each parameter.  That is, we seek to 

observe a flow with large Reynolds number, in which vigorous turbulence is the 

dominant characteristic, and small Rossby number where rotation strongly modifies the 

flow.  Finally, we note that the action of the Coriolis can be characterized by the Ekman 

number, which is the ratio of the Rossby number to the Reynolds number, and indicates 

how long a disturbance will survive before being damped by viscosity.   
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Figure 5.1:  The Reynolds-Rossby number parameter plane using the large scales of the 

flow, such that Ro = u/ΩL, and Re = uL/ν, showing the limits in each parameter we can 

achieve simultaneously using our apparatus.  Here, the variable u is the root-mean-square 

flow velocity, and L is the characteristic size of the energy-containing scales, which (for 

convenience) we take to be the mesh spacing of the grid, M.  The bold lines are 

trajectories taken from data presented in this chapter, but any combination of larger 

Rossby number and smaller Reynolds number can be achieved by choosing appropriate 

initial conditions.  Time progresses from the top right of each bold line to the bottom left.   
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5.1.2  The parameter space investigated  

We chart the extremes in the dimensionless parameters attainable in our system in 

figure 5.1.  Note that the Ekman number, defined in the previous section, is roughly 

constant with time in each experiment, and ranges from 8 × 10−4 for liquid nitrogen to 

4 × 10−5 for liquid helium.  The parameter space we explore is bounded by the rotation 

rate of the channel, and the maximum velocity of the grid.  In addition, the system is 

defined by the geometry of the channel and the choice of fluid; these will be described in 

greater detail in section 5.3.  In this section, it suffices to say that the vessels containing 

both the cryogenic fluids and water were designed to fit within the same outer diameter.  

However, because layers of thermal insulation surround the channel in the cryostat, the 

channel bearing cryogenic fluids is about 5 times smaller than the one containing water.  

In this way, we have a practical comparison of each fluid, and we argue that the contrasts 

are intrinsic in the choice of fluid.   

We call attention to some of the advantages and disadvantages of using each fluid, 

as is evident in figure 5.1.  Despite the smaller size of the channel containing the 

cryogenic fluids, we generate Reynolds numbers in liquid helium more than twice those 

in water.  However, because the Rossby number does not depend on viscosity, flows in 

the larger water channel are more strongly affected by rotation.   

 

5.1.3  Two-dimensional flows 

In the limit of small Rossby number and large Reynolds number, one might 

choose to neglect most terms of the momentum equation (5.1.1), and balance the Coriolis 

term by pressure alone, as  

2 Ω̂  × u / Ro = − P.   (5.1.3) 
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By taking the curl of this relation, we eliminate pressure, and the equation reduces to 

Ω̂  · u = 0, or for rotation about the vertical axis, Ω̂  = êz, without loss of generality,  

∂u/∂z = 0.   (5.1.4) 

The result is the Taylor-Proudman theorem (Chandrasekhar 1961) and confines spatial 

structure of the velocity field to the plane normal to the axis of rotation in the limit of 

rapid rotation.  The theorem leads to the suggestion that turbulent flows tend to become 

two dimensional as the rotation rate is increased, as has been observed in several 

experiments (e.g., Baroud et al. 2003).   

 

5.1.4  Inertial waves 

According to Smith and Lee (2005), the tendency toward two-dimensionality is 

not the complete picture, even as a basic description of an unsteady rotating flow.  We 

can see why if we retain the time dependence of velocity in the equations of motion, but 

again invoke a small Rossby number to justify abandonment of the inertial and viscous 

terms.  As in section 5.1.2, we take the curl of the resultant inviscid and linear equation, 

and for un-normalized variables, we find that  

∂ω/∂t + Ω · u = 0.   (5.1.5) 

Here, ω =  × u is the vorticity.  This equation admits plane wave solutions of the form 

u = uoei(k·r − λt).  The scalar λ is the frequency of the wave, which has the peculiar 

dispersion relation  

λ = 2Ω·k / k,  (5.1.6) 

where k is the wave-number vector with magnitude k.  Note that the angular frequency of 

the wave is always less than twice the rotation rate, and approaches zero as the wave 
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vector is turned perpendicular to the rotation axis.  The existence of a wave motion in the 

fluid’s bulk implies that the Coriolis force can be thought of as a restoring force.  The 

direction and speed of energy propagation by the wave is defined by the group velocity, 

which is the gradient of the frequency with respect to the wave vector:  

cg = kλ = 2 k × (Ω × k) / k 3.   (5.1.7) 

Energy is propagated in the plane of the rotation axis and wave vector, but normal to the 

wave vector.  No energy is propagated normal to the axis of rotation, since the direction 

of this wave is aligned with the axis of rotation and their cross product is zero.  

Conversely, energy is most rapidly transmitted along the axis.  These waves are 

transverse, circularly polarized, dispersive, anisotropic, and in general also dissipative.  

More general introductions to rotating flows and inertial waves can be found in 

Greenspan (1968), Chandrasekhar (1961) and Batchelor (1967).   

 

5.1.5  Inertial wave modes of a container  

We expect from systems such as a vibrating string, that if we excite inertial waves 

in a fluid confined by some boundary, we will find that their wavelengths are 

commensurate with the size of the boundary.  These resonances have been derived 

analytically only for an inviscid fluid confined in simple geometries, such as a sphere.  

Lord Kelvin found, in 1880, the modes of a cylinder with circular cross section, which 

are the closest analytical solutions to our own square cylinder geometry.  The modes for a 

channel with radius b and length h are described in Batchelor (1967), who shows that the 

natural frequencies for small oscillations are:  

β(m, n) = 2Ω / (1 + (γnh / πmb)2)½  (5.1.8) 
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Here, m is the axial wave number, n is the radial wave number, and γn is the location of 

the nth zero of the Bessel function of the first kind.   

For a square channel, such as the one in our cryostat, there exist no analytical 

solutions.  However, Maas (2003) devised a computer solution to the problem.  The 

frequencies of standing waves modes in a channel with our aspect ratio were 

communicated to us privately by Maas (2005), and are presented in table 5.1.   

 
Table 5.1:  Numerical results from Maas (2005) for the modes in a square channel with 

aspect ratio h/2b = 5.  The numbers are the frequencies of the modes relative to the 

inertial frequency, or ωΜ/2Ω.  The first pair of rows is the symmetric and asymmetric 

modes, as defined by Maas (2003), with varying axial wavenumber, and transverse 

wavenumber equal to one.  The second pair of rows is for modes with the same axial 

wavenumbers and a transverse wavenumber of two.   

 
axial wavenumber: 1      2     3     4     5     6     7     8 
 transverse wavenumber = 1:  

symmetric mode:   0.0921 0.182 0.267 0.346 0.418 0.483 0.540 0.590  

asymmetric mode:  0.0988 0.215 0.336 0.450 0.547 0.626 0.689 0.740 

 transverse wavenumber = 2:  

symmetric mode:   0.0713 0.145 0.221 0.296 0.369 0.437 0.450 0.556 

asymmetric mode:  0.0821 0.154 0.220 0.283 0.341 0.396 0.447 0.495 

 

5.1.6  Reflecting inertial waves 

An alternate view of inertial waves confined in a volume is adopted by most 

experimentalists and theorists.  It is imagined that scattered inertial waves of arbitrary 

frequency bounce off the container’s walls and reverberate, like sound in a large room.  

This view originates with Phillips (1963), who finds that the reflection of an inertial wave 

from a surface changes the wavenumber of the wave, depending on the reflection angle 
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and angle of the surface relative to the rotation axis.  Inertial wave reflections then have 

the effect of redistributing energy amongst the scales of motion.  In addition, some 

energy is dissipated in boundary layers.   

 

5.1.7  Rotating, decaying homogeneous turbulence 

The nonlinear term in the Navier Stokes equation is responsible for redistributing 

energy among different scales of motion, and it is this redistribution that eventually 

causes energy to be dissipated by the small scales (Frisch 1995).  Because a small Rossby 

number implies that the nonlinear term is less dominant than the (linear) Coriolis term, it 

is thought that strong rotation diminishes the dissipation rate.  In addition, it is found that 

in two-dimensional turbulence, which is treated as a limiting case, energy can be 

transferred to increasingly large scales of motion (Kraichnan 1967).  At progressively 

larger scales, viscosity dissipates energy less and less effectively.  For these reasons, it is 

thought that rotating turbulence will decay less rapidly than stationary turbulence, whose 

decay rate we discussed in chapter 4.  Rotating turbulence can also be viewed as the 

superposition of inertial waves interacting through the weak nonlinear term (Smith et al. 

1996).  These features have incited efforts to observe and understand the effect of 

rotation on the rate of decay of turbulence.   

 

5.2  Previous experimental work  

Although the effects of rotation have been investigated extensively by 

geophysicists, comparatively little experimental work has been done in a general setting 

of turbulence research.  We present two examples of experiments guided by 
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geophysicists in which standing inertial waves were studied, followed by a review of all 

experiments that we know of conducted in the tradition of turbulence studies.   

Fultz (1959) experimentally demonstrated the existence of resonant modes with 

the frequencies found by Kelvin (5.1.8) in a cylindrical tank periodically forced at a 

series of specific frequencies.  More recently, inertial wave behavior in containers with 

diverse geometries has been sought.  An example is Manders and Maas (2003), who 

examine the focusing of inertial waves in a rectangular channel with one sloping wall.   

An early attempt to study rotating turbulence was undertaken by Ibbetson and 

Tritton (1974).  In an annulus rotating about its symmetry axis, they examined the 

turbulence generated by the separation of plates with holes in them, a sort of high solidity 

grid.  Velocities were measured using a hot wire that was periodically sampled.  The 

effect was to produce data at a small number of widely spaced times.  They observed an 

increase in the decay rate of velocity fluctuations with increasing rotation rate, and 

proposed that this was due to the transmission of energy to dissipative boundary layer by 

inertial waves.  They suggest the parameter  

J = Wu / l(Ων)½.   (5.2.1) 

When J >> 1, boundary dissipation is unimportant relative to dissipation in the bulk.  The 

variable W is the overall size of the container, and l and u are the large length and 

velocity scales of the flow.  They find J to be of order 10 in their flow, and suggest that 

future experiments should be designed for much larger values in order for boundary layer 

dissipation to be unimportant.   

In the most notable experimental study of the effect of rotation on decaying grid 

turbulence, data were collected in a wind tunnel with a rotating section (Jacquin et al. 
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1990).  The investigators sampled the fluctuating velocity, using a hot wire, at a series of 

points downstream of the grid, and examined quantities such as the kinetic energy and 

integral length scale.  They found that the energy decay rate decreased with increasing 

rotation rate.  Using Ibbetson and Tritton’s rationale regarding inertial waves, they found 

that the parameter J defined in (5.2.1) is of order 100 in their flow, 10 times larger than in 

Ibbetson and Triton’s flow.  They argued that the reason energy decayed more slowly in 

their rotating experiment, while Ibbetson and Tritton measured an increased decay rate, is 

due to the larger value of J in their flow, and that their experiment is therefore better 

representative of decaying homogeneous turbulence.   

Dalziel (1992) towed a grid through a channel filled with water with a free 

surface.  The grid was towed along the channel, in a direction normal to the axis of 

rotation.  He used PIV to observe that the energy decay was unchanged, but found 

signatures in the signal that he guessed were surface waves and inertial waves.  This is 

the only experiment to measure the velocity continuously in a manner analogous to our 

own method.   

Two experiments used a rotating cylindrical water tank, and reported the 

observation of vortices aligned with the axis of rotation.  Hopfinger et al. (1982) 

generated a steady state flow with an oscillating grid and used streak photography to 

characterize it.  Morize et al. (2005) tow the grid and take instantaneous snapshots of the 

transient flow using PIV in the plane normal to the axis of rotation.   

Most recently, Moisy et al. (2006) present an experiment conceptually similar to 

our own, using PIV to study turbulence behind a towed grid in a rotating rectangular tank 

filled with water.  They report a reduction in the energy decay rate as the rotation rate is 
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increased.  However, their decay law for decreasing rotation rate appears to approach a 

t−2 form markedly different than the one expected for non-rotating homogeneous and 

isotropic turbulence (see chapter 4) far from boundaries, indicating that their turbulence 

is probably evolving under different conditions than the ones we seek to achieve.  They 

do not comment on the influence of inertial waves.   

In summary, there is no clear consensus in the literature on the effect of rotation 

on the decay rate of turbulence in experiments.  In addition, previous experimentalists 

have either considered inertial waves to be a problem that needs to be controlled, or have 

been concerned with energy dissipation at the boundaries due to inertial wave reflections.  

Our approach is to consider how the structure and evolution of the flow is altered by the 

discretization of available wave modes.   

 

5.3  Apparatus and methods  

We acquire the data presented in this chapter while rotating the channel about the 

same axis as that of the grid motion; for this reason we use the descriptions ‘axial’ and 

‘streamwise’ interchangeably.  In addition to the apparatus and methods described in 

chapters 2 and 3, we also use liquid nitrogen as a working fluid, and a new water 

apparatus.  Much data are acquired using liquid nitrogen, because it requires much less 

attention than liquid helium, allowing us to concentrate on refining the rotating apparatus 

and understanding the flow.  Water is used because a channel with circular cross section 

can more easily be constructed for this fluid than for the cryogenic fluids.  For water, 

construction of the apparatus and collection of data were accomplished in several weeks, 

whereas the same process took years using the cryogenic fluids.   
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5.3.1  Experimental protocol for the cryogenic fluids 

Data are acquired in the following manner.  Initially, the cryostat is open, 

allowing the evaporating liquid to escape, and the laser beam is blocked from entering the 

cryostat.  The channel and central reservoir are then sealed from the lab, and a small 

overpressure develops inside the cryostat as the liquid continues to evaporate.  The air 

bearing is supplied with air pressure, and the apparatus rotated by applying a fixed 

voltage to the motor.  The rotation rate is monitored, and we start a timer when the 

rotation rate reaches a steady state.  The fluid spins up for a preset amount of time, as 

described in section 5.3.2.  The laser beam is allowed to illuminate the fluid and particles.  

The linear motor controller pulls the grid and triggers the camera according to preset 

timing sequences.  After the camera has finished acquiring its movie, usually a few 

seconds long, the laser beam is blocked and the rotation is stopped.  The movie is 

downloaded from the camera, the pressure over the liquid in the cryostat is allowed to 

vent to the lab, and the process is repeated from the beginning to collect another movie.  

Movies are then transferred to the supercomputer for analysis as described in chapter 2.   

 

5.3.2  Spinup of the fluid 

Although the spinup of the fluid in a container can be estimated by different 

techniques, we choose our spinup time empirically in the following way.  For each 

rotation rate and each fluid, the apparatus is allowed to spin for a certain amount of time 

as in section 5.3.1.  A movie of particle motions is collected in the undisturbed flow (i.e., 

without pulling the grid).  This procedure is repeated for varying spinup times until the 
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fluid is observed to be quiescent in the rotating frame.  That is, until the fluctuating 

energy in the undisturbed rotating flow is approximately an order of magnitude lower 

than at any time during the observed period after the grid is drawn.   

 

5.3.3  Liquid nitrogen  

We perform several experiments with the cryostat containing liquid nitrogen at its 

boiling point of 77 K.  Liquid nitrogen presents many of the same practical problems as 

liquid helium, such as low temperature, but to a lesser extent.  For example, the thermal 

expansion coefficient of liquid nitrogen is about 100 times smaller than that of helium, so 

the flows we observe are less affected by heat input from the laser, as summarized in 

section 4.3.4.  The kinematic viscosity of liquid nitrogen, ν ≈ 2 × 10−3 cm2/sec, is 

intermediate between those of liquid helium and water.  The experiments are performed 

using the same methods and apparatus described for liquid helium in chapter 2, with the 

exception of seeding particles.   

In liquid nitrogen, we use 3.4 micron polymethyl-methacrylate particles, with a 

density of 1.2 g/cc.  This density compares favorably with the density of liquid nitrogen, 

0.8 g/cc.  However, the particles clump, as discussed in section 3.3, and we observe a 

polydisperse suspension of aggregates that we estimate are typically 3 particle diameters 

across.  Such clumps are inadequate for making quantitative velocity measurements due 

to their large inertia and settling velocity.  However, we are interested in this chapter in 

the frequencies of velocity oscillations.  We show in section 3.2.1 that the inertia of the 

particle may shift the phase of the observed oscillations, but not the frequency 

components of the motion.   
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5.3.4  Water channel 

We also describe the results of experiments performed in a channel with circular 

cross section, shown in figure 5.2.  These experiments used water as the working fluid, in 

an acrylic cylinder with a 24 cm inner diameter.  The water was heated to about 85 °C, as 

a trial method of increasing the Reynolds number.  The viscosity, ν, of water at this 

temperature is about 3 times smaller than that at room temperature, and is equal to 

3.4 × 10−3 cm2/sec.   

 
Figure 5.2:  The circular cylindrical channel is put in place of the cryostat and is filled 

with water.  The position of the false ceiling is adjustable.  The indicated window faces 

the camera, while the laser passes through the curved wall of the channel.   

 

The grid is constructed with the same biplane geometry and the same solidity as 

the grid used in the cryogenic channel, with a mesh spacing of 2.67 cm.  The grid was 

adjusted in a similar way as described in section 4.3.2 for the cryogenic case in order to 

minimize the repeatable mean flow generated by drawing the grid.  This tuning was done 
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by modifying the edge of the grid, where it contacted the inside of the channel.  However, 

we found it impossible to shrink the magnitude of the mean flow such that its energy was 

smaller than that in the fluctuations, possibly because of the difference in symmetries 

between the square grid and circular perimeter.   

The height of the column of water in which the grid is pulled is varied with a false 

ceiling.  The false ceiling is constructed from sheet metal, with a 7 mm hole at its center 

to allow the free passage of the grid stem.  The ceiling also has a gap between it and the 

wall around its perimeter of about 2 mm, and is suspended by four wires whose length is 

varied according the desired column height.  The grid motion is not limited by the 

ceiling, and remains unchanged regardless of the position of the ceiling.   

The particles used to trace the fluid motions in the case of water are 3.4 μm 

polymethyl-methacrylate particles with 1.2 g/cc density.  The particles are suspended 

using a small amount of soap.  We find that the particles remain suspended for long 

enough that a fresh injection of particles is needed only about twice per day.  In addition, 

because of the difference between the indices of refraction of water and air, it is 

necessary to place the camera further from the axis of rotation than in experiments with 

nitrogen or helium.  In order to keep the rotating camera from interfering with equipment 

fixed in the lab frame, we are forced to use a +2 diopter lens with the Nikon macro lens, 

allowing the camera to be brought back to its original location.  The result is an increase 

in magnification, or a higher resolution of 12.6 μm per pixel instead of 16 μm per pixel.   

The water channel is put in place of the cryostat, and in all other aspects, the 

experiments are performed as with the cryostat described in section 5.3.1.   
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5.4  Results 

Here, we show that the flows generated in the rotating channels are distinguished 

by the presence of large scale inertial wave modes of the channels.   

 

5.4.1  The energy decay 

Using liquid nitrogen as a test fluid, we observe the evolution of turbulence at a 

steady system rotation of Ω = 0.98 Hz.  Turbulence is generated as described in 

section 5.3.3, with the grid drawn at Ug = 1.0 m/s, and with 7.2 mm mesh spacing, M.  

We compute the mean kinetic energy, E, in the volume of observation for all N = 18 

realizations as in (4.3.2).  As shown in figure 5.3, the energy decay shows unexpected 

behavior.  It is seen to decrease initially almost as it did without rotation, but then to rise 

and fall after about 200 mesh times.  The temporary increase in mean kinetic energy 

would be impossible if our data were from a region that was a representative volume of a 

homogenous flow, as it appears to be the case without rotation.  It follows that there are 

important inhomogeneities and dynamics taking place on the scale of the container.   

 

5.4.2  The mean flow  

We compute the mean flow, given by (4.3.1), and find that the mean exhibits the 

same undulations characteristic of the total kinetic energy.  This is shown in figure 5.4 

over a period of about 15 system rotations.  The mean is fairly repeatable from run to run, 

and in this regard is similar to the mean generated without rotation shown in figure 4.5.  

However, the mean shows repeated zero-crossings that are not seen without rotation.   
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Figure 5.3:  The crosses are the decay of kinetic energy in a channel rotating at about 

1 Hz filled with liquid nitrogen, after being agitated with a grid.  The solid line is from 

data acquired in the same way, but without system rotation, at a mesh Reynolds number 

of 72,000.  In the stationary case, the decay of kinetic energy is slightly steeper than t −1, 

which is expected of a lower Reynolds number flow, as described in chapter 4.  The 

decay with rotation shows strong fluctuations in time.   
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Figure 5.4:  The mean flow for the same data as in figure 5.3.  Streamwise flows are in 

the direction of grid motion.   
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In figure 5.5 we show that the mean flow accounts for a significant fraction of the 

velocity fluctuations.  Over all of time, about 20% of the energy in the flow is carried in 

the mean in the root-mean-square sense.  This occurs despite our efforts, described in 

chapter 4, to minimize the magnitude of the mean flow in the non-rotating system.   
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Figure 5.5:   The mean flow shown in figure 5.4 relative to the stochastic fluctuations in 

the local velocity.  The solid line is the streamwise velocity component; the dashed line is 

the transverse component.  The oscillations are of comparable magnitude to the 

fluctuations throughout the decay.   

 

5.4.3  Transform of the mean flow  

We find the Fourier transform of the mean flow, in order to determine if the 

oscillations are comprised of a continuous spectrum of frequencies, as is the case in 

turbulence, or if they can be regarded primarily as the sum of discrete frequencies.  

Because the data are not evenly spaced in time, we cannot perform the transform in the 
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conventional way.  We choose an arbitrary range of closely spaced frequencies, ω, and 

project our data onto each one.  Figure 5.6 shows  

|F(umn)(ω)|2 = |Σumn eiωt Δt |2,  (5.4.5) 

and |F(vmn)(ω)|2 = |Σvmn eiωt Δt |2,  (5.4.6) 

where the sum is taken over all time increments, and we plot the square of the magnitude 

of the complex function.  The curves show well-defined peaks, each at a frequency less 

than twice the rotation rate.  As described section 5.1.2, inertial waves are confined to 

oscillate at less than twice the rotation rate.  The vast majority of the total energy in the 

mean flow, or of the area under the curve of the transform, evidently lies under the 

spectral peaks in this low frequency regime.   
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Figure 5.6:  The transform of the repeatable mean flow shown in figure 5.4, generated 

by a grid drawn through liquid nitrogen in a square channel rotating at Ω = 0.98 Hz.  The 

energy in each transform lies predominantly below a frequency that is twice the system 

rotation rate, as must be the case for inertial waves.   
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5.4.4  The circular apparatus 

We repeat the above experiments using water in a channel with circular cross 

section, instead of a square cross section, as described in section 5.3.4.  The grid is drawn 

at Ug = 1.6 m/s while the channel is steadily rotating at Ω = 1.7 Hz.  In the circular 

channel, we can predict the frequencies of inertial standing wave modes, reviewed in 

section 5.1.4.  We find an oscillating mean flow, umn, that is qualitatively similar to the 

one found in the square channel.  The mean flow is shown in figure 5.7, and its transform 

taken as in section 5.4.3 is plotted in figure 5.8.  Although we do not know what modes to 

expect, we find that the frequencies of the peaks are close to the three modes with the 

lowest wavenumbers.  These modes are geometrically the simplest, with coherent 

structures nearly as large as the container itself.   
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Figure 5.7:  The mean flow in the water channel for h = 80 cm, comparable to figure 5.4 

of the same measurement, but using liquid nitrogen in a square channel.   
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Figure 5.8:  The transform of the streamwise, or axial, mean flow shown in figure 5.7.  

The vertical lines are the locations of inertial wave modes predicted by Kelvin’s linear, 

inviscid theory given in section 5.1.4.   

 

We repeat the experiment with different heights of the column of water, collecting 

data from about 25 to 30 realizations for each aspect ratio.  We find that the locations of 

the peaks in the transform of the streamwise mean flow coincide in each case with the 

predicted location of a low wavenumber mode, as shown in figure 5.9.  Peaks are 

identified as such if they are at least one fifth as tall as the dominant peak.  The structure 

of the low wavenumber modes varies over distances much larger than the dimension of 

our window.  Because of this, we cannot examine the spatial structure of the hypothetical 

waves in our data, and cannot definitively assign the peaks to modes of particular 

wavenumbers.   
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Figure 5.9:  We plot as circles the frequencies of the dominant peaks in spectra, such as 

the one in figure 5.8, for a series of aspect ratios, h/b, where h is the length of the channel 
along the axis of rotation, and b is its radius.  The curves are calculated according to 
(5.1.8) for different combinations of axial and transverse wavenumbers.   
 

5.4.5  Revisiting the square channel data 

We compare the natural frequencies predicted by Maas (2003) with the spectrum 

computed from the mean flow in liquid nitrogen given in figure 5.6, and find good 

agreement.  However, we present here an alternative analysis, by computing frequency 

spectra from the velocity fields rather than from the mean flow.  For each realization of 

the experiment, we take the transform of the time series of the mean velocity in a small 

sub-region of the whole velocity fields.  The mean is taken in this way, over several 

spatially adjacent vectors, in order to avoid the complication of performing the Fourier 

transform on data that has drop-outs.  This local mean is computed over the group of a 

vector’s nearest neighbors that are available.  This can be expressed as  

|F ′(u)(ω, x, j )|2 = |Σu(x, j ) eiωt Δt |2,  (5.4.7) 

and |F ′(v)(ω, x, j )|2 = |Σv(x, j ) eiωt Δt |2,  (5.4.8) 
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where the new F ′ is a function of the particular realization, j, and x points to the center of 

the sub-region where the local mean velocity, u or v, is found.  In this way, we account 

for the variation in phase of the excited inertial wave modes from run to run, as well as 

for frequency components with spatial structure smaller than the whole captured field.  

The mean of these spectra, taken over all points in space, and for all realizations, is 

plotted in figure 5.10, along with Maas’s predictions given in table 5.1.  Since the square 

channel is long in the axial direction, it is natural that the dominant inertial wave modes 

are found divided in the axial direction rather than in the radial direction.  It is evident 

that, as in the circular cylindrical channel, most of the energy in the mean flow is 

represented by peaks corresponding to the frequencies of standing wave modes.  In 

conclusion, a significant fraction of the energy of the whole flow is in its repeatable 

mean, and most of the energy in the mean flow is, in turn, accounted for by several 

spectral peaks at the characteristic frequencies of confined inertial waves.   
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Figure 5.10:  The frequency spectrum of velocity fluctuations in a rotating square 

channel filled with liquid nitrogen.  The vertical lines are predictions made by Maas 

(2005), whose [axial, transverse] wavenumbers are given in the order of increasing 

frequency.  Most of the peaks correspond to successively higher axial wavenumbers.   
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5.4.6  The square channel with liquid helium  

We perform nearly the same experiments as in section 5.4.1, except with liquid 

helium in place of liquid nitrogen.  We rotate the channel twice as fast, at Ω = 2.0 Hz, 

and draw the grid at the same velocity, Ug = 1.0 m/s.  We present data for N = 13 

realizations.  The decay of kinetic energy, shown in figure 5.11 shows the same 

characteristic features as described in section 5.4.1, although the undulations alter the 

energy decay in about one quarter of the time that it took when liquid nitrogen was used.   

The mean flow, as computed in section 5.4.2, is qualitatively similar to that 

observed in liquid nitrogen, accounting for the same fraction of the total energy (see 

figure 5.12).  Its transform, however, is more difficult to interpret, as seen in figure 5.13.  

It shows well defined peaks, as did the other transforms we have reviewed, but the peaks 

of the lowest frequencies do not obviously correspond to inertial wave modes, as do the 

peaks found using data acquired in liquid nitrogen.   
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Figure 5.11:  The decay of energy in liquid helium with and without rotation.  The solid 

curve is from figure 4.6, for a mesh Reynolds number of 283,000.  The crosses trace a 

curve similar to that observed in liquid nitrogen in figure 5.3.   
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Figure 5.12:  The mean flow in liquid helium, relative to the fluctuations.  The solid line 

is the streamwise velocity component; the dashed line is the transverse component.  The 

oscillations are of comparable magnitude to the fluctuations throughout the decay.   
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Figure 5.13:  The solid curve is the transform of the streamwise mean flow in liquid 

helium.  It shows well defined peaks, all lying below twice the rotation rate.  We show 

the data from figure 5.6 using liquid nitrogen as a dashed curve.  The peaks of the two 

curves coincide at high frequencies, but not below ω/2Ω ≈ 0.4.  We indicate the 

frequencies of some high axial wavenumber inertial wave modes as suggestions, but 

there are many other modes with frequencies that do not lie near peaks.   
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5.5  Discussion  

5.5.1  The modes in liquid helium  

We do not know the explanation for the differing behaviors of the mean flows in 

liquid nitrogen and liquid helium.  One possibility is that we observe the liquid nitrogen 

flow for twice as many rotation periods as the liquid helium flow.  The period of the 

simplest low frequency wave mode, the [1, 1] symmetric or asymmetric mode, is about 5 

rotations.  Although we observe the liquid helium flow for approximately 7 rotations, it is 

possible that our ability to resolve the low frequency modes is compromised to the extent 

that we cannot distinguish them from each other.  The liquid helium transform begins to 

resemble the liquid nitrogen curve for oscillation periods shorter than about one rotation.  

In the liquid nitrogen flow, however, the transform appears to conform to predicted wave 

modes with periods as much as five times longer, although we only observe the flow for 

twice as many rotations as in liquid helium.  Further experiments are probably required to 

understand this discrepancy.   

 

5.5.2  The right experiment 

We ask whether we can design an experiment in which inertial waves will not 

interact with the boundary during some period of observation.  Let us consider the case 

that there is no energy transfer among different scales of motion, and the distribution of 

energy is set by initial conditions such as the drawing of the grid and purely turbulent 

dynamics.  We monitor a region in the center of the volume, and wonder how long it 

takes for the fluid in this region to communicate with the boundaries.  Energy is carried 
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by inertial waves at a rate defined in equation (5.1.6).  It is readily shown that the first 

waves to arrive in our region from a boundary in a channel of size W are carried by a 

wave-vector, k, with magnitude, k, inclined at 45 degrees to the axis of rotation, and their 

transit time is  

tB = W / |cg| = Wk / Ω.   (5.5.4) 

Short waves travel slower, but for the large-scale waves we have observed, where Wk 

nearly equals one, so that by the time the system has undergone one rotation the whole 

volume has sensed the boundaries.   

As we show in chapter 4, it is difficult to force turbulence using a grid in such a 

way that energy input is confined to length scales in a range controlled by the grid 

spacing.  A significant amount of energy is injected at larger scales, including scales that 

span the container.  Let us imagine that it is possible, however, to construct a perfect grid 

and an experiment where the input energy is confined to scales of the order of the grid 

spacing, M.  We will take our desire to study the effects of rotation to mean that the 

Rossby number is much smaller than one, say  

Ro = u / ΩM = 10−n,  for n > 1,  (5.5.5) 

where u is characteristic of the energy containing eddies of size M.  In addition, we take 

our desire to study the evolution of turbulence under rotation to mean that we observe the 

flow for many large-eddy turnover times:  

tE = 10m M / u,  for m > 1.   (5.5.6) 

Since we are interested in the period before communication with the walls, we require 

that tE > tB, with k ~ 1/M:  

10m > Wu / M 2Ω.   (5.5.7) 
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In this equation, we see the Rossby number, upon regrouping, for which we substitute 

10−n as in (5.5.5), such that:  

W / M < 10m+n.   (5.5.8) 

This imposes a severe limitation on the mesh spacing of our grid, that it be at least 100 

times smaller than the width of the channel.  This is, of course, at odds with our other 

objective of generating high-Reynolds-number turbulence, since the Reynolds number is 

proportional to the same length scale.   

 

5.5.3  The source of energy for the large scales  

The assumption made in section 5.5.2 that energy is not redistributed to the 

largest scales of motion is, in fact, probably good for small times.  Smith and Waleffe 

(1999) show that for Ro ≈ 0.1 energy does not accumulate at large scales in a simulated 

rotating flow forced isotropically on the small.  However, in order for the accumulated 

energy in the large scales to reach an appreciable fraction of the total kinetic energy, the 

flow must evolve for about 100 system rotations.  In our system, it appears to that energy 

is present in container-sized scales within one rotation.  This suggests that energy for the 

inertial waves is determined by the initial conditions, by direct action of the grid motion, 

rather than emerging by interaction of the more energetic scales that are comparable to 

the size of the mesh spacing.   

 

5.5.4  The parameter J  

We compute the parameter J, given by (5.2.1), for our experiments.  For each 

fluid, J is larger than 100 throughout the observed range of times.  At early times, or 
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within one system rotation, J is larger than 1000 in liquid nitrogen, 350 for water, and 

450 for helium.  These values are sufficiently large, according to Jacquin et al. (1990), 

that dissipation of energy by inertial waves in boundary layers can be neglected.   

 

5.5.5  Why the modes have not been previously observed in this context 

It may be surprising that inertial wave modes have not been reported in previous 

studies of rotating turbulence analogous to our own.  There are several possible reasons 

why this is so.   

Although we have not discussed numerical simulation of rotating flows, such 

studies have been done (e.g., Yeung and Zhou 1998).  The periodic boundary conditions 

typical of a numerical simulation are different than our own, but we expect a rule 

governing the discretization of wave modes analogous to the one found in a container.  

Since inertial waves only have a simple harmonic structure in time, it is probably true that 

they will only be discovered in Fourier transforms performed over time, rather than 

across space.  It is generally true that the huge amounts of velocity data generated at each 

time step are not stored for longer than is needed for the subsequent iteration in time in 

numerical simulations.  For this reason, frequency spectra are seldom computed in 

numerical studies, and so inertial wave modes have not been identified.   

In experimental studies, only one scientist (Dalziel 1992) used continuous-time 

recording of the flow, and he does report undulations in the signal.  In order to identify 

the inertial wave modes, we consider it essential to compute the time-transform of the 

flow, but this analysis was not reported in the aforementioned study or in any other.   
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5.5.6  A note on the decay rate 

It appears from the data we have presented that rotation does not markedly affect 

the overall rate of decay of kinetic energy.  Although we do not have data collected under 

diverse enough conditions to make statements about the dependence of the decay on the 

rate of rotation, we venture a hypothesis.  In chapter 4, we argue that the decay exponent 

in stationary turbulence depends somewhat on the method of forcing turbulence, and in 

particular on the large scales of motion.  If this is true, then we can expect the decay rate 

to change slightly with system rotation because the initial disturbance generated by the 

grid is affected.  Thus, changes in the decay rate measured with rotation cannot be 

attributed solely to changes in the mechanism of energy transfer and dissipation caused 

by Coriolis forces during the evolution of turbulence.   

 

5.6  Conclusions 

We find, when trying to generate homogeneous turbulence in a rotating channel 

by towing a grid, that instead we generate standing inertial waves with frequencies at the 

modes of the container.  This appears to be the first report of inertial wave modes created 

in this way.  We believe that the generation of these modes may explain the differences in 

energy decay behavior in different experiments in stationary grid turbulence.  That is, the 

differences may be caused by long-range correlations imposed by the initial conditions.   
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Chapter 6 

Visualizing quantized vortex lines 

 

Our technique for generating fine suspensions of particles in liquid helium also 

allows us to observe superfluid flows.  Historically, experimental observations of 

superfluidity in He II, a distinct phase of liquid helium, have produced a wealth of data 

on the bulk properties of flows, but almost none revealing local velocities.  As we show 

in chapters 3 and 4, our particles allow such local measurements, and we seek to extend 

these experiments to He II, using a grid to generate turbulence and PIV to measure 

velocities.  Even before we draw the grid though, we find that the particles collect along 

slender filaments in He II, and we present evidence that these filaments are the cores of 

quantized vortices.  With the vortices delineated by particles, we have recorded what are 

to our knowledge the first images of the outlines of quantized vortex cores, and directly 

observe their geometry and interactions in a three-dimensional stochastic environment 

(Bewley, Lathrop and Sreenivasan 2006).   

 

6.1  Background 

We begin with a brief introduction to liquid helium and superfluidity in order to 

provide some intuitive background for the discussion that follows.  Although no 
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comprehensive microscopic description of superfluid helium exists, several ideas and 

models help interpret our observations.  These include the ideal line vortex and the two-

fluid model.  We also use classical fluid dynamics to answer some questions that arise 

naturally when superfluidity is encountered.  The information that follows can, for the 

most part, be found in the more thorough discussions on the superfluidity of helium and 

fluid dynamics by Feynman (1955) and Batchelor (1967), respectively.  Other useful 

references are Schwartz (1988) and Tough (1982).   

 

6.1.1  Basic physical properties of liquid helium 

We use the most abundant isotope of helium, helium-4, and as a liquid it boils at 

4.2 K at atmospheric pressure, as shown in figure 6.1.  At this temperature and pressure, 

the liquid is known as He I, and behaves like a Newtonian fluid (Skrbek 2004); we have 

performed the experiments described in previous chapters at these conditions.  At lower 

temperatures, a phase transition occurs across what is known as the lambda line in the 

phase diagram.  At the saturated vapor pressure of liquid helium the transition occurs at 

2.177 K, called the lambda point.   

No latent heat is associated with the transformation between He I and the colder 

phase, named He II.  The phase transition is, therefore, of the second order.  The 

transition temperatures are so called because of the resemblance to the Greek letter λ of a 

curve of the specific heat against temperature near the transition, shown in figure 6.2.  

He II displays quantum mechanical behaviors at scales much larger than atomic 

dimensions.  One of these macroscopic manifestations of quantum mechanics is 

superfluidity, the ability of a fluid to flow without friction, though He II is a true 
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superfluid only at absolute zero (Donnelly 1967).  Superfluidity was discovered in 1938 

by Kapitza and his associates (Dingle 1952).  Another unusual feature of the new phase is 

the emergence of vortices with quantized circulation.   
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Figure 6.1:  Phase diagram for helium near the lambda point, from Donnelly (1967).   
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Figure 6.2:  The specific heat of liquid helium as a function of temperature at the 

saturated vapor pressure, from data collected by Donnelly and Barenghi (1998).   
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6.1.2  Quantized vortices 

We give some arguments illustrating the origin and nature of quantized vortices.  

Begin by thinking of a superfluid as a normal fluid with zero viscosity, and recall that an 

inviscid fluid that is initially irrotational will remain so for all later times (Batchelor 

1967).  If the fluid is initially irrotational, it follows that the integral of velocity around a 

reducible closed path is zero for all time.  Note that the size of a loop can be made 

asymptotically to approach zero in any simply connected region.  The integral of the fluid 

velocity, u, around a loop is called the circulation, so that:  

Γ = ∫Cu ·ds = 0  (6.1.1) 

for all reducible closed curves, C, where Γ is the circulation.  An irrotational flow can be 

expressed in terms of a scalar potential function, φ, such that  

u = φ.   (6.1.2) 

A flow with nonzero circulation can also be defined in terms of a potential function if the 

region in which the flow is defined is multiply connected, and we may form such a region 

by piercing space with a cylinder of infinite length.  It is possible in the region outside the 

cylinder to define loops that ensnare the cylinder and cannot be made vanishingly small 

in the limit.  For a flow that orbits the cylinder with an arbitrary circulation, κ, the 

expression defining the potential function can be written  

u = κ φ′.   (6.1.3) 

That is, the circulation around all trajectories that circle the cylinder is κ, but reducible 

loops elsewhere in space yield zero circulation.  As the radius of the cylindrical hole in 

space approaches zero asymptotically, we obtain a classical line vortex that has a locally 

cylindrical flow with azimuthal velocity at radius r given by:  
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uφ = κ/2πr.   (6.1.4) 

The classical line vortex can be identified with a material element, and they must form 

closed curves, or terminate on fluid boundaries (Lamb 1879).   

A superfluid is not, however, an inviscid fluid.  Its behavior is closely associated 

with quantum mechanics, and this has several important consequences.  According to 

Onsager’s proposition (Feynman 1955), circulation in a superfluid is quantized; the 

integral of the fluid velocity around any closed circuit is constrained to be a multiple of 

Planck’s constant, h.  This proposition is valid because the whole fluid may be 

represented by a wave function of the form f (r,t)eiϕ(r,t) that evolves according to a 

nonlinear form of Schrödinger’s equation (Roberts and Berloff 2001).  The wave 

function’s phase, ϕ, is the flow field’s potential function, that is,  

u = K ϕ,  (6.1.5) 

where the constant of proportionality, K, equals h/2πm and m is the mass of a helium 

atom.  If, as above, we consider the variation of the phase along closed curves that cannot 

be reduced to zero length, the phase must differ by integer multiples of 2π around the 

path, in order for the wave function to be continuous in space.  It follows that circulation 

is proportional to the change in the phase as one goes around a loop, and is therefore 

quantized as  

κn = ∫Cu ·ds = K∫C ϕ ·ds = nh/m,  (6.1.6) 

where n is an integer.   

A quantized vortex can be visualized as a hole in the superfluid somewhere inside 

the loop, C.  The hole creates a multiply connected region and allows the construction of 

irreducible loops with nonzero circulation.  In fact, the density of the superfluid is 



 110

thought to approach zero as the centerline of the vortex is approached (Donnelly 1991).  

One can imagine the fluid’s centrifugal acceleration forming a hole balanced by surface 

tension.  However, for this condition to be satisfied, the radius of the core must be so 

small that the notion of a continuous free surface may break down.  Nonetheless, the 

radius of a core has been estimated experimentally to be about 1 angstrom (Glaberson 

and Steingart 1986).   

The energy of aligned vortices, each with one quanta of circulation, is lower than 

that of a single vortex whose circulation is equal to the sum of the dispersed ones’ 

circulations.  Therefore, it is generally believed that such multiply quantized vortices are 

not present in real flows (Vinen 2006).  There is evidence that multiply quantized 

vortices are unstable in Bose-Einstein condensates (Shin 2004, Möttönen 2003), although 

we do not know of similar work in He II.   

As with the classical line vortex, the superfluid velocity away from the core is a 

potential flow with no vorticity; all the vorticity is concentrated along the vortex 

centerline.  Even if vortices are separated by only a hundred microns, as they often are, 

their cores are 106 smaller than their separation and the vortices likely interact as if they 

were close approximations to ideal line vortices.   

 

6.1.3  Quantization and the evolution of vortices   

Quantized vortices are often treated as ideal line vortices that have an unchanging, 

quantized circulation.  Although it might be thought that this quantization constrains the 

dynamics of the vortices, it does not do so.  In order to see why, notice that circulation is 

related to vorticity through Stokes’ theorem.  The expression for the evolution of 
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vorticity, ω =  × u, in an inviscid fluid is found by taking the curl of the momentum 

equation, yielding:  

Dω/Dt = ω · u.   (6.1.7) 

By rewriting the gradient as a derivative along a small material line element, δl, initially 

aligned with the local vorticity, (6.1.7) implies the startling rule that vorticity evolves in 

the same way as the material element,  

1/|ω| Dω/Dt = 1/|δl| dδl/dt.   (6.1.8) 

In words, if the line element in the fluid is stretched, so too will vorticity grow in 

proportion.  This expression has important consequences in the classical theory of 

turbulence.  For example, Taylor and Green (1937) argue that vortex deformation plays 

an important role in the redistribution of energy among the scales of motion.  One is 

naturally led to wonder if similar processes are at work in the evolution of vortices in a 

superfluid, and if these processes are constrained by the quantization of circulation.   

From Stokes’ theorem, the expression relating vorticity and circulation around a 

single line vortex reduces to  

ω · δA = κ.   (6.1.9) 

Here, δA is the normal to a surface element that intersects the vortex core such that 

ω · δA / |ω| is the cross sectional area of the core, and κ is the circulation strength of the 

vortex.  Everywhere else, the vorticity is zero, and (6.1.9) implies that the magnitude of 

vorticity in the core has no impact on the bulk flow if it changes in inverse proportion to 

δA.  In fact, we find just this relation when we take the time derivative of ω · δA, and 

substitute (6.1.8):  

d(ω · δA) /dt = (|ω|/|δl|) (dδl/dt · δA + δl · dδA/dt)  (6.1.10) 
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The sum in this expression equals zero by the conservation of mass in an incompressible 

fluid.  Equation (6.1.10) therefore implies that dκ/dt = 0 and the powerful statement that 

the circulation around a material curve in an inviscid fluid does not change with time.  

That is,  

d Γ/dt = 0  (6.1.11) 

where Γ is the circulation around a curve that may embrace several vortices so that 

Γ equals the sum of their individual strengths.  Since the circulation round any loop in the 

volume remains constant over time in an inviscid fluid containing ideal vortices, the 

further condition that circulation be quantized only confines the initial state of the vortex 

configuration.  Thereafter, quantization does not impose an additional constraint on the 

evolution of the vortices.   

 

6.1.4  The two-fluid model  

He II is not entirely a superfluid for temperatures above absolute zero.  According 

to the two-fluid model, He II consists of two interpenetrating fluids, a superfluid and a 

normal fluid, with different density and velocity fields, ρs and us, and ρn and un, 

respectively.  As shown in figure 6.3, the fraction of the total fluid density that is the 

normal fluid falls rapidly as a function of temperature below the lambda point, and is zero 

at absolute zero.  Tisza (1938) proposed the two-fluid model and it is presented in a 

review by Dingle (1952).   

The two-fluid concept may be derived by considering thermal energy to be carried 

exclusively by discrete excitations, such as a density fluctuation propagating at the speed 

of sound.  These excitations are in turn treated as particles propagating through the body 
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of helium atoms at their lowest energy state.  Because the excitations interact and behave 

on the macroscopic scale like a normal fluid, they are called the normal fluid part.  The 

background of helium through which the excitations propagate is the superfluid 

component of the fluid.  The quantized vortices in this model reside entirely in the 

superfluid component, but experience a drag force with motions relative to the normal 

fluid.  The expression for this drag force per unit length of line is given by Donnelly 

(1991), and its magnitude is  

fm = CρsκvL,  (6.1.12) 

where C is a constant of order one between 1.4 K and 2.1 K, and vL is the velocity of the 

line relative to the normal fluid.  The drag between the quantized vortex cores and the 

normal fluid is the only coupling between the motions of the two components.  When 

there are no superfluid vortices, the motions of the two fluids are independent.   

The fraction of the fluid density assigned to each component in the two-fluid 

model is found by construction (Feynman 1955), and neither of the fluid fractions in the 

model can be thought to represent tangible material, as can a classical fluid by the 

foundations of continuum mechanics.  In practice, application of the model depends on 

the knowledge of several empirical constants that depend on temperature, fluid velocity, 

and frequency of flow oscillations.  The model nevertheless gives intuitive explanations 

for some of the behavior of He II.   

The fraction of the fluid density assigned to each component in the two-fluid 

model is found by construction (Feynman 1955), and neither of the fluid fractions in the 

model can be thought to represent tangible material, as can a classical fluid by the 

foundations of continuum mechanics.  In practice, application of the model depends on 
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the knowledge of several empirical constants that depend on temperature, fluid velocity, 

and frequency of flow oscillations.  The model nevertheless gives intuitive explanations 

for some of the behavior of He II.   
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Figure 6.3:  The two curves shown are the densities of the normal fluid and superfluid 

in the two fluid model of He II, at its saturated vapor pressure.  The densities sum to the 

whole fluid’s density, which is almost constant as a function of temperature and nearly 

equals 0.14 g/cc.  At the lambda point, He II is entirely accounted for by the normal fluid 

part.  At absolute zero, He II is a pure superfluid.   

 

6.1.5  Residual vortices 

Quantized vortices, and the holes at their cores, can be conceived as defects in the 

superfluid state, analogous to defects that arise in many other materials during phase 

transitions, such as grain boundaries in a polycrystalline solid.  Similarly, vorticity in the 

form of vortex defects is created in the superfluid by the phase transition itself (see Zurek 

1996).  In the ensuing evolution and decay of the resulting tangle of vortices, some of 

them will ultimately span the volume, pinned at each end to some protruding feature of 
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the boundary (Schwartz 1985), and too far from other vortices to interact so as to reduce 

the total length of line present.  Energy is imparted to these vortices during the phase 

transition and persists indefinitely in the fluid.  Donnelly (1991) estimates that the line 

density, Lr, in a bounded volume of superfluid satisfies the inequality  

Lr < 2 ln (d/a) / d 2,  (6.1.13) 

where d is the characteristic size of the volume, and a is the vortex core radius.   

 

6.1.6  A rotating superfluid 

Steady rotation of a superfluid ideally produces a roughly triangular array of 

quantized vortices, aligned with the axis of rotation.  Feynman (1955) used such rotation 

to introduce theoretically the existence of quantized vortices, and rotating He II is also 

experimentally useful as a diagnostic tool.  Feynman argued that the lowest energy state 

for a superfluid forced into rotation was a population of quantized vortices, each with the 

minimum strength of one quanta of circulation and aligned with the axis of rotation.  

With all the vorticity of the bulk rotation residing in the cores of the singly quantized 

vortices, the number density of the vortex lattice is proportional to the rotation rate, and is 

given by  

no = 2 Ω/κ ≈ 2000 Ω lines/cm2,  (6.1.14) 

where Ω is the angular velocity of the container in rad/s.  This expression has come to be 

known as Feynman’s rule (Donnelly 1991).  Tkachenko (1965) showed that when the 

number of vortices is large, they form a triangular lattice.  The array itself rotates with the 

same frequency as the container, and may be distorted from the triangular ideal to 

conform to boundary conditions (Campbell and Ziff 1979).   
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6.1.7  Flows in He II  

Above a certain critical velocity of the order of 1 mm/s in many flows, the flow of 

He II is energetic enough to sustain the generation of quantized vortices.  In the context 

of the two-fluid model, the friction of the quantized vortices with the normal fluid 

introduces a mechanism for the damping of superfluid motions.  An evolving system of 

interacting and reconnecting quantized vortices is described as a vortex tangle, from 

visualizations of numerical simulations (e.g., Schwartz 1988).  The simulations show that 

the tangle can quickly become dense, with vortices spaced by a few tens of microns.   

A common way to generate turbulence in He II experimentally, apart from 

mechanical agitation, is to drive it thermally.  He II responds differently from a classical 

fluid to heat input as the resulting flow is not primarily driven by buoyancy.  Briefly, heat 

is transported by opposing normal fluid and superfluid flows, generating a counterflow.  

Superfluid rushes toward a heat source where it is converted to normal fluid, and the 

normal fluid carries heat away to the sink.  This mechanism is responsible for the 

immense effective thermal conductivity of He II, which under some conditions is 7 orders 

of magnitude larger than that of He I (Donnelly 1967).  Vinen (1957b) showed 

experimentally that the counterflow can be characterized by vns, the difference in 

velocities between the superfluid and normal fluid components averaged over time and 

space.  For the small channels and low temperatures typical of the results presented by 

Vinen (1957a) and others (see Tough 1982), the flow becomes unsteady at counterflow 

velocities of a few mm/s.  Above this critical velocity, vc, the formation of quantized 

vortices is detected experimentally, and their presence can be quantified by the line 

density, Lo, in units of length per unit volume.  Tough (1982) finds that all data from 
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approximately homogeneous counterflows agree with the following relations for the 

critical velocity and line density.  The critical counterflow velocity is reached when  

vcdγο > 4,  (6.1.15) 

in a channel of characteristic width d.  The expression resembles the condition for a 

classical fluid becoming turbulent, which is in terms of the Reynolds number.  However, 

the constant 1/γo is typically more than 100 times larger than the viscosity of the normal 

fluid; γo is strongly temperature dependent and is approximately 145 s/cm2 at 2.1 K.  The 

line density above the critical velocity, again given by Tough (1982), in terms of the 

counterflow velocity driving the turbulence is  

Lo ≈ (γοvns – 1.5/d )2,  (6.1.16) 

where we have left out some factors that are of order one and are geometry dependent.   

 

6.1.8  Previous experimental observations 

Williams and Packard (1974) succeeded in visualizing quantized vortices by using 

an ingenious method to record the points of intersection of the vortices with the free 

surface of the fluid.  They introduced ions that were trapped by the vortices in a rotating 

sample of He II.  An applied electric field caused the charged particles to travel along the 

vortices and exit through the free surface against a phosphorescent screen.  Continuing 

this work, Yarmchuk et al. (1979) determined from the resulting images that steadily 

rotating He II supports a triangular array of vortices.  Some examples are shown in 

figure 6.4.  Although the number of vortices showed significant hysteresis upon 

acceleration and deceleration of the rotation rate, the number agreed with predictions, 

frequently to within about 5%.  No one has produced images of vortices inside the body 
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of the fluid, or of vortex tangles, prior to those described in this dissertation.   

 

 
Figure 6.4:  Data taken from Yarmchuk et al. (1979) is shown.  The spots are the ends 

of quantized vortex cores in a steadily rotating bucket, where they intersect with the free 

surface.  The rotation rate of the bucket generally increases from the left to the right in 

the sequence of images, as they are oriented here.   

 

As discussed in chapter 3, Chopra and Brown (1957) were the first to seed liquid 

helium with frozen hydrogen in order to detect fluid motions.  Since then, other 

researchers have made progress with seeding technology.  Generally, this work has 

concentrated on observing fluid motions in He II (e.g., Kitchens et al. 1965), though more 

recent efforts have approached the problem from the standpoint of classical turbulence 

(Donnelly et al. 2002).  Much of this work is reviewed in chapter 3.  Although the efforts 

to generate particles by freezing substances have focused on doing so directly in He II, 

we believe this approach is incorrect, as discussed in chapter 3.  Our innovation is to 

generate the particles in He I, as described below, rather than trying to do so immediately 

in He II.  Although there are many reports of particle coagulation in the literature (e.g., 

Chopra and Brown, 1957), no one has previously reported observation of particles 

collecting along lines.   
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Recently, Zhang and Van Sciver (2005) have succeeded in recording images of 

polymer particles drifting past a cylinder in the midst of a thermal counterflow.  Their 

results represent the first PIV data in He II, but the particle behavior in the fluid is 

difficult to interpret.  These authors use a suspension of 1.7 μm polymer particles that are 

about 7 times denser than liquid helium.  They do not, however, comment on whether the 

particles clump together or report seeing the particles collect along filaments.  We 

suspect, based on our experiments described in chapter 3, that Zhang and Van Sciver 

(2005) are observing the motion of particle clumps that are larger than the individual 

particles.   

 

6.2  Methods 

A representation of the procedure used to acquire images of particles in He II is 

shown in figure 6.5.  Each of the steps is described in the following sections.   

 

6.2.1  The formation of a superfluid 

In order to study He II, we cool liquid helium by evaporation.  To accomplish 

this, the cryostat’s central reservoir containing the liquid helium is sealed and connected 

to a vacuum pump through a valve.  The grid is manipulated by a magnetic coupling, and 

all probes enter via feed-throughs sealed with O-rings.  The vapor pressure and 

temperature of the liquid in the bath are lowered by slowly opening the reservoir to the 

vacuum provided by the pump.  A substantial amount of the liquid is lost to evaporation 

because the process of cooling causes vigorous boiling.  The transition temperature for 

helium, about 2 K below the boiling point at atmospheric pressure, is reached after about 
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90 minutes of evaporative cooling.  Temperatures approaching 1.2 K can be reached 

using our apparatus, after a substantial amount of additional pumping time.   

 

0 200 400 600 800 1000

2.14

2.16

2.18

2.2

2.22

2.24

time [seconds]

te
m

pe
ra

tu
re

 [K
el

vi
n]

particles 
injected

evaporative 
cooling valve 

opened

valve 
closed

images acquired
within this time

T

 
Figure 6.5:  The time line of an experiment is portrayed in the figure.  The relative 

times, temperatures, and the slopes of the curve are consistent with a typical experiment, 

though the temperature can be allowed to fall significantly further by leaving open the 

vacuum pumping valve for longer than indicated.   

 

It is interesting that the work done to cool the system is dominated by cooling of 

the liquid helium itself.  Despite the large mass (about 7 kg) of copper and stainless steel 

containing the fluid, the specific heat of metals at low temperatures is quite small (of 

order 0.1 J/(kg K)), and is in fact negligible relative to the comparatively small mass of 

liquid helium (close to 0.25 kg of liquid helium at about 5000 J/(kg K)).   

 

6.2.2  Preparation of the particle suspension in He II 

We prepare He II with a suspension of hydrogen particles by injecting a diluted 
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hydrogen mixture into He I, as described in chapter 3, yielding a fine mist of randomly 

distributed particles.  The suspension of particles in He I is subsequently cooled through 

the transition temperature to a desired value below the lambda point.  Because the 

particles are buoyant and rise in the fluid, we perform the injection into He I already 

cooled to a few tens of millikelvin above the lambda point.  In this way, we reach low 

temperatures while the particles remain relatively un-coagulated and within the field of 

view.  Our experience is that the observations described below are possible only if the 

particles are generated in the warmer state, namely He I.   

 

6.2.3  Gathering data near the transition temperature 

Temperature is measured using a calibrated semiconductor probe, whose 

resistance is sensitive to temperature in the range of interest near absolute zero.  A current 

of 10 μA is applied, and the voltage drop recorded by hand from a digital voltmeter.  The 

currents and voltages measured using the four-wire technique.  Images of the particles are 

taken with a digital camera focused on a laser-illuminated sheet that is approximately 

100 μm thick, in a manner identical to that described for the PIV technique in chapter 2.  

In a typical run, the particle suspension is created as in section 6.2.2 with the vacuum 

pumping line shut off.  Subsequently cooling is done rapidly by opening the vacuum 

valve.  This results in a cooling rate of approximately 7 mK/min, though the rate can vary 

by as much as 50% depending on the amount of liquid in the cryostat.  Images are 

acquired during the cooling process, usually one every few seconds, and the time and 

temperature are recorded for each image.  The times and temperatures recorded for 

images taken in several runs are collected in figure 6.6.   
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Figure 6.6:  The times and temperatures for images taken during four selected, but 

typical, trials.  The curves can be compared to the one in figure 6.5.  We estimate the net 

cooling rate as 350 mW from the slope of the curves and the volume of liquid helium.  

Using this cooling rate, we integrate the heat capacity in figure 6.2 to produce the solid 

curve shown.  The offset of this curve from the data can be attributed to systematic error 

in the thermometer.  However, the origin of the differences of shape of the curves is 

unknown, and may be due to overturning of the fluid as its density changes near the 

lambda point.   

 

6.2.4  Gathering data in the rotating frame 

Observations of rotating flows are conducted in a similar way to those described 

for rotating grid turbulence in chapter 5.  However, there are two important differences.  

As explained in section 6.2.1, the cryostat is tethered to a vacuum pump in order to cool 

the liquid helium.  In the absence of active cooling, the temperature will rise due to heat 

leaking into the cryostat.  Therefore, we cool the fluid to below the phase transition 

temperature before spinup, and then disconnect the vacuum pump in order to spin the 
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cryostat.  We cool the fluid by an amount sufficient to keep the fluid below the transition 

temperature throughout the spinup of the cryostat and fluid, and for the period thereafter 

during which the measurements are made.  We measure the rate of temperature rise in our 

cryostat to be about 10 mK/min while the cryostat is spinning.  The steady state behavior 

of He II at a fixed rotation rate does not depend on temperature (Donnelly 1967).   

Some care is taken in spinning up the fluid, as it is found that the acceleration 

affects the quality of the data.  Greater rotational acceleration tends to result in fewer and 

larger particles once a steady state is reached.  This effect may be due to the more 

vigorous turbulence caused by rapid spinup, whose effect on the particles is conjectured 

in section 6.4.4.  The size of particles in the resultant rotating superfluid is therefore the 

product of two competing processes.  The first is aggregation in the sense discussed in 

chapter 3, which progresses steadily with time, and the second is superfluid turbulence 

induced clumping that is exacerbated as the spinup time is reduced.  We find that in order 

to achieve good results, the final rotation rate is best arrived at over a period of at least 

five minutes.  Once steady rotation of the container is achieved, the total time needed for 

the fluid to spin up is also found empirically.  We increase the spinup time incrementally, 

until the particles are observed with the movie camera to rotate at the same rate as the 

container.  For the range of rotation rates observed, ten to fifteen minutes are sufficient, 

and this time is used.  Thereafter, image data of the rotating state are captured for about 

200 s.  This procedure requires cooling the liquid to about 2.0 K before spinup.  Finally, 

we note that the total spinup time is comparable to the time during which we observe a 

moderate particle aggregation without rotation.   
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Figure 6.7:  Panel (a) shows a suspension of hydrogen particles just above the transition 

temperature.  Panels (b), (c), and (d) show similar hydrogen particles after the fluid is 

cooled below the lambda point.  Some particles have collected along branching filaments, 

while other are randomly distributed as before.  Fewer free particles are apparent in (b), 

(c), and (d) only because the light intensity is reduced to highlight the brighter filaments 

in the image.  The nature of the branching filaments is discussed in section 6.4.   
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6.3  Results  

Images show that in He II, a fraction of the particles suspended in the fluid collect 

onto slender filaments, often several millimeters in length, as in figure 6.7.  The 

remaining particles are randomly distributed, as obtained in He I.  We find the filaments 

at temperatures from a few millikelvin below lambda point down to 1.9 K, and they 

appear within tens of seconds after the transition temperature is crossed.  The filaments 

evolve slowly as they drift upward through the observation volume at a rate of roughly 

1 mm/s.  For the results we present below, we do not use the grid, or otherwise disturb 

the fluid mechanically; we vary only the temperature of the fluid and its rotation rate.   

 

6.3.1  The filaments  

As is discussed below in section 6.4, it is known that particles can be trapped in 

vortex cores.  The following evidence suggests that the observed filaments are particles 

collected on such cores.  First, the filaments only appear below the transition temperature.  

Quantized vortex entrapment is the only force we know of that acts on the particles below 

the transition temperature, and not above.  Second, when the liquid helium cell is set in 

steady rotation, the particles arrange along uniformly spaced lines parallel to the rotation 

axis, as shown in figure 6.8.  This observation agrees with the expectation that quantized 

vortices form a rectilinear array or lattice aligned with the axis.  Third, if we assume that 

our sheet illuminates a slice of such an array, the density of lines per unit of area normal 

to the axis of rotation is consistent with Feynman’s rule for a series of rotation rates.   

 



 126

 
Figure 6.8:  The picture shows an example of particles arranged along vertical lines.  

The system rotation axis is vertical.  On the left is the original, and on the right is an 

enhanced and inverted version.  The spacing of lines is remarkably uniform, although 

there are occasional distortions of the lattice and possible points of intersection.   

 

We measure the number density of lines in the image and compare the results 

with Feynman’s prediction under the following four assumptions.  The array of vortices 

appears rectilinear, but we cannot know its underlying geometry because of the 

orientation of our observation plane.  We assume that in a cross section, the vortex cores 

are at the corners of triangles, and that the laser light sheet illuminates a slice of such a 

triangular array, as illustrated in figure 6.9.  Second, we assume the light sheet is aligned 

with the lattice by a discrete rotation about the system rotation axis so that the lines 

appear equally spaced in the image.  Furthermore, the alignment is such that this spacing 

is either the minimum lattice spacing or half of it.  Third, we assume that the thickness of 

the illuminating sheet is roughly equal to the lattice spacing, so that it only illuminates 
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one row of lines in the lattice.  In this case, we measure the minimum lattice spacing, and 

not its half.  Finally, we assume that every vortex in the fluid is decorated with particles, 

and will be observed if it is illuminated.  These assumptions are illustrated in figure 6.9.  

Clearly these conditions will not always be met – a problem we will address shortly.  

Although the assumptions may appear stringent, we will show that the general conclusion 

is favorable even when the conditions hold only approximately.   

 

s  
Figure 6.9:  The axis of rotation is normal to the page.  We assume a triangular array of 

vortices; their intersections with the horizontal plane are indicated by dots.  The light 

sheet also intersects the page, and its cross section is represented by the dashed lines at 

the orientation relative to the lattice assumed in our calculation of line density.   

 

The images of particles along lines as they appear in rotating He II, as in 

figure 6.8, show that individual lines remain visible for several rotation periods.  

Although the lattice undulates slightly with time, it is largely stationary in the rotating 

frame.  (These undulations could be Tkachenko waves, the analogue for a rotating 

superfluid of the inertial waves described in chapter 5, see Sonin 1987.)  Examination of 

the images also reveals slowly evolving defects in the lattice – places where the lines 

intersect or fork.  The frequency of such defects among experiments appears to increase 

with particle concentration.  In spite of these features, the spacing between lines is 
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measured by hand in regions of the image where at least three, and preferably four or 

more, lines appear equally spaced.  According to the assumptions just mentioned, the area 

density of lines as a function of the measured lattice spacing, sm, is  

nt = 2 / (3½ sm
2).   (6.3.1) 

The resulting data are shown in figure 6.10.   

 

0 0.1 0.2 0.3 0.4 0.5
0

1000

2000

3000

4000

5000

6000

7000

8000

Ω [Hz]

n t [l
in

es
/c

m
2 ]

Feynman’s Rule

 
Figure 6.10:  We compute the density of lines made visible by particles as in figure 6.8, 

according (6.3.1) and the assumptions discussed in the text.  The error bars are the 

standard deviation of all the measurements made at each rotation rate.  Feynman’s rule is 

given by (6.1.14), and the significance of the dashed line is described in section 6.3.2.   

 

6.3.2  Review of the assumptions 

We show in this section that the measurement of line density is not extremely 

sensitive to the assumptions outlined in section 6.3.1.  We argue, furthermore, that 

deviations from the assumptions account for the deviations in our result from 

expectations.   
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The first assumption concerns the geometry of the array and affects the factor 

used in converting the line spacing into line density.  If, for example, the lines in the array 

were on the corners of squares instead of triangles, our error is the factor 2/3½ in (6.3.1).  

The actual line density is then about 14% smaller than we have reported, and closer to 

Feynman’s prediction.   

We assume that the sheet aligns with the lattice in such a way that it illuminates a 

row of equally spaced vortices separated by the minimum spacing of the lattice, s.  

Figure 6.5 shows that the lattice is not perfect, nor should we expect it to be.  It is 

therefore not unreasonable to expect that distortions in the lattice will happen to align it 

with the sheet locally, in small regions within the extent of the image.  Our decision to 

make measurements only where the lines appear equally spaced is intended to increase 

the likelihood that the alignment assumption nearly holds.   

A sheet thickness that is less than the lattice spacing can be expected to 

illuminate, when properly aligned, one row of lines separated by the minimum lattice 

spacing.  As described in section 2.1.8, the illuminating sheet of light is formed by 

expanding a small beam in the vertical direction, and focusing it in the horizontal 

direction.  The camera is aimed at the thinnest portion of the sheet, whose thickness, do, 

is roughly 100 μm according to (2.1.1).  For the range of rotation rates explored, from 

0.46 Hz to 0.15 Hz, we expect from Feynman’s rule that the minimum separation 

between vortices to be between 140 and 250 μm.  Our assumption can be expressed as 

do < s, and is again reasonable.   

It is, of course, possible that the light sheet is not parallel to a row of the vortex 

lattice.  If this were so, the beam might illuminate regularly spaced lines that are, 
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however, separated by a distance different from the minimum lattice spacing.  For a thick 

beam, the only such angle that is probable is 30 degrees from the one we assumed, and it 

reveals a spacing that is 3½s.  As is illustrated in figure 6.11, if the beam is greater than 

about s/2 in thickness, it is likely to capture two such rows.  The resulting measurement, 

mistakenly attributed to the minimum lattice spacing, yields a calculation of the line 

density that is in excess by 33%.  Much of our data fall between Feynman’s prediction 

and a value that is 33% higher, which we have plotted in figure 6.10 as a dashed grey 

line.   

 

s

s√3

 
Figure 6.11:  As in figure 6.9, we show the intersection of vortices with the horizontal 

plane as spots.  However, consider a light sheet orientation different from the simplest 

one that illuminates a different line spacing than the minimum lattice spacing.   

 

The method described provides only a lower bound on the vortex density in the 

system.  Many vortices may be invisible because they have not collected any particles.  

However, we consider it unlikely that only a fraction of vortices collect particles and that 

this fraction appears regularly spaced in the images.  If there were uncounted vortices in 

the light sheet, they would push our result further from Feynman’s prediction.   

Our vortex count provides only a lower bound for the total circulation they 

produce, if we allow for the possibility of multiply quantized vortices.  If such multiply 
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quantized lines were present, fewer would be needed to match the system rotation, and 

the resulting line density measurement would fall below Feynman’s rule, instead of 

above.  We take our results to be consistent with the view that each of the lines revealed 

by particles is singly quantized.   

In a final point of detail, on might believe that what appear to be lines are, in fact, 

the intersections of our light sheet with two-dimensional surfaces stretching through the 

fluid volume.  However, we have observed the lines with volume illumination, with the 

naked eye, and confirm that they are one-dimensional in character.   

 

6.3.3  Evenly spaced particles  

Under certain specific conditions, particles are found with remarkably uniform 

spacing along lines.  Some examples are shown in figure 6.12.  While the fluid is cooling, 

the dotted lines appear to form exclusively between 25 and 35 mK below the transition 

temperature, and about 350 s at our cooling rate after the phase transition occurs.  It is not 

known whether the temperature or the time since transition control the formation of the 

dotted lines.   

The mean separation between particles along lines is about 130 μm, and in 

figure 6.13 we examine the distribution of spacings in two ways.  We find that the 

separation of particles along a line has a narrow distribution, although the mean 

separation distance may vary to a greater extent from line to line.  This suggests that 

whatever physics governs the particle spacing is somewhat sensitive to conditions that are 

local to each particular dotted line.   
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Figure 6.12:  A series of images of particles regularly spaced along lines, taken during 

three independent excursions below the phase transition temperature by steadily cooling 

the fluid (without rotation).  In (a), the temperature is 32 mK below the lambda point, and 

about 350 s have passed since attaining the transition temperature.  In (b), the temperature 

is 25 mK below the lambda point, and about 300 s have elapsed.  In (c), the temperature 

is 28 mK below the lambda point, and about 400 s have elapsed.  Temperatures are 

accurate to within 5 mK, and times within 40 s.  Dotted lines such as these were not 

observed before or after the stated times, or at other temperatures.   
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Figure 6.13:  The circles show the mean of histograms of particle spacings along dotted 

lines, where the histogram for each line is normalized by the mean spacing along that 

line.  The solid line is the distribution of mean spacings among the different dotted lines 

normalized by the overall mean spacing.  The spacing along a particular line is seen to 

have a narrower distribution than the difference in spacings between different lines.   

 

6.4  Discussion  

We have shown in the previous sections that the particles probably collect along 

filaments which trace the cores of quantized line vortices, and we suggest here a 

mechanism by which particles are trapped on such cores.  In addition, we will explore 

possible explanations for the complex behaviors exhibited by the filaments, including 

branched networks and particles evenly spaced along lines.  Although particles have been 

thought of until now only as passive tracers of the flow, our images suggest that the 

presence of particles in the superfluid may transform the topology of vortex tangles by 

stabilizing forks in the vortices.  Thus, we suggest that He II laced with a particle 

suspension in many circumstances will behave differently than He II alone.  Although 
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conditions have been established under which particles do not alter the fluid dynamics in 

classical fluids, the passivity of particles in He II has not been addressed, as far as we 

know.   

 

6.4.1  A particle trapping mechanism 

It is known that particles respond in a complicated way to superfluid flows, and 

that in the context of the two-fluid model they respond to both fluids, and their combined 

effect depends on the flow conditions (Poole et al. 2005).  Parks and Donnelly (1966) 

showed that ions are trapped by vortices in a superfluid.  Ions in liquid helium are 

hydrodynamically like spheres, though with roughly 1 nm diameters they are much 

smaller than the hydrogen particles we generate and use.  Yet they, too, are substantially 

larger than the core of the quantized vortices.  The following argument is based on the 

presentation in Parks and Donnelly’s paper.   

At first glance it is surprising that a vortex can influence the behavior of an object 

10,000 times bigger than its core diameter.  However, particles are attracted to the cores 

of quantized vortices by the steep pressure gradient supporting the circulating superfluid.  

Whether or not a particle is trapped in a vortex core depends on its diameter and on the 

relative velocities and densities of the normal and superfluid components of the fluid.   

To make plausible estimates of the trapping conditions, we note that the 

centrifugal acceleration of the circulating superfluid is balanced by a pressure field  

P = −ρsκ2/8π2r 2,  (6.4.1) 

for the distance from the vortex centerline, r, that is larger than the core radius.  

Presumably, the pressure flattens out for r values smaller than the core radius, and 
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reaches a minimum at the vortex core.  We consider a fixed vortex in an otherwise 

quiescent fluid and an initially stationary particle far from the core.  The rapidly 

circulating superfluid exerts no drag on the particle.  However, the particle is still subject 

to the pressure gradient force, which is balanced by friction due to the normal fluid as the 

particle is drawn toward the vortex core.  The actual dynamics are more complex, as the 

vortex is free to move as well.  In this simple model, the force balance yields the equation  

6πaμvn = (4/3)πa3 P,  (6.4.2) 

where a is the radius of the particle and μ and vn are the viscosity and velocity of the 

normal fluid, respectively.  We have used Stokes formula for the drag on a particle in the 

limit as the particle Reynolds number goes to zero.   

Normal fluid velocities relative to the vortex core could arise as a result of 

thermal counterflows or turbulence in the superfluid.  In this case, a relative normal fluid 

velocity exists above which Stokes drag exceeds the pressure force, and the particle will 

not be trapped by the line.  As a first estimate, we use the particle radius as the distance 

from the core of maximum attractive force, and find from (6.4.2) that the maximum 

normal fluid velocity that allows trapping to occur is  

vn, max = ρsκ2/18π2aμ.   (6.4.3) 

According to this model, at 2.10 K a 1 μm diameter particle is dislodged by 

normal fluid velocities of 2.5 mm/s and higher, relative to the vortex.  The particle 

Reynolds number corresponding to this condition is about 0.1, which is small enough to 

justify our use of the Stokes drag formula.  A bigger particle of the order of 10 μm in 

diameter will be dislodged by a relative velocity of only 0.25 mm/s.  The absolute 

velocities of particles in the flows we observe are typically about 1 mm/s.  These 
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estimates point to the sensitivity of our technique to particle size and to the need for 

particles smaller than 1 μm.   

It is important to note that in the above analysis, the particle density plays no role.  

In a classical fluid, a particle is drawn into orbit around a vortex by the action of drag.  

Once moving in orbit along with the fluid, centrifugal acceleration acts to separate the 

fluid and particle according to their relative densities, as in a centrifuge.  A particle with 

smaller density than the fluid will ‘rise’ into the vortex core, and a particle heavier than 

the fluid will be ejected from the vicinity of the core.  It may be that such effects also 

appear in a more complete dynamical model of the particle-vortex interaction.   

 

6.4.2  Trapping time and particle size 

We estimate the time required for a newly formed line vortex to collect enough 

particles to make it visible.  We then rearrange the resulting expression to estimate the 

maximum size for a particle in order for the vortices to become visible within the time of 

observation.   

Consider a stationary vortex that extends through a fluid filled with initially 

unmoving particles, whose total volume fraction relative to the fluid is Φ, and whose 

characteristic radius is a.  The distance between particles in the fluid is then typically  

lo = a/Φ⅓.   (6.4.4) 

Let the vortex be considered ‘marked’ when all particles within this distance from the 

vortex centerline have reached the core, according to the mechanism described in 

section 6.4.1.  It can be readily confirmed that this corresponds to a core with particles 

every 20 diameters, for a typical particle volume fraction of 3 × 10−5.  If the particle 
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inertia is small, we can balance the vortex pressure gradient force with drag along its 

whole trajectory, as in (6.4.2).  We construct a timescale by using the velocity, vn(r ), 

induced by the pressure gradient, such that vn satisfies (6.4.2).  Integrating from a 

distance lo to the vortex core, the resulting time scale is given by  

τv = ∫dr /vn ≈ (μ/2ρs) (3πa/κΦ⅔)2.     (6.4.5) 

Similarly, we construct a timescale based on the particle acceleration at a distance lo from 

the core, αo = FP /mp, where FP is the vortex pressure gradient force defined in (6.4.2), 

and mp is the mass of the particle.  This time scale is given by  

τa = (lo /αo)½ = (ρp /ρs)½ (2πa2/κΦ⅔).   (6.4.6) 

The inertial time scale, τa, is ~μ/ρsκΦ⅔ times smaller than the velocity time scale, for a 

neutrally buoyant particle of any size.  This ratio is usually about 103, so the particle 

trapping time will always be controlled by viscosity rather than inertia far from the core, 

which is consistent with our placing of the particle in the Stokes regime.  Near the core, 

more complicated dynamics may take place, but the total time for the particle to reach the 

core is likely to be dominated by the far field behavior.   

Since particle size is a parameter in the trapping time scale, (6.4.5), we use the 

result to estimate a typical particle size.  The filaments appear within tens of seconds of 

creating He II by crossing the transition temperature.  It is therefore reasonable to use this 

time as an upper bound for the length of time necessary for particles to collect on the 

filaments.  The actual trapping time may, in fact, be much smaller if the time before 

filaments become visible is determined by their own formation, rather than their 

decoration.  We substitute the particle volume fraction estimated in section 3.7.1, 

Φ = 3 × 10−5, and for helium properties at 2.16 K the resulting particle diameter is  
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2a|τ = 100s = 0.3 μm,  (6.4.7) 

which lends additional credence to our expectation that the particles are very small.  We 

may draw from this argument the conclusion that either even smaller particles, or a larger 

number of particles, are necessary to mark quickly a nascent vortex.  In addition, the 

particles must be 20 times smaller if we demand that they be touching, to form a 

continuous line, instead of appearing at 20 diameter intervals.   

 

6.4.3  The driving force for the formation of vortex filaments 

The filaments we observe appear in the absence of any mechanical agitation of 

the fluid.  It is natural to seek the source of energy for the creation of vortices.  Because 

the flows we observe are gentle, with absolute velocities of about 1 mm/s, and remain 

almost steady over the time a vortex is visible in the image plane, we question whether 

the flow is turbulent in nature.  We find, however, that the flow can probably be 

described by existing theory about thermal counterflows, as described in section 6.1.7.   

Vortices may endure in an observation volume, remnant from the phase transition 

as described in section 6.1.5.  The estimate defined there for the density of residual 

vortices, Lr, is 1.6 cm−2 in our channel, corresponding to about 0.4 mm of line in the 

volume illuminated by our light sheet and visible to the camera.  It is evident in our 

images (e.g., figure 6.4) that there exist far longer lengths of line, by as much as two 

orders of magnitude.  It is therefore unlikely that the vortices are remnant, though we 

leave open the possibility that the behavior and subsequent concentration of residual 

vortices is strongly modified by the presence of particles.   

If the He II sample is allowed to sit undisturbed by laser illumination for a period 



 139

of several minutes, a nearly filament free state is discovered when the fluid is re-

illuminated.  Furthermore, the laser intensity has a strong effect on the fluid motion.  

Unsteady jets with a characteristic velocity of several mm/s emerge from the windows 

when the beam intensity is above about 2 W.  This suggests that a thermal counterflow 

driven by absorbed laser light at the walls of our channel generates the line vortices.  At 

2.1 K, the temperature around which most of our observations are made, we make 

calculations for turbulence driven by a homogeneous counterflow.  The critical velocity 

given by (6.1.15) is vc = 50 μm/s under these conditions.  This value is an order of 

magnitude smaller than the velocities of the particles and vortices as they drift through 

our image plane, suggesting that if the observed flow is thermally driven, it is strong 

enough to sustain superfluid turbulence.  We can then express the typical spacing 

between vortices as the inverse square root of the line density given by (6.1.16) for a 

homogeneous counterflow.  For a counter flow velocity of 1 mm/s, the vortex spacing is  

1/Lo
½ ≈ 1 mm.   (6.4.8) 

Here we use the absolute velocity of the particles in the flow as representative of the 

counterflow velocity.  Clearly heating of the fluid in our cryostat is not done under 

controlled conditions and we should not expect it to result in a homogeneous 

counterflow.  However, the spacing given by the simple analogy is remarkably close to 

the typical distance between filaments seen in figure 6.4.  The result suggests that we are 

indeed observing a dynamic turbulent flow.   

 

6.4.4  Limitations of the observation  

We have observed that moderate stirring is effective at gathering the particles into 
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roughly 30 μm clumps in a matter of seconds.  Vortices are likely to bring particles close 

enough that they bind irreversibly, so that a dense tangle of vortices depletes the fluid of 

fine particles.  The large clumps, though they may also be trapped on vortices, do not 

successfully mark the outlines of vortices.  These considerations point to an important 

limitation of our technique for marking vortices – that we can see their outlines only in 

gentle flows with velocities less than a few millimeters per second.  Another limitation is 

that a particle-laden line may behave differently than a line without particles.  For these 

reasons, it may be desirable to minimize the number of particles in the flow.  Below we 

explore the effect of particle number.   

As discussed in section 6.1.4, a feature of the two-fluid model is the drag a 

quantized vortex encounters on passage through the normal fluid, known as mutual 

friction.  We suggest that the drag of particles trapped on a quantized vortex can cause 

the normal fluid and superfluid to couple more strongly than in the absence of particles.  

We compare the mutual friction on a vortex line per unit length of line, fm, to the Stokes 

drag on a sphere per sphere diameter, fd.  With the mutual friction given by (6.1.12), this 

ratio can be approximated by  

R = fm /fd ≈ κρs /3πμ,  (6.4.9) 

an expression that is accurate to within a factor of two between 1.4 K and 2.1 K.  A more 

complete formulation of this ratio, including a parameter describing the temperature 

dependent strength of the mutual friction, is evaluated and shown in figure 6.14 

according to values given by Donnelly (1991).  That R is always less than one suggests 

that the drag on the line is dominated by the presence of the particle.  It is probably true 

that particles interfere with the normal mechanism of mutual friction, and that particle 
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drag replaces mutual friction when the vortex core is saturated with particles.   

 

 
Figure 6.14:  The chart shows the ratio of the total drag on a vortex due to mutual 

friction to the drag caused by the presence of particles trapped on the line.  We include a 

factor σ, describing the spacing of the particles.  For σ = 1, the particles are next to each 

other, for σ = 10, they are 10 diameters apart.  Particle drag is always stronger than 

mutual friction if the particles entirely cover the line.   

 

If we allow some space between particles on the line, we can include a factor, say 

σ, which is the length of vortex line between sphere centers in units of sphere diameters.  

In figure 6.14, it is evident that σ = 10 will result in the particle contribution to the total 

drag becoming less important than mutual friction for a wide range of temperatures.  

Furthermore, in order to distinguish the vortex line from the collection of dispersed 

particles, we should require that other particle-populated lines be themselves separated by 

a large multiple of the inter-particle spacing in the bulk.  This implies that, under the 

assumption that the particles do not interfere with the vortex dynamics, there exists an 
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upper limit on the intensity of the turbulent flow we can observe while tracking 

individual lines.   

We now suggest conditions under which counterflows can be studied using our 

particles.  We suggest that the decorated vortices be separated by at least ten times the 

particle spacing, or 10σ diameters, in order to distinguish strings of particles as individual 

vortices.  Consider a collection of vortices decorated with particles spaced typically by 10 

diameters.  In this case, the typical vortex spacing, 1/Lo
½, equals 200a.  From (6.1.16), we 

see that for a 0.5 μm particle, the maximum counterflow velocity at 2.1 K is roughly 

1 cm/s.  In addition, according to (6.1.16), vortex density drops with temperature, which 

indicates that counterflow velocities could correspondingly be increased to maintain the 

maximum line density at lower temperatures.  This result suggests that particles can be 

used to observe quantized vortex motion over a wide range of turbulent counterflow 

conditions, provided one has a method to control particle concentration, and provided 

particles do not interfere with vortex dynamics in other ways.  We show in the following 

section, however, that it is likely the particles do have a dramatic effect on vortex 

dynamics.   

 

6.4.5  The significance of branches 

More than one line vortex may trap a particle, and reciprocally, particles may hold 

collections of vortices together.  This interaction may make possible the formation of 

branches and bundles of vortices.  If all of the vortices have one quanta of circulation, 

Stokes’ theorem implies a sum rule fixing the number (always even) and sense of the 

vortices attached to a particle.  However, we are unable to test this rule with existing data, 
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given that branches may leave the illuminated plane and so go uncounted.   

It is evident in our images (see figure 6.4) that the filaments appear as parts of 

complex networks with stable forks, whereas simulations show the filaments as smooth 

curves with brief dynamic intersections.  We are unaware of any discussion in the 

literature to date of the possibility that particles in He II transform the topology of a 

vortex tangle.  Poole et al. (2005) mention that a particle may trap more than one vortex, 

but confine their comment to the case in which the particle diameter is larger than the 

typical vortex spacing in the flow, and they do not address the consequences.  In our 

experiments, the typical vortex separation is of the order of a millimeter and many orders 

of magnitude larger than the particles, yet the evidence of multiple vortex-trapping in the 

form of branching is pronounced.  Clearly, more detailed observation and analysis is 

needed.   

  

6.4.6  The dotted lines 

Here, we suggest basic principles that may give rise to the dotted lines shown in 

section 6.3.3.  Assume that particles trapped along vortex lines as described in 

section 6.4.1 are in thermal equilibrium with those free in the volume.  This simple 

picture requires an extremely high temperature to yield average inter-particle separations 

comparable to the ones observed.  The addition to the model of a repulsive potential 

between particles would make such large separations achievable.  Among the possible 

interaction forces, the electrostatic one is uncommon in that it can just as easily be 

repulsive as attractive in nature.  However, we cannot think of how like charges would 

accumulate uniformly to produce even spacing, and why the effect would only manifest 
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itself under specific conditions.  We speculate in chapter 7 about alternatives.   

 

6.5  Conclusions  

We find that particles collect along filaments in He II and show that these 

filaments probably mark quantized vortex cores.  In this way, we have found a method 

for tracking the vortices, so that their cores can be viewed in three dimensions for the first 

time.  It is almost certainly due to having produced significantly smaller particles that we 

were able to make these exciting observations.  We show that the observed vortices are 

probably generated by a thermal counterflow, and outline conditions under which such a 

counterflow can be studied using hydrogen particles.  We also discuss several possible 

pitfalls in the use of particles as passive flow tracers, including the stabilization of vortex 

intersections.   

The images of particles in He II raise a number of interesting questions, including 

whether the particles contribute to a bending stiffness of the vortex, or cause the vortices 

to be “sticky” and form branches instead of reconnecting.  Both of these mechanisms 

suggest the possibility that the vortex lines we observe are themselves frozen, the 

skeletons of a dynamic process that is forced to cease evolving by the presence of 

particles.   
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Chapter 7 

Conclusions and future work 

 

The method for making hydrogen particles that we discovered has made progress 

possible in several contexts.  In chapter 3, we find that the particles are the only ones we 

know of that are useful for making quantitative measurements of flow velocities in 

turbulent liquid helium, and that the particles can be used to produce PIV data.  Using 

this technique, we observe the decay of grid turbulence at a higher Reynolds number than 

previously reported.  As discussed in chapter 4, we observe that its decay rate is slightly 

different from that measured in earlier studies and is a candidate solution for high 

Reynolds number turbulence.  In rotating turbulence experiments described in chapter 5, 

we find that inertial wave modes of the container are excited in the fluid and that they 

often dominate the behavior of decaying turbulence in the rotating frame.  Finally, we use 

the hydrogen particles to make visible the cores of quantized vortices in superfluid 

helium.  The images of hydrogen particles along the cores of quantized vortices shown in 

chapter 6 are probably the first that reveal the geometry and interactions of quantized 

vortices in three-dimensional configurations.   

Although we do not yet have a way to measure directly the size of the hydrogen 

particles, we find that the particles are likely to be 3 μm or smaller in diameter using 



 146

three independent observations.  The first argument is described in section 3.7.2, using 

the number density of particles in the image, and the volume fraction of particles.  The 

second is described in section 6.4.1, and is based on the force required to dislodge a 

particle from a quantized vortex, and on the estimates of typical flow velocities.  Thirdly, 

we note in section 6.4.2 that the time required for particles to mark a quantized vortex is 

sensitive to the size of the particles.  All calculations support the stated conclusion on the 

typical particle diameter.   

Our experiments are exciting for their discoveries and also for the number of 

avenues they open for future work.  In this chapter, we suggest some opportunities for 

improvements in the apparatus and for further investigations.  These include improved 

control of experimental conditions, a more detailed investigation of the decay rate of high 

Reynolds number turbulence, closer examination of inertial wave modes and their effect 

on rotating turbulence, and several explorations into the behavior of particles in 

superfluid helium.   

 

7.1  Improvements in the apparatus 

7.1.1  Heat input 

The primary limitation of the current apparatus is heat input from the laser 

illumination, which causes uncontrolled stirring of the fluid.  Our small particles must be 

bathed in intense light in order to be visible to cameras, especially when observing fast 

dynamics during which the exposure must be short.  In practical terms, a beam of a few 

watts is necessary when the required exposure is less than 1 ms.  Empirically, we find 

that the most important effect of this intense light is to heat the windows’ surfaces.  The 
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windows absorb some light and scatter some to the interior walls of the channel that also 

absorb it.   

For experiments in He I, the normal fluid, light impinging on the windows causes 

convection and boiling.  Liquid helium is particularly sensitive to this effect near its 

boiling point because of its low heat of vaporization and high thermal expansion 

coefficient.  In He II, the heat at the windows causes an easily discernible thermal 

counterflow across the channel.  In either fluid, constant heat input from the laser 

illumination invariably disturbs and in many cases dominates the flow, but is required 

only in order to image the flow continuously.  Therefore, we believe the only way to 

probe a liquid helium flow is with brief and intermittent illumination, most easily 

achieved with pulsed lasers.  This procedure would, of course, limit the information that 

could be gathered about time dynamics, as only one, or a small number, of points in time 

are observed per experimental trial.   

 

7.1.2  Controlling experimental conditions 

Further observations of the particle-superfluid system should be made with 

improved control of experimental conditions toward the goal of repeatability.  At least 

two improvements in the apparatus are needed.  First, the injector should allow a batch of 

particles with predetermined characteristics to be generated.  Second, the temperature at 

which the observations are performed should be controlled better.   

The technique for injecting particles is at present a matter of artistry.  Two 

additions to the injector would allow the generation of standardized particles.  First, a 

needle valve should be added and adjusted empirically to control the pressure applied to 
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the injector.  Second, a solenoid valve together with a control circuit should be added to 

control the duration of the injection.  The adjustment of these two settings, along with a 

control on the concentration of hydrogen in the injected mixture, would probably 

determine entirely the size and number of the particles that resulted.   

Temperature control is a standard tool for almost any low temperature 

experiment.  It would allow investigation of the particle-vortex interaction and He II 

turbulence under fixed conditions and properties of the fluid.  It was not implemented in 

our apparatus, because the bulk of our experiments were performed with the fluid sitting 

at its equilibrium temperature at atmospheric pressure.  The usual method, however, of 

over-cooling evaporatively in combination with reheating should be employed when 

performing experiments in He II.  A fixed cooling rate alone will eventually yield a 

steady state temperature, since there is always heat leaking into the cryostat, but the rate 

of cooling is difficult to control.  The proposed temperature control method would work 

by setting the cooling rate higher than needed for the desired temperature, and by 

introducing a continuously controlled amount of heat with a resistive heater.   

 

7.1.3  An additional window 

An additional window normal to the rotation axis would give a unique perspective 

on both rotating classical turbulence as well as the lattice of quantized vortices that form 

in the superfluid.  With two cameras for example, we could trace a particle’s motion in 

three dimensions as Voth et al. (2002) have done in water.  In the rotating superfluid, we 

would not have to make assumptions about the form of the vortex lattice; indeed the 

geometry and time dynamics of the lattice could be investigated.   
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7.1.4  Particle tracking 

Although we have invested much work in building the tools for producing and 

analyzing PIV data, we believe that the best way of using particles to make accurate 

measurements of turbulent liquid helium flow velocities is to use particle tracking.  In 

chapter 3 we show that the individual hydrogen particles are likely to follow the fluid 

motions closely.  The particle tracking method assigns velocities in space where they are 

known – at the positions of each particle that is imaged.  By tracking the motions of 

individual particles, rather than ensembles of particles in comparatively large volumes of 

fluid (as we have done in this work), this technique would remove the barrier to spatial 

resolution improvement faced by PIV.   

 

7.2  Particle characterization 

Questions about the nature of the hydrogen particles abound.  Their characteristic 

size and size distribution and how each of these evolves with time are some of the 

unknowns we have examined only indirectly.  The behavior of particle suspensions under 

turbulent conditions is an active area of research (e.g., Serra et al. 1997), and it is possible 

that careful monitoring of the clustering of hydrogen particles will yield data beneficial to 

these scientists.  Finding a technique to make these measurements in liquid helium is a 

challenge.  One possible approach is to implement dynamic light scattering, which aims 

at correlating the fluctuations in the intensity of light scattered from a small volume of 

suspended particles with their thermal motions.  The frequency and amplitude of these 

thermal motions is a function of the particle size.  Another approach may be to monitor 
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the Brownian motion of individual particles using a microscope, although bringing the 

particles close enough to the objective of a microscope poses a technical challenge.   

 

7.3  Classical turbulence 

7.3.1  Decaying turbulence in a non-rotating frame of reference 

The decay rate of homogeneous and isotropic turbulence is fundamental, and its 

value as measured experimentally is sometimes used to test computational models of 

turbulence.  It is remarkable that there is no experiment that reliably gives the decay rate 

of turbulence.  Limitations usually are low Reynolds numbers, small durations of 

observations, or small scaling range.  Using our apparatus and methods, we achieve high 

Reynolds numbers, and observe the flow for significantly longer than others have.  We 

propose repeating the experiments described in chapter 4 for a series of grid velocities 

and grid mesh sizes.  In addition, there are two characteristics of the flow we generate 

that should be investigated in more detail.  These are the mean flow generated by the 

grid, which we controlled to some extent, and the effect of anisotropy on the resultant 

turbulence, which we have not explored.  The theory of decaying homogeneous and 

isotropic turbulence at high Reynolds numbers has not been fully developed, either.  We 

believe this may, in part, be due to the lack of appropriate experimental data, such as that 

which we suggest collecting.   

 

7.3.2  Rotating turbulence 

As mentioned in chapter 5, we have probed only one small region of the Reynolds 

number – Rossby number parameter space.  Since acquiring the data presented in this 
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thesis, our methods have improved considerably, notably in particle generation and in 

control of heat input by the laser.  Cleaner and more extensive data may allow more 

detailed analysis and yield more interesting results.   

A problem with our data is the discrepancy between the frequency spectra of the 

streamwise mean flows in liquid nitrogen and liquid helium in the same geometry.  It is 

possible that a more refined analysis could uncover the reasons for the differences.  One 

idea is to decompose the velocity fields into two parts – the part whose frequencies are 

less than the inertial frequency, 2Ω, that may entirely be inertial waves, and the part with 

larger frequencies that may be thought of as rotating turbulence.  Another way to separate 

the data may be to identify and extract the spatial structure of the inertial wave modes 

from the acquired velocity fields, and examine the residue.   

Other interesting problems include finding the mechanism by which the dominant 

inertial wave modes are formed – is their energy content directly injected by the grid 

motion, or do they interact with and collect energy from smaller scale motions in an 

‘inverse-cascade’ process?  Finally, one might work to elucidate the effect of inertial 

waves on the mechanism by which kinetic energy injected by the grid is dissipated.  How 

is energy redistributed among scales of motion, and how is it ultimately dissipated?   

 

7.4  Experiments in He II 

The dynamics of the particle – quantum vortex interaction should be explored.  

Despite the observation that particles interfere with the dynamics of quantum vortices, 

the system of particles and vortices together reveals some intriguing phenomena.  These 

phenomena include the formation of coarse particle conglomerates when passing through 
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the superfluid phase transition and the arrangement of particles with equal spacing along 

lines.  Several other experiments could be performed in the superfluid that require some 

additional equipment and preparation.   

 

7.4.1  Quenches through transition 

The mist of particles created above the superfluid phase transition temperature of 

liquid helium shows a marked change of character as the transition is crossed.  The 

particles visibly coarsen in conjunction with the phase change; there appear in the images 

aggregates of particles that grow in size for several tens of seconds to roughly 50 μm.  

Although we do not know the origin of these particle clusters, we think it is likely that 

Casimir forces are responsible.  These Casimir forces are analogous to the well-known 

electromagnetic effect, but derive from random fluctuations in the wave function 

describing liquid helium near and below the lambda point, rather than from vacuum 

fluctuations in the electromagnetic field.  Because these fluctuations grow near critical 

points, such as the lambda point, the Casimir force is strongest in the vicinity of the phase 

transition (Krech 1994).  Several authors predict that aggregation in particle suspensions 

occurs across second order phase transitions (e.g., Burkhardt and Eisenriegler 1995).   

Probably the most effective way to affect a rapid phase transition is to vary the 

pressure; this minimizes the modification of the flow by the convection inherent in 

evaporative cooling.  One way we could accomplish this is by introducing a pressure 

vessel into the cryostat, and allowing it to fill with the surrounding liquid helium.  If the 

temperature of the fluid is initially slightly below the lambda point, say 2.1 K, rapid 

phase transitions can be caused by varying the pressure of the liquid between its vapor 
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pressure, and several tens of atmospheres.  The behavior of a particle suspension should 

be monitored as pressure is released.  These observations might reveal some 

characteristics of the phase transition.   

 
Figure 7.1:  The panels show the coarsening of a hydrogen particle suspension in liquid 

helium as the fluid is cooled through the superfluid phase transition.  In (a), the 

temperature is 2.173 K, in (b) it is 2.170 K, in (c) it is 2.167 K, and in (d) it is 2.163 K.   
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7.4.2  Dotted lines 

Although we have proposed that a repulsive force is necessary to arrange particles 

with equal spacing along vortex lines we do not have a complete understanding of the 

phenomenon.  The Casimir force is an intriguing candidate, since its effect grows 

stronger near the phase transition as discussed in the previous section.  We have observed 

the dotted line phenomenon only near the phase transition.  If it is a Casimir-type force 

that organizes the particles, we believe the result will be interesting to a wide range of 

physicists.  The role of the Casimir force in diverse physical systems and, in particular, 

whether it manifests itself as a repulsive force (Kenneth et al. 2002), is an active field of 

research.   

 

7.4.3  Tkachenko waves 

The rotating lattice of quantized vortices supports transverse waves, called 

Tkachenko waves, which are propagated by a combination of the tension in individual 

vortex lines and the elasticity of the vortex lattice.  The different types of wave modes of 

the rotating lattice are discussed by Donnelly (1991) and in a comprehensive review by 

Sonin (1987).  According to these authors, and our own literature search, these waves 

have not been convincingly demonstrated experimentally in He II, although Coddington 

et al. (2003) have probably observed them in a Bose-Einstein condensate.  It is possible 

that the undulations we observe in the rotating lattice, described in chapter 6, are the first 

direct observation of Tkachenko waves in superfluid helium.  We propose comparing the 

frequencies of the observed lattice vibrations, for a series of rotation rates, to those 

predicted by theory in order to support this hypothesis.   
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7.4.4  Laser tweezers – plucking a quantized vortex  

It may be possible to manipulate directly a quantized vortex by optically trapping 

a particle that the vortex has itself trapped.  Such laser tweezers could yield information 

about the particle-vortex interaction.  This technique may make it possible to measure for 

the first time the tension inherent in a quantized vortex line may be possible.   

 

7.4.5  The wanderers  

We have observed individual particles breaking from their trajectory parallel to 

the bulk of particles, and shifting across the background of uniformly drifting particles 

independently, before conforming to the background flow somewhere else.  We ask 

whether these particles are swept momentarily by the action of a quantized vortex, 

perhaps one that is normal to the illuminating sheet, and what may be inferred about the 

turbulent state of the vortices from these observations.   

 

7.4.6  Branching and networks 

An understanding of the branching structures we observe is central to a complete 

picture of the role of particles in the dynamics of He II.  One way to quantify the effect is 

to estimate the radial extent of the distortion in a vortex tangle caused by the presence of 

a single particle.  We may begin to find this measure by comparing two more simple 

states, a rectilinear vortex lattice and a vortex lattice where a certain number of vortices 

are pinched together by a particle.  The two states can be compared energetically to find 

the maximum number of vortices a particle may collect onto itself, and the linear extent 
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of the distortion on the vortex lattice.  Images of vortices pinched together in the rotating 

lattice are suggestive of such a configuration.  Although such a state may appear to be 

peculiar, it may give a result that is useful in the general, dynamic case of a turbulent 

vortex tangle affected by a single particle.  This is because vortices that are pinned on a 

particle lose their identity as single lines, and we may choose to view a collection of 

aligned vortices trapped on a particle equivalently as a collection of anti-aligned vortices.   

 
Figure 7.2:  These images were taken after superfluid liquid helium had reached a state 

of steady rotation about the vertical axis, as was figure 6.8.  It is likely that the presence 

of a higher concentration of particles in these images has caused the lattice of quantized 

vortices to pinch together in places.   

 

7.4.7  Onset of turbulence 

We believe we have shown that particles cannot be considered solely to be 

passive flow tracers in turbulent He II.  Furthermore, because quantized vortices are so 

effective at agglomerating particles, we believe the utility of particles will be confined to 
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the laminar regime and to observations during mild forms of quantum turbulence.  

Experimental observations in this regime are wanting because there is at present no way 

to probe the fluid.  The techniques widely used for measuring the properties of quantized 

vortices work well only when many of them are present.  Donnelly (1991) states 

explicitly that the lack of understanding regarding the nucleation of quantized vortices is 

due to the lack of a way of visualizing them.   

With these thoughts in mind, the next experiment in He II with hydrogen particles 

as tracers could study the onset of turbulence in a counterflow between two planes.  An 

implementation of this might place a heater across the entire floor of the channel in the 

present cryostat.  The helium would be seeded, allowed to cool and then reach a 

quiescent equilibrium at a controlled temperature.  At a certain time, a heater would be 

turned on to deliver a fixed heat flux, and the ensuing transient in fluid flow captured 

with a series of images, where PIV may be applicable for analysis.  The heat would be 

varied from zero up to a heat flux at which we anticipate the instantaneous destruction of 

the particle mist by vortex induced agglomeration.  We believe that it will be of great 

interest to know how and when vortices form with increased flow amplitude.   

The construction of the heater is more difficult than might be imagined.  When 

constructing a convection cell for classical fluids, it is not difficult to find a material, 

typically copper, with significantly higher thermal conductivity than the fluid, and to use 

it to form a surface boundary that remains nearly isothermal.  Because of the extremely 

high thermal conductivity of He II, one must take care in constructing the heated surface 

so that deviations in the heat flux per unit area over the surface are minimized.  One 

possibility is to deposit a thin nichrome film on a square of electrically insulating 
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substrate.  The electrical resistance of nichrome at low temperatures is nearly unchanged 

from its value at room temperature, so that it remains an effective heating element at low 

temperatures.  A voltage difference could be applied to copper wires that contact the 

entire lengths of opposing edges of the nichrome square.  The electrical resistance of 

copper at low temperatures is 6 orders of magnitude lower than it is at room temperature, 

supplying a nearly uniform current density to the nichrome film across its width.   

 

7.5  Closing remarks 

We have presented some interesting new results made possible by the 

development of a technique to produce small hydrogen particles in liquid helium.  We 

find several promising opportunities for future research in fields as diverse as particle 

suspensions, phase transitions, classical turbulence, and quantized vortex dynamics.   
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