Chaos Experiments at Microwave Frequencies

Steven M. Anlage

Physics Department University of Maryland, College Park

in collaboration with Ed Ott and Tom Antonsen Physics and ECE, UMCP

> MURI Kickoff Meeting 14 June, 2001

Two Types of Experiments

"Quantum Chaos"

Basic study of wave dynamics in enclosed boxes Relevant to EM interference and damage mechanisms

"<u>Classical Chaos</u>", addressing the question:

Does chaos enhance the susceptibility of electronic circuits to damage at low power levels?

Continuation of work funded by STEP/STIC project

Chaos

Classical: Extreme sensitivity to initial conditions

Manifestations of classical chaos:

Chaotic oscillations, difficulty in making long-term predictions, sensitivity to noise, etc.

Quantum: ???

Heisenberg Uncertainty principle limits knowledge of initial conditions $\Delta p \ \Delta q > h/2\pi \qquad \qquad \frac{1}{2m}(-i\hbar\nabla - qA)^2\Psi + V\Psi = i\hbar\frac{\partial\Psi}{\partial t}$

Manifestations of quantum chaos: Breaking of degeneracy, Scars, Strong eigenfunction fluctuations

Consider a two-dimensional infinite square-well potential (i.e. a box) which shows chaos in the classical limit:

Now solve the electromagnetic wave equation (or Schrodinger equation) in the same potential well

Examine the solutions in the semiclassical regime: $\lambda \ll L$

What will happen?

• Exploit the Helmholtz - Schrodinger Analogy in a "two-dimensional" electromagnetic resonator

Only transverse magnetic (TM) propagate for $f < c/2d \sim 19$ GHz, in our case

$$B_x \xrightarrow{E_z} B_y$$

 $\nabla^2 \psi_n + 2m(\varepsilon_n - V)/\langle \chi^2 \psi_n = 0 \rangle$ $\psi_n = 0$ at boundaries $\nabla^2 E_z + k_i^2 E_z = 0$ $E_z = 0$ at boundaries

Experiment

•Excite an eigenmode of the cavity with frequency ω_0 •Scan Perturbation through the cavity

•Measure ω at each point

•Use : $\omega^2 = \omega_0^2 (1 + \int (|\mathbf{B}|^2 - |\mathbf{E}|^2) dV_p)$, to get $|\mathbf{E}|^2$ (Slater)

$$B_x \xrightarrow{E_z} B_y$$
 perturbation

UNIVERSITY OF MARYLAND

www.csr.umd.edu

Eigenfunctions

Quarter bow-tie cavity

A magnetized ferrite (top Fig.) breaks time-reversal symmetry for the microwaves

Wave Chaos Experiments

Ferrite

Cavity with dielectric slab Investigate wave chaos at the length scale of a pc board Ray splitting Fields confined mainly in slab Image $|E_z|^2$ under and around the slab Add loss to the slab: when does the eigenfunction picture break down?

Make a connection to device-level studies:

start with low-loss dielectric

- \Rightarrow blank pc board
- \Rightarrow pc board with Cu ground plane
- \Rightarrow pc board with interconnects, passive circuit elements
- \Rightarrow pc board with active elements (nonlinear circuits!)

Magnetic Field Dependence of Standing Wave Characteristics

How are the $|E|^2$ maxima decreased with applied B? $|S_{12}|$

"Weak Localization"

Can the standing wave suppression be made broad-band?

Localized modes in trapezoidal cavities

Investigate the effects of slight irregularities in the shape Square/rectangular cavity + wedge Enhanced $|E_z|^2$ mode near wedge - <u>calculated</u> by Prange wedge

Circulating modes in cavities with magnetized ferrite

Square cavity + magnetized ferrite show circulating currents

Diamagnetic

Calculated by Narevich. PRE 2000

Calculated by

Zaitsev, et al.

Objectives of Classical Chaos Experiments

- Investigate the idea that chaos suppresses the threshold for damage in nonlinear circuits
 - Continue to examine the series R-L-Diode-Op-Amp circuit
 - Does period doubling lead to damage of components?
- Investigate the effects of high power rf signals on nonlinear circuits
 - RF-induced chaos may bring about a lowering of damage thresholds of electronic devices.
- Simulate the behavior of nonlinear circuits under these conditions

• C. Wallace (TRW) claims that period-doubling transition in this circuit leads to op-amp failure at absorbed power levels far below thermal failure limits:

Wallace's observation: "violent chaotic oscillation state and failure of the opamp, in which the output voltage went to zero and stayed there while the diode remained perfectly functional."

- Our experiments on a similar circuit at 10 60 MHz, 0.1 W input showed period-doubling and chaos, but no component failure.
- Jaycor/MRC examined a similar circuit up to 3 W and found no period-doubling or chaos, but did observe op-amp and diode burnout due to thermal effects

Classical Chaos Experiments in Progress

Understand why the results are so sensitive to measurement conditions, power levels, etc. Arrive at a consensus

Employ high-impedance voltage probes to minimize perturbation of circuit

Establish 100 W, 900 MHz measurement setup

Monitor op-amp supply voltage and current. Preliminary results show significant changes at the onset of period-doubling

Identify a simpler circuit which shows the essential behavior

Conclusions

Wave Chaos offers insights into the effects of microwaves in enclosures Statistical properties of eigenvalues and eigenfunctions Most results independent of box shape Benefits of breaking Time-Reversal Symmetry Ray Splitting

Does chaos lower the threshold for damage to electronic components? Develop a consensus on experimental results Is there a simpler circuit which shows the effect unambiguously? Generalize the results

www.csr.umd.edu

anlage@squid.umd.edu