

# WAVE CHAOS

## E. Ott<sup>1</sup>, T. M. Antonsen Jr<sup>1</sup>., and S. Anlage<sup>2</sup>

<sup>1</sup>Institute for Plasma Research, Department of Electrical and Computer Engineering and Department of Physics, University of Maryland, College Park MD 20742

<sup>2</sup> Department of Physics, University of Maryland, College Park MD 20742

#### MURI 2001 Kick Off, June 13-14, 2001



## CHAOS and NONLINEAR DYNAMICS at the UNIVERSITY of MARYLAND

• Balanced program involving collaboration among engineers, physicists, and mathematicians

-Basic Theory -Applications -Experiments



Quantum chaos



**Chaotic Scattering** 



**Guided microstructure formation in binary alloys** 

![](_page_1_Picture_10.jpeg)

**Spiral patterns** 

![](_page_2_Picture_0.jpeg)

## Electromagnetic Coupling in Computer Circuits

## Schematic

![](_page_2_Figure_3.jpeg)

C. E. Baum, Proc. IEEE <u>80</u>, 789-817 (1992).

• Coupling of external radiation to computer circuits is a complex processes:

apertures resonant cavities transmission lines circuit elements

• Intermediate frequency range involves many interacting resonances

• What can be said about coupling without solving in detail the complicated EM problem ?

• Wave Chaos

![](_page_3_Picture_0.jpeg)

## WAVE CHAOS (Also called "Quantum Chaos")

<u>Basic Question:</u> What happens to the solution of a wave equation (Maxwell's Eqs. or Schrödinger Eq.) when the solutions of the ray equations are chaotic?

<u>Ray Equations:</u>  $\omega = \omega(k, x)$   $\frac{dx}{dt} = \frac{\partial \omega(k, x)}{\partial k}$   $\frac{dk}{dt} = -\frac{\partial \omega(k, x)}{\partial x}$ 

![](_page_3_Figure_4.jpeg)

![](_page_4_Picture_0.jpeg)

# **Examples**

## $\nabla^2 \boldsymbol{\psi}_n + k_n^2 \boldsymbol{\psi}_n = 0$

![](_page_4_Picture_3.jpeg)

<u>Stadium:</u> Trajectories are chaotic

![](_page_4_Picture_5.jpeg)

 $|\Psi_{\alpha}|^2$ 

<u>Circle:</u> trajectories are not chaotic

![](_page_5_Picture_0.jpeg)

# Issues Addressed by Wave Chaos Theory

- Eigenvalue distributions
- Statistical properties of eigenfunctions
- Ray splitting
- Role of time reversal symmetry
- Chaotic scattering

![](_page_5_Picture_7.jpeg)

![](_page_5_Picture_8.jpeg)

**Chaotic Scattering** 

![](_page_6_Picture_0.jpeg)

#### **Distribution of Eigenvalue Spacings**

Normalized Spacing  $s_n = (k_{n+1}^2 - k_n^2) / \langle \Delta k^2 \rangle$ 

![](_page_6_Figure_3.jpeg)

![](_page_7_Picture_0.jpeg)

#### **Properties of Eigenfunctions**

![](_page_7_Figure_2.jpeg)

Rays ergodically fill phase space.

Eigenfunctions appear to be a superposition of plane wave with random amplitudes and phases.

$$\psi_{\alpha} = \lim_{N \to \infty} \operatorname{Re} \left\{ \sum_{j=1}^{N} a_{j} \exp \left[ i \left( k_{j} \cdot x + \alpha_{j} \right) \right] \right\} \quad \text{reversible}$$

$$\psi_{\alpha} = \lim_{N \to \infty} \sum_{j=1}^{N} a_{j} \exp \left[ i \left( k_{j} \cdot x + \alpha_{j} \right) \right] \quad \text{irreversible}$$

$$|\mathbf{k}_{j}| = \mathbf{k}_{\alpha}, \text{ directions of } \mathbf{k}_{j} \text{ randomly distributed}$$

$$\mathbf{a}_{j} \text{ random amplitude, } < \mathbf{a}_{j}^{2} > = 1$$

$$\alpha_{j} \text{ random phase}$$

 $\Psi_{\alpha}$  is a Gaussian random variable  $P(\Psi) \sim \exp\left[-|\Psi|^2 / 2\left<|\Psi|^2\right>\right]$ 

![](_page_8_Picture_0.jpeg)

## Numerical Verification of Random Eigenfunctions

Numerical Verification (McDonald and Kaufman 1988)

![](_page_8_Figure_3.jpeg)

![](_page_8_Figure_4.jpeg)

![](_page_9_Picture_0.jpeg)

## **SCARS** – Exceptional Eigenfunctions

![](_page_9_Figure_2.jpeg)

SCARS (Heller, 1984)

Concentrations of wave density along unstable periodic orbits.

Wave counterpart to classical phase space density is not uniform.

![](_page_10_Picture_0.jpeg)

## **STATISTICS of SCARS**

- At a specified frequency, what is the PDF of the scar strength?
- What periodic orbits will have the biggest scars?

![](_page_10_Figure_4.jpeg)

Bow-Tie with diamond scar

![](_page_11_Picture_0.jpeg)

#### **Statistics of Scars**

T. Antonsen, E. Ott, Q. Chen and R.Oerter, Phys. Rev. E (1995).

![](_page_11_Figure_3.jpeg)

PDF of Scar Strength Still Gaussian

![](_page_12_Picture_0.jpeg)

#### **Statistics of Scars**

#### Average Scar Strength

Strength of Scar on Periodic orbit

k<sub>n</sub> – eigenvalue L – length of orbit p – integer

![](_page_12_Figure_5.jpeg)

![](_page_13_Picture_0.jpeg)

## **RAY SPLITTING**

## Branching of rays at discontinuities

![](_page_13_Picture_3.jpeg)

Increased chaos – fewer scars? R. Blumel, T. Antonsen, B. Georgeot, E. Ott, and R. Prange, Phys. Rev. E (1996).

![](_page_14_Picture_0.jpeg)

# Questions to be Addressed by this Project

- What are the properties of scars in 3D systems?
- What is the effect of ray splitting on scars?
- Can the wave chaos picture be extended to systems consisting of both propagating waves and circuit elements?
- What is the role of losses?
- What is the role of time reversal symmetry on wave functions?

![](_page_15_Picture_0.jpeg)

### **Possible First Problem**

![](_page_15_Figure_2.jpeg)

Additional complications to be added later

• Can be addressed -theoretically -numerically -experimentally

HFSS simulation courtesy J. Rodgers