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Outline

* Overview of results and contributions by UMD HPM
Effects Research Group to the MURI Program

— Results of experimental measurement and characterization of HPM
effects at the device and circuit levels.

— Investigation of effects from complex HPM waveforms
— HPM effects in electronic networks and systems.

* Model of HPM effects in semiconductor circuits
— Complement to RCM analysis of complex structures
— Simple, scalable and based on physical device parameters
— Compatible with existing high-frequency circuit simulators

— Accurate predictor of susceptibility in existing and advanced
circuits and systems
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*Onset of effects 0.25 <V <1V

*Depend on RF frequency, pulse width,
modulation, logic state, bias voltage, bus
impedances, surrounding circuitry....

*Typically pulse widths > 100 nsec are
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Bandwidth Limited Voltage

Fle Edit Vertical Horiz/Acq Trig Display Cursors Measure Masks Math App  Utilities Help
ok Fun Sample 13 Fel

Time (usec)

Cursors  Measure

0 Acqs

Expanded view showing — __ _ +_>_\+_ ) s __ i _7 Y [

actual RF cycles.

Zero Baseline

1.0GS/s  50.0psipt




Voltage [V]

Voltage

3.5 7

2.5

=
1

0.5 1

o = n w
o U P U N U W O
| | | L

=
a1 N
I I

Examples of Effects in Advanced CMOS
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Mapping RF effects in integrated circuits
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Examples of ESD protection in integrated circuits
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Electrostatic discharge protection devices are integrated into virtually
all integrated circuits: discrete, logic, analog, RFIC, mixed signal
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Physical Layout of ESD Protection Device
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Electrical and Physical Characteristics
of ESD Devices
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Simplified Schematic of a CMOS Circuit
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Resonant circuits consisting of lumped and distributed
parasitic elements



Impedance at the input of high-speed CMOS logic circuit
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*When driven at resonance, the diode current and the rectified
voltage increase.



Amplitude

The ESD diodes down-convert the modulation
frequencies off the microwave carrier

Rgatmomcs — l

— s
B 1 )

aseband w M’ﬁ MV W‘W WM

Frequency h

These frequencies trigger CMOS operation

o —

Frequency



UNIVERSITY OF

MARYLAND [REAP

Comparison of measured and simulated response using model
parameters extracted from small-signal measurements
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Output Voltage (V)

Baseband Voltage (V)

This behavior has been observed and studied 1n a wide variety
of circuits.
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Are these parasitic diodes good rectifiers at
microwave frequencies (f > 300 MHz)?
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* W. Crevier, “Rectification Equivalence: A method for characterizing semiconductor rectification,” Titan-Jaycor
internal report to DTRA, December, 1996.

*M. L Forcier, R. E. Richardson, “ Microwave rectification RFI response in field-effect transistors,” |IEEE Trans.
Electromag. Comp., vol. EMC-21, no. 4, Nov. 1979.

*D. J. Kenneally, G. O. Head, S. C. Anderson, “EMI noise susceptibility of ESD protect buffers in selected MOS
devices,” Proc. IEEE Int. Conf. Electromag. Comp., Wakefield, MA, August, 1985, pp. 251-261.



The “rectification” model does not a complete the

picture
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High-Frequency Analysis of D-B Junctions
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High-Frequency Admittance of D-B Junctions
(I=10" A, V,=0.025V, 1= 5 nsec)
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Comparison of measured and calculated D-B sensitivity in
advanced low-voltage CMOS (1 = 5 nsec)
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Comparison of the D-B junction sensitivity in micron-
scale logic
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Overview of studies of HPM upset in electronic systems

*Systems consist of many circuits with internal resonances interconnected by
transmission lines within complex cavities.

*What parts of the system are most likely to be upset once RF penetrates the
enclosure?

View of the assembled LAN switch Chassis cover removed



Distribution of parasitic resonant frequencies and quality factors in a
digital communications system

View of the IC layout on the Results from small-signal
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Characteristics of electronic systems

* Most electronic systems contain modular components that are packaged
according to standardized form factors (4U, 19” bays, ATX, etc.)

*Does this present any universal conditions or likely avenues for HPM
attack?

*The enclosures are clearly natural microwave resonators.

LAN switch with coaxial RF ports PC with waveguide port



Results of S-parameter measurements in an operating LAN
switch

* Port #1 is a dipole launching antenna and port #2 1s connected to the main
+12 VDC power bus on the motherboard
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* Strong resonances are observed across L-band (~1-2 GHz)



RF Surface Current Density for Various TEM Eigenmodes
on the Motherboard
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Results from Upset Studies in a LAN Switch
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At upset, the RF caused the switching power supply to either completely
shut down or output the incorrect voltage for times that were 100 — 1000
times the RF pulse width.

*This forced the microcontroller to completely reboot the system.
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Schematic of a typical switching power supply
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Conclusions

« RF rectification by ESD protection diodes and parasitic resonances have

been identified as major susceptibility issues.

« The RF characteristics of these devices can be accurately described

using lumped-element circuit models with simple high-frequency diode
parameters.

» Upset can be easily predicted in terms of the high-frequency transfer

characteristics of the circuit and the RF voltage, frequency and
modulation at the circuit terminals.

* In systems, the problem requires an EM or RCM treatment.
« Power controllers with feedback have been identified as a major and

universal problem.

» An informed basis for developing effects sources:

— L-band
— Wideband or chaotic modulation
— 10-100 MW Power levels
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Possible Sol

* Low-voltage differential

signaling between critical
communications nodes

« New concepts for opto-

1solation, low-power
diodes, single photon
detectors, etc.

* Power supply redesign

e New ESD circuits and

structures
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