System-Level Vulnerability and Mitigation

Prof. Bruce Jacob, Hongxia Wang, Samuel Rodriguez, Cagdas Dirik

Electrical & Computer Engineering
Overview

Primer: Circuits & Systems & How They Fail

- Components of digital systems
- Internal & External vulnerabilities

Quantifying External Vulnerability

- DUT: Test chip fabricated in AMI’s 0.5μm process
- Comparison of vulnerability: DUT’s clock/data inputs

Quantifying Internal Vulnerability

- Predictive 45nm BSIM4 models integrated w/ Spectre
- Shmoo plots for Drowsy & DR-Gated-GND SRAM cells

Mitigation

- TERPS architecture & prototype chipset
- System verification
Primer: Digital Systems

Simple Digital Circuit:

Simple Digital System:

- VDD pad
- Data pad
- Clk pad
- GND pad
- ESD
- I/O Buffers
- Combinational Logic
- DQ
- Clk
- State Storage
- GND
Primer: Digital Systems

“External” vs. “Internal” Vulnerability

- **External Signals:** How easily can they sneak into chip?
- **Internal Signals:** How easily can they upset state?
External Vulnerability: DUT

Simplest possible digital system
8-bit Ripple Counter, Chip Built via MOSIS
Full-Custom Design (except for pad frame)
Fabricated in AMI's 0.5µm Technology
3.3V power supply
Experimental Set-Up

Power Amp 33dB at 1GHz
Freq 800MHz – 4.2GHz with 1.2W max power
Test Board

CLK & CLKSEL

Counter Output
CLK vs. DATA Inputs

Power-v-Freq. required to cause incorrect behavior (state change in digital logic)

Power Triggering Levels

- **Injected Power (CLK)**
- **Injected Power (DATA)**

Frequency (MHz) vs. Power (dBm) graph.
Internal Vulnerability: SRAM

Breakdown of power dissipation for a 200MHz 3.3V 0.35um processor with 32kB/32kB/1MB caches

Fraction of die area and transistor count dedicated to caches is large and increasing

People care about reducing cache power, static & dynamic
SRAM Implementation

SRAM memory cell (top)
Full CMOS 6T implementation (bottom)
State of bitlines (right) (*note coupling*)
Experimental Set-Up

- Data-Retentive Gated-Ground (top) and Drowsy Cache (bottom) circuits, with noise-injection sites shown
SRAM Noise Immunity

SRAM cells with noise injected:

- State is retained
- State is lost
SRAM Noise Immunity

Shmoo plots

(a) Drowsy wordline
 - EMI amplitude
 - Percentage of nominal coupling capacitance (%)
 - Successful run
 - Failed run

(b) DRG wordline
 - EMI amplitude
 - Percentage of nominal coupling capacitance (%)
 - Successful run
 - Failed run

(c) Drowsy internal node
 - EMI amplitude
 - Percentage of nominal coupling capacitance (%)

(d) DRG internal node
 - EMI amplitude
 - Percentage of nominal coupling capacitance (%)
SRAM Initial Results

Low-power SRAM circuits most susceptible to noise (EMI) through wordline coupling

Explained by strong differential noise that affects the internal state whenever the wordline has enough strength to turn on the access transistors.

For example, when the initial state of an idle or inactive memory cell is “1”, and a “0” is being written to a neighboring cell such that the bitline goes low (and the complementary bitline stays high), a voltage difference exists between the internal node and the bitline it is connected to (also true for the complementary side). The access transistors to idle memory cells are ideally turned off to isolate the internal nodes from the bitlines, but any noise present in the wordline will tend to induce currents through the access transistors that produces differential-mode noise across the cross-coupled inverter latch, potentially overwriting it and corrupting its stored state.

Because MOSFET switching characteristics change with temperature, future/present work investigates thermal effects
Mitigation: TERPS

Problem: susceptibility to (intentional) EMI

- $V_{dd} \downarrow \Rightarrow$ circuit sensitivity \uparrow
- $T_{clk} \downarrow \Rightarrow$ circuit sensitivity \uparrow
- $L_{eff} \downarrow \Rightarrow$ circuit sensitivity \uparrow
- ECC not a solution for wordline coupling
- Clock coupling takes out whole chip

Solution: checkpoint/rollback
Prototype Chipset

CPU state is periodically saved to safe storage (includes register file, program counter, pending memory requests, etc.)

State is restored upon detection of high EMI levels

Efficient operation requires high inter-chip bandwidth (optical, 3D integration, etc.)
Validation vs. Interference

SENSOR_IN

FCLK

FCLK
SCLK
ss_sel
det_r
det_out
rmode
oe#
SENSOR_IN

Subset of System State

tA1 tB1 tC1 tD1 tA2 tB2 tC2 tD2
Acknowledgments, etc.

INVALUABLE AID:
Todd Firestone and John Rodgers

PUBLICATIONS:

Primer: Digital Systems

How To Make This System Fail ...

VDD
Data
Clk
VSS
ESD I/O Buffers Register GND Register

Logic
Logic
Primer: Digital Systems

How To Make This System Fail … DATA

- RF that makes it this far (past initial I/O buffers) has corrupted the system: only solution is to use higher level bus- or packet-encoding techniques
- Corrupted data can lead to incorrect results, software crash/reboot, transmission to remote nodes, etc.
RF that makes it this far (past initial I/O buffers) has corrupted the system: packet-encoding techniques that might detect data corruption are inapplicable.

Unwanted clock edges likely result in metastability, lead to incorrect results, most likely system crash.
Primer: Digital Systems

How To Make This System Fail ... CLOCK

- Thermal gradients in synchronous systems disastrous (consider tight timing margins in GHz systems)
Localized (or global) ripples on groundplanes can cause logic to misbehave, inputs to be misinterpreted (e.g. suppose Data/Clk = 1, V > V_{IL} on gate of 2nd INV)

Causes same effects as data/clock corruption
DUT Circuit Perspective

Points of Interest:

- Digital system built from complementary gate designs (high input impedance, low output impedance).
- CLK only driving MUX, one DFF (see previous slide).
- => CLK and CLKSEL see virtually identical loads.
Input Impedance

CLK pin

New Board Input Impedance Zero Bias

CLKSEL (data) pin

Clock Select Input Impedance