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The Concurrent Complementary Operators Method
Applied to Two-Dimensional Time-Harmonic
Radiation and Scattering Problems
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Abstract—The concurrent complementary operators method
(C-COM) has recently been applied to time-harmonic solution
of Maxwell equations in two-dimensional space. In this paper,
we present the application of the C-COM to the problem of
electromagnetic scattering by conducting cylindrical objects in
two-dimensional spaces. We show that the C-COM can effectively
annihilate surface waves that impinge on the boundary at or near
grazing incidence. The effectiveness of the C-COM is due to the
fact that its wave absorption mechanism is independent of the
wave number. To demonstrate the effectiveness and robustness
of the C-COM in time-harmonic simulation, we present several
numerical experiments. A strong agreement is obtained between
the C-COM solution and the reference solutions even when
the computational boundary is positioned only a fraction of a
wavelength from the scatterer’s body. Furthermore, we present a
numerical experiment that shows the behavior of C-COM when
waves impinge on the outer boundary at oblique incidence.

Index Terms—Complementary operators method (COM),
finite-difference frequency-domain method, partial differential
equations, scattering, time-harmonic simulation.

1. INTRODUCTION

HEN solving the radiation problem using a numerical
procedure that is based on partial-differential equations,
the computational domain needs to be not only finite in size
but also as small as possible in order to minimize computa-
tional burdens. Significant efforts have been made in the past 20
years to find means to truncate computational domains without
compromising the accuracy of the solution. (The engineering
and computational science literature is replete with papers de-
scribing various mesh-truncation techniques; a representative
sampling of these techniques can be found in [1]-[11] and ref-
erences therein).
The complementary operators method (COM) was originally
introduced as a mesh-truncation technique for open-region
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finite-difference time-domain (FDTD) simulations [10]. The
strength of the COM is its ability to fully cancel the first-order
reflections that arise when the computational domain is ter-
minated with a boundary operator or absorbing boundary
condition (ABC). This cancellation takes place by averaging
two independent solutions to the problem. Each of these two
solutions is obtained by imposing boundary operators that are
complementary to each other. Two operators are considered
complementary if their reflection coefficients are equal in
magnitude but are 180° out of phase, not only analytically
but also in the discrete or numerical domain. Therefore, the
two solutions that are generated from each of the operators
separately, when averaged, result in a solution that does not
contain any of the first-order reflections.

The COM requires two independent solutions of the problem,
which lead to doubling the operation count. Despite this addi-
tional overhead, the COM remains highly effective and efficient
when compared to other available mesh-truncation techniques
[10], [11]. This is primarily due to the fact that the COM allows
the terminal boundaries to be positioned very close to the source
of radiation. Despite the effectiveness of COM, eliminating two
independent runs of the algorithm remains desirable as the over-
head requirement of the simulation is reduced by one-half. The
concurrent complementary operators method (C-COM) was in-
troduced to eliminate the two simulations’ requirements of the
COM [11]. In the C-COM method, two complementary oper-
ators are applied concurrently in a single simulation, resulting
in an appreciable increase in modeling efficiency. Furthermore,
since the two complementary operators are applied within a re-
gion external to the working domain, the C-COM is effective
when the scattering object includes nonlinear media [11].

In this paper, the theory of C-COM is extended to include
time-harmonic (frequency domain) solution of the scattering
problem. Although the frequency-domain and time-domain
simulation are two different mathematical representations
of a single physical phenomenon, the numerical solution’s
paradigm is not expected to be identical, as numerical errors
are strongly dependent on the numerical scheme [12]. For
this reason, complementary operators need to be numerically
adapted to fit the particular numerical model under consid-
eration, and especially, to ensure that the error cancellation
mechanism remains valid.

In [13], the C-COM was applied to the beam propagation
method, where it was found to yield results that are appreciably
more accurate than other mesh-truncation techniques. In [14]
the C-COM was applied to the problem of a source radiating
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in free space. In this paper, we briefly review the theory of
C-COM in time-harmonic simulation. Next, we present the ap-
plication of C-COM in the finite-difference frequency-domain
(FDFD) simulation of radiation and scattering problems. We
show that the concurrent implementation of the COM in time
domain translates to node averaging in the system matrix of
the frequency-domain method. Finally, we present a set of nu-
merical experiments that were carefully designed to test the
performance of the C-COM, especially for evanescent waves
and waves impinging on the computational boundary with near-
grazing angles.

II. C-COM FOR TIME-HARMONIC SIMULATION

The development here will be demonstrated by solving the
problem of radiation or scattering in two-dimensional space.
The governing equation is the Helmholtz wave equation, which,
for the case of TM-polarization, is given by

V2E; +k*E; =0 )

where k is the wave number. (For the case of TE-polarization,
E, isreplaced by H,.) The field E, corresponds to the scattered
or total field. (The physical boundary conditions pertaining to
the scattering object will be adjusted in accordance with the for-
mulation used.)

Let us consider a computational boundary normal to the x
axis and located at & = a. Furthermore, let us assume that the
problem domain lies to the left-hand side of x = a. When the
complementary operators are applied to this boundary in a fre-
quency-domain model, the resultant two discrete-domain com-
plementary operators are given by [12]

{D,B}E.={(I-S")B}E.=0 )
{D,BYE. = {(I+S™")B}E.=0 )

where B is a boundary operator, I and S~! are the identity and
space shift discrete operators respectively, and Ax is the grid
spacing. The corresponding reflection coefficients are given, re-
spectively, by

R{D,B} = — ¢/***R{B} “4)
R{D,B} =¢’*2*R{B} 5)

where R{B} is the reflection coefficient of the operator B and
k. is the wave number in the z direction. Notice that R{ D, B}
and R{D, B} are precisely 180° out of phase and, hence, full
complementariness is achieved analytically and numerically
[12].

The boundary operator B above can be any analytical or
even numerical boundary condition [15]. Previous work has
shown that the Bayliss—Turkel (BT) series of operators offers
very highly accurate and robust boundary conditions that yield
asymptotic convergence in two-dimensional space and uniform
convergence in three-dimensional space, as the order of the
operator increases. In fact, it was found that the higher order BT
operators can be implemented without approximations yielding
high accuracy [16]. In this paper, the synthesis of complemen-
tary operators is based on the BT boundary conditions.
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Fig. 1. The finite-difference frequency-domain grid highlighting the interior
and boundary regions designated for the application of the C-COM. Also shown
is the interface perimeter I', along which the fields from the boundary region are
averaged.

For a planar (Cartesian) boundary, the /Vth-order BT operator
in frequency domain for a planar boundary is expressed as

B = (0, + jk)N (6)

where 0,, is the partial derivative of the field in the direction
normal to the computational boundary. We will refer to the
Nth-order BT operator as BTN. When the outer boundary is
planar and coinciding with the Cartesian planes, (5) reduces
to Higdon’s boundary condition when it is applied in the
frequency domain.

III. IMPLEMENTATION IN FINITE-DIFFERENCE SIMULATIONS

The first step in the implementation of the FDFD method is
to divide the computational region into grid. Following a pro-
cedure highly similar to that used in the implementation of the
C-COM in time-domain simulation [11], we divide the com-
putational domain (grid) into two nonoverlapping regions—a
boundary region and an interior region—as shown in Fig. 1. The
interior region includes all radiating or scattering objects, while
the boundary region is an empty domain set up purely for com-
putational purposes. To each field node in the boundary region
we assign two field values E! and EZ2. In the interior region
we assign a single field value E. to each node, as in conven-
tional implementation. Next, we apply the second-order accu-
rate finite-difference scheme to each node in the interior region
as in standard implementation. For ease of illustration, we as-
sume that the grid is uniform in the = and y directions with grid
spacing of A. For clarity, we make the following designations:
all interior nodes will be designated as (4, j);, all nodes lying
within the boundary region will be designated as (¢, j);, and all
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Fig. 2. FDFD grid showing fields locations and designation.

Ax

nodes lying on the interface perimeter I' will be designated as
(,7)r- A schematic of the FDFD grid and field designation is
shown in Fig. 2.

Applying the FDFD scheme to the free-space Helmholtz
equation at an interior node (%, j);, we have

+E.(i,5 = )i + (KA? = 4)E.(i,j); = 0. (]

In the boundary region, we apply the finite-difference equation
to each set of fields designated by the superscripts 1 and 2. We
have

EYi—1,)+EXi+1,5)s + EXG,5+ 1)
+E(i, 5 — 1y + (A% —4)EX(6,5), =0 (8)
EZ(i— 1,5+ E2(i 4+ 1,5)s + E2(i, 5 + 1)y
+E2(i,5 — 1)y 4+ (K2A% — 4)E2(i, §)p = 9)

The next step is the implementation of the complementary
operators. The first operator D, is applied to the set of fields
denoted by E! and the second operator D, is applied to the
second set of fields denoted by E2. More explicitly, we have

{D,B}E! =0
{D.BYE? =0

(10)
Y

The final step links the boundary and interior regions. This
is accomplished by constructing an interface between the two
regions. On the interface, the field values needed from the
boundary region for the FDFD equation are obtained from the
average values of E! and F2. Let I be the interface perimeter
between the boundary layer and the interior region. (The inte-
rior region is inclusive of I'.) Let us focus on the left-hand-side
segment of I" shown in Fig. 1. On T, the update equation for
the fields uses the average field values (E! + E?)/2 from the

left-hand side and E. from the interior region. Thus, the finite
difference equation for the fields on I is given by

—{E —1,§)p+E2(i—1,5)s }+ E.(i+1,5);

+E.(i, j+ ) r+E. (i, j— Dr+(k*A*=4)E. (i, j)r =0.
(12)

Similar equations are applied on the other three sides of I". The
FDFD equations for the corner nodes of the interior region are
slightly different. For example, the finite difference equation for
the upper left-hand corner node is given by

1 . . . . .
i{Ezl(Z 17])b+Ez2(Z_17])b}+EZ(7’+1/])F

1
t+ 5 {25 + 1) + B2, 5+ 1)y }

+ E:(i,j = Dr + (WA =) B. (i, j)r = 0. (13)

The width of the boundary region must be greater than the
width of the stencil demanded by the differential operator used
in the C-COM. For instance, if B is a third-order BT operator,
then the order of the C-COM operation is four [i.e., a fourth-
order derivative would be needed to implement (10) and (11)],
and consequently, the width of the stencil needed will be five.
This implies that the boundary region has to be at least six nodes
wide.

The above methodology can be extended to annihilate reflec-
tions arising from the corner regions as in [10] and [11]. For
this, four field values need to be allocated for each FDFD node
in the boundary region. (The reader is referred to [10] and [11]
for a discussion on the annihilation of reflections coming from
the corners of the computational domain.)

In a manner consistent with the nomenclature used for the
COM method [10], nth-order C-COM operation [employing
an nth-order operator in (10) and (2)] will be denoted as
C — COMn. For this, the minimum width of the boundary
region is n+2 nodes inclusive of the boundary node. Fur-
thermore, we use two additional parameters to fully identify
the methodology used in terms of doubling or quadrupling
the fields in the boundary layer and its width. When the
fields are doubled in the boundary region, resulting in the
cancellation of side reflections only, we refer to the method as
C-COMn(2, W), where W indicates the width of the boundary
layer. Similarly, when the fields are quadrupled in the boundary
region, annihilating corner reflections, we refer to the method
as C-COMn(4, W).

The primary figure of merit for overhead calculation in
an FDFD method is the number of unknowns needed for
the system matrix. When implementing C-COMn(2, W),
for instance, the field storage within the boundary region is
doubled. As an example, when using C-COMn(2, W) in a
computational domain of size N X M, the additional number
of unknowns required in comparison to traditional ABC
implementation (such as Higdon’s boundary conditions) would
be the number of nodes in the boundary region, which equals
N XW x2+4+[M — (2 x W)] x W x2. Therefore, the minimum
number of additional unknowns is found by substituting n+2
for W to give 2(n + 2)(N + M) — 4(n + 2)2. Clearly, the
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percentage increase in overhead diminishes as the size of the
problem increases.

Finally, we note that implementing (12) and (13) within the
system matrix is simple. The sparsity of the matrix system is
not affected by (12) and (13). However, a good node-numbering
scheme can be exploited if a banded matrix solver is employed.
The node numbering scheme can also be exploited to increase
the efficiency of highly optimal solvers that store only nonzero
matrix elements as these schemes employ approximations and
iterations that depend on the nodal distance of each two adjacent
nodes.

IV. NUMERICAL VALIDATION

The validity, robustness, and accuracy of the C-COM proce-
dure are demonstrated by considering several numerical exper-
iments that involve radiating and scattering sources. In all cases
considered, validation is made by comparison to either the an-
alytical solution (where possible) or to the reference solution,
which is considered here to be the numerical solution where the
computational domain is taken to be very large such that the re-
flections coming from the outer boundary are very small.

In the first test, we design a numerical experiment to test the
effectiveness of the C-COM on the absorption of waves incident
on the boundary at different angles of incidence. (This experi-
ment is similar to a test performed in [17, ch 7].) We consider
a two-dimensional computational domain of 200 A x 21 A. In
these numerical experiments, the grid will be uniform in the x
and y directions with A = 0.05 A. We place a current source
at (20 A, 11 A) and position three monitor points, designated
as MP1, MP2, and MP3, along a horizontal line coincidental
with the source and at a distance from it of 1), 3\, and 7,
respectively. The field observed at each monitor point will be
composed predominantly of the line-of-sight wave coming from
the source (corresponding to the physically observed wave) and
two equal-magnitude spurious waves that have made a single
bounce off the computational boundary (specular reflection off
the boundary). Notice that other waves are also received due to
multiple reflections, but these have much lower magnitudes and
are assumed to be negligible. The angles of reflection (as mea-
sured with respect to the normal) that correspond to the spurious
waves observed at the monitor points are 45°, 72°, and 82°, cor-
responding to MP1, MP2, and MP3, respectively.

Let the exact field at each of the monitor points be £°*. The
computed field is approximately given by E¢~°™ = E* 42,
where ¢ is the spurious reflection coming from one of the two
top and bottom boundaries, as indicated in Fig. 3. The approxi-
mate normalized percentage error is then given by

EEX _ EC—COH]

_1 100 x
Eer

Normalized Error = 100 x T = 5

(14)
The exact solution £/°* is obtained from the series solution. No-
tice that the exact solution includes numerical errors, which are
not attributed to boundary condition reflections such as numer-
ical dispersion. Clearly, a more accurate error analysis would en-
tail generation of a reference solution (which would include nu-

merical dispersion) obtained when the computational domain is

411

Boundary region

2004

TN | 72°
source
VL MP1 MP2

Ay

MP3

3z

WA

X

Fig. 3. Computational domain used to test the effect of different angles of
incidence on the outer boundary.

TABLE 1
NORMALIZED ERROR AT MP1, MP2, AND MP3 AS A FUNCTION OF THE
BOUNDARY REGION WIDTH W

Width of Boundary Error at MP1 Error at MP2 | Error at MP3
Region, J¥, in nodes (0=45°) (6=72°) (6=82°)

6 0.32% 0.35% 6.14%

8 0.31% 0.19% 5.25%

9 0.29% 0.07% 4.98%

made large enough such that any reflections from the boundary
is negligible; however, due to the size of the domain already
considered, this exercise would be numerically impractical.

Table I shows the normalized error when using
C-COM}4(2,IW) for the three different monitor points.
The error is observed to decrease with an increase in the width
of the boundary region in a manner consistent with the theory
of the C-COM as presented earlier for time-domain simulation
[11]. Notice that the computational domain was kept constant
while the boundary region was increased. These results further
show that the suppression of reflections is very effective,
especially for waves approaching the boundary at near-grazing
incidence.

As a second experiment, we consider a simple problem in-
tended to facilitate comparison between the C-COM solution
and the solutions obtained from a recently published FDFD per-
fectly matched layer (PML) formulation [18]. We consider the
problem of a point source radiating in free space. A 15 Ax 15 A
core computational domain is chosen upon which additional
grid layers will be added. The grid size will be chosen uniform
in the z and y directions with A = 0.025 X. The solution will be
observed at the 15 grid points spanning the top of the core do-
main as indicated in Fig. 4. Fig. 5 shows the normalized error in
the field obtained using the total-field-formulation FDFD-PML
code, which incorporates an optimized conductivity profile and
an eight-layer PML. (For details on the FDFD-PML formula-
tion, the reader is referred to [18]; however, the results pre-
sented in this paper have been obtained directly from the au-
thors of [18].) Note that the PML layers are added on each side
to give a computational domain of 31 A x 31 A. Comparison
is made to the C-COM3(2,5) solution in a computational do-
main of size 31 A x 31 A. For maximum efficiency in using
C-COM3, the field averaging is performed only five nodes from
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Fig. 4. Core FDFD computational domain used for the problem of a source
radiating in free space. The observation contour is shown with the node
numbering scheme corresponding to the solution presented in Figs. 5 and 6.
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Fig. 5. Normalized error in the E-field at the top of the computational domain
shown in Fig. 4 as obtained using an eight-layer PML and C-COM3(2,5), in a
computational domain of size 31 A x 31 A.

the terminal boundary; hence, field-storage duplication is con-
fined to the five-layer boundary region. Fig. 5 shows that for the
fixed computational domain of size 31 A x31 A, C-COM3(2,5)
yields higher accuracy than the PML formulation of [18]. From
Fig. 5, we observe that C-COM3(2,5) yields a maximum error
of 0.0025 while the PML solution gives a maximum error of
0.0095.

The higher accuracy achieved by C-COM3(2,5) in the 31 A x
31 A computational domain requires additional memory re-
sources of approximately 50% in the number of unknowns of the
system matrix for this particular problem. It should be noted,
however, that for general problems of practical significance that
would involve scattering objects, the area of field duplication is a
small fraction of the total computational domain and, therefore,
the increase in overhead arising from the C-COM application
is less burdensome. Furthermore, because of the high-accuracy
potential of the C-COM, it is expected that the computational
boundary can be reduced in comparison to solutions using tra-
ditional boundary treatments. To demonstrate the potential of
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Fig. 6. Normalized error in the E-field at the top of the computational domain
shown in Fig. 4 as obtained using eight-layer PML in a computational domain
of size 31 A x 31 A and C-COM3(2,5) in a computational domain of size
23 A X 23 AL

the C-COM, a more stringent case is considered in which the
computational domain is reduced to a size of 23 A x 23 A while
applying C-COM3(2,5). Fig. 6 shows a comparison between the
FDFD-PML solution (eight-layer PML) where the total compu-
tational domain is 31 A x 31 A and the C-COM3(2,5) solution
in a computational domain of 23 A x 23 A. This time, how-
ever, we observe from Fig. 6 that the C-COM solution resulted
in approximately 50% less maximum error in comparison to the
FDFD-PML solution while yielding an FDFD system matrix
having approximately 8% less number of unknowns than the
FDFD-PML solution.

The FDFD-PML formulation is typically optimized for
the angle of maximum absorption and conductivity profile,
while the C-COM implementation does not call for any special
problem-dependent adaptation or optimization. That is why we
emphasize that the comparison between the FDFD-PML and
the C-COM presented here is intended for the sole purpose of
giving a preliminary qualitative assessment of computational
resource requirements versus accuracy. A more comprehensive
comparison will be the subject of a future publication.

Next, we turn to the problem of plane TM (transverse-mag-
netic, or E-wave) scattering by a 2.0 A x 2.0 A perfectly con-
ducting square cylinder. The size of the computational domain
is 54 A x 54 A. The grid will be chosen uniform in the = and y
directions with A = 0.05 A. This experiment is chosen in order
to study the performance of C-COM in the shadow region of
a scatterer where the scattered field has a relatively high mag-
nitude in comparison to other regions around the scatterer. The
outer boundary is positioned such that the separation between it
and the conductor is 0.35)\. A total of 164 nodes span the ob-
servation contour, starting from the lower left-hand corner as
shown in Fig. 7. Fig. 8(a) and (b) shows the magnitude of the
scattered field on the observation contour for two different an-
gles of incidence of ¢ = 0° and ¢ = 45°. The accuracy of
C-COM4(2,7) is observed to be quite satisfactory, especially in
the shadow region of the scatterer.

For the next numerical experiment, we study the TM and
TE scattering from a thin perfectly conducting rectangular



RAMAHI et al.: CONCURRENT COMPLEMENTARY OPERATORS METHOD

413

0.050—> Perfectly conducting

/rectangular cylinder

e e -

I

T 54 3 l
@—’ :-_qo
EIL.-. ....................................................... ik 041
y f
—>|0. 41|
Observation contour Boundary of

computational domain

X

Fig. 9. Computational domain used for the problem of plane wave scattering
from a perfectly conducting slab measuring 3 A x 0.2 A.
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Fig. 8. Magnitude of the scattered field along I for the geometry shown in

Fig. 7, the node numbering starts with the lower left-hand corner, as calculated
using FDFD with C-COM4(2,7) (C-COM), and the reference solution
(Reference), for two different angles of incidence (a) & = 0.0°, (b) & = 45°.

slab measuring 0.2 A X 3 A. The size of the computational
domain is 77 A x 21 A. The outer boundary is positioned such
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Fig. 10. Scattered field along I' for plane wave incidence, TM-polarization
(geometry shown in Fig. 7). The node numbering starts with the lower left-hand
corner and proceeds clockwise. Because of symmetry, only filed points along
the upper half of the contour are plotted. Field calculated using FDFD with
C-COM4(2,7) (C-COM) and the reference solution (reference). (a) Magnitude
and (b) phase.

that the separation between it and the conductor is 0.4, as
illustrated in Fig. 9. Fig. 10(a) and (b) shows the magnitude and
phase of the scattered field due to a TM plane wave incidence.
The figures show the scattered field as calculated using the
C-COM method and the reference solution for comparison
at an observation contour I', as calculated using the FDFD
method with C-COM4(2,7). A total of 136 nodes span the
observation contour I'. The numbering of the nodes starts at
the lower left-hand corner and proceeds clockwise. Results are
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Fig. 11.  Surface current density along the surface of a perfectly conducting
slab for the case of broadside incidence, TE-polarization. Because of symmetry,
only half of the surface span is considered. Node 30 corresponds to the middle of
the left-hand-side surface. Nodes increase in number in the clockwise direction.
(a) Magnitude and (b) phase.

only shown for field values on the upper half of the contour due
to the symmetry of the solution. The results are presented for
C-COM4(2,7) and the reference solution. For this and the fol-
lowing experiments, the reference solution is a reflection-free
solution obtained when solving the problem in a domain large
enough, while applying C-COM4(2,7), such that the boundary
reflections are very small.

The same thin plate discussed above, measuring 0.2 A x 3 )\,
is studied under plane TE wave excitation. An identical com-
putational geometry is used for both the scattering structure
and computational domain. Unlike the results presented above
where the field was plotted on an observation contour very close
to the surface of the scatterer, here, we show the surface cur-
rent density. Figs. 11 and 12 show the magnitude and phase of
the surface current density for two different angles of incidence.
Considering the close proximity of the perimeter of the com-
putational domain from the scatterer, we observe a very strong
agreement between the solution obtained using the C-COM and
the reference solution. The strong performance of the C-COM
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Fig. 12.  Surface current density along the surface of a perfectly conducting
slab for the case of end-on incidence, TE-polarization. Because of symmetry,
only half of the surface span is considered. Node 3 corresponds to the middle of
the left-hand-side surface. Nodes increase in number in the clockwise direction.
(a) Magnitude and (b) phase.

solution is especially noticeable when scattered fields impinge
at the computational boundary at or near grazing incidence.

For the two perfectly conducting scatterers chosen as repre-
sentative geometry, the numerical results obtained show a very
strong agreement between the C-COM solution and the refer-
ence solution. Such favorable agreement is achieved despite the
very close proximity of the conductor to the outer boundary. The
C-COM method also demonstrates effectiveness in predicting
solutions with high degree of accuracy even when the solution
is dominated by waves traveling at near-grazing incidence to the
terminal boundary, as was the case for the end-on incidence in
TM- and TE-polarization scattering.

V. CONCLUSION

This paper presented the extension of the C-COM theory for
mesh truncation to the frequency-domain (time-harmonic) sim-
ulation of plane wave scattering by a perfect electric conductor.
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The extension was made possible by implementing the concur-
rent averaging as a matrix operation. The application proce-
dure was presented for the two-dimensional FDFD method. The
extension to three-dimensional simulation follows in a similar
fashion. Numerical experiments were presented validating the
model and proving the robustness and accuracy of this mesh-
truncation procedure. The strength of the C-COM method was
especially demonstrated for waves incident at terminal bound-
aries at near grazing incidence. Highly satisfactory results ob-
tained for all the numerical examples considered in this paper
were obtained without any optimization of the algorithm used
for the boundary operators. This proves the robustness of the
C-COM for general radiation and scattering problems where no
a priori knowledge is available on the nature of the scattered
waves.
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