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Abstract: 

Statistical fluctuations in the eigenvalues of the scattering, impedance and admittance matrices of 2-Port wave-chaotic 
systems are studied experimentally using a chaotic microwave cavity. These fluctuations are universal in that their properties are 
dependent only upon the degree of loss in the cavity. We remove the direct processes introduced by the non-ideally coupled 
driving ports through a matrix-normalization process that involves the radiation-impedance matrix of the two driving ports. We 
find good agreement between the experimentally obtained marginal probability density functions (PDFs) of the eigenvalues of the 
normalized impedance, admittance and scattering matrix and those from Random Matrix Theory (RMT). We also experimentally 
study the evolution of the joint PDF of the eigenphases of the normalized scattering matrix as a function of loss. Experimental 
agreement with the theory by Brouwer and Beenakker for the joint PDF of the magnitude of the eigenvalues of the normalized 
scattering matrix is also shown.      

PACS Number (s) : 05.45.Mt, 03.65.Nk,11.55.-m,03.50.De, 04.30.Nk 
 

I A: Introduction: 
 The scattering of short-wavelength waves inside 
enclosures manifests itself in several fields of physics and 
engineering such as quantum dots [1], atomic nuclei [2], 
acoustic resonators [3, 4], electromagnetic compatibility [5], 
etc. Of particular interest is the case when the ray trajectories 
within the enclosure show chaotic dynamics in the classical 
limit. This interest has spawned the field of “wave chaos” (or 
“quantum chaos”), and has attracted much theoretical and 
experimental work [6, 7] to understand its nature. On account 
of the small wavelength of the scattered waves, as compared 
to the characteristic length-scale of the enclosure, the response 
of these systems exhibit extreme sensitivity to small changes 
in configuration, driving frequency, nature of driving ports, 
ambient conditions such as temperature, etc. Thus, an intimate 
knowledge of the response of any such system for a given 
well-defined stimulus or system configuration will not provide 
any foresight in predicting the response of a similar system 
when the stimulus or system configuration is slightly altered. 
This calls for a statistical approach to quantify the nature of 
such wave-chaotic systems.  

In this regard, Random Matrix Theory (RMT) [8] has 
proved to be an integral tool in predicting universal statistical 
aspects of wave chaotic systems. It has been conjectured that 
in the short-wavelength regime, RMT can be used to model 
wave-chaotic systems. In particular, the statistics of systems 
that show Time-Reversal Symmetry are conjectured to be 
described by the Gaussian Orthogonal Ensemble (GOE) of 
random matrices, while the statistics of systems showing 
Broken Time-Reversal Symmetry are conjectured to be 
described by the  Gaussian Unitary Ensemble (GUE) of 
random matrices. There is also a third random matrix 
ensemble corresponding to certain systems with spin-
interactions (Gaussian Symplectic Ensemble). RMT provides 
a potential framework for uncovering universal statistical 
properties of short-wavelength wave chaotic systems (e.g. 
Ericson fluctuations in nuclear scattering [7, 9] and universal 
conductance fluctuations (UCF) in quantum-transport systems 
[10] ). 

Since the applicability of RMT and the concomitant 
universal statistics is conjectural rather than rigorous, and 
since this conjectured applicability is said to be asymptotic in 
the limit of wavelength small compared to the system size, it 

is important to test the RMT conjecture against results 
obtained for specific real situations. 

Experimentally, however, validating the applicability 
of RMT has always proved challenging. One of the most 
common problems encountered by experimentalists is the 
presence of non-universal, system-specific artifacts introduced 
into the measured data by the experimental apparatus. These 
are generally referred to as the “direct processes”, as opposed 
to the “equilibrated processes” which describe the chaotic 
scattering within the system [11]. A typical example presents 
itself while measuring the statistical fluctuations in the 
scattering of microwaves through cavities with chaotic ray 
dynamics. These fluctuations are studied by exciting the cavity 
through coupled ports and observing the response (reflection 
and transmission) for a given excitation. Generally, it is not 
possible to perfectly couple (ideally match) the ports to the 
cavity at all frequencies. Here by “perfect coupling” we refer 
to the situation in which there is no prompt reflection of a 
wave incident from an incoming channel on a cavity port. 
Thus, such a wave would be entirely transmitted into the 
cavity, and any reflection coefficient measured from that port 
is the result of waves that have entered the cavity, bounced 
around, and subsequently been reflected back toward the port. 
(Subsequently in this section and section I (b), we give a more 
precise definition of perfect coupling in terms of the port 
radiation impedance and the characteristic impedance of the 
incoming channel.) We refer to the deviation from perfect 
coupling as “mismatch”. This mismatch, which is strongly 
determined by the geometry of the port, manifests itself as 
systematic fluctuations in the measured data. The result is that 
the measured data depends on the non-universal, direct 
processes of the ports, as well as the underlying universal, 
equilibrated processes of the chaotic scattering system.  

Several approaches have been formulated to account 
for these direct processes [12, 13, 14] of which the “Poisson 
Kernel” approach introduced by Mello, Pereyra and Seligman 
is of special mention. Based on an information-theoretic 
model, the “Poisson Kernel” characterizes the direct processes 
between the ports and the cavity by the ensemble-averaged 
scattering matrix >><< S

t
. In order to apply this theory to a 

specific real situation, it is thus necessary to obtain a quantity 
that plays the role of the ensemble average >><< S

t
 

appropriate to that specific system. For example, one scheme 
proposed for determining 
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such a surrogate for  for a specific system used 
system configuration averaging. We denote this surrogate for 

 as . Averaging over configurations, 
however, may suffer from excessive statistical error if the 
number of configurations averaged over is insufficiently large. 
Thus, to improve the estimate of the scattering coefficient 
statistics, Refs. [15, 16], which treat one port (scalar ) 
scatterers, make use of an ergodic hypothesis [17, 18] to 
include an additional running average over frequency ranges 
that include many resonances but are sufficiently small that 
the scattering coefficient statistics can be assumed to be nearly 
constant (i.e., a frequency range where the port coupling 
strengths are nearly constant). Using this approach, Refs.[15, 
16] have investigated the universal fluctuations in the 
reflection coefficient of 1-port wave-chaotic microwave 
cavities. This was shown to produce favorable results for 1-
port systems when compared with RMT predictions. We note, 
however, that the analysis is highly dependent on the accuracy 
of the experimentally-obtained , which is prone to 
statistical errors. 
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t
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t

>< S
t

S
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 The situation can become even more complicated 
when dealing with  ports. In the recent 2-port paper, Ref. 
[19], the authors circumvent such problems by taking careful 
steps to ensure that the driving ports are nearly perfectly-
coupled to the cavity in the frequency range where the data is 
analyzed. In doing so, Ref. [19] achieves good agreement 
between the experimental results for the fluctuations in the 
transmission coefficient, and the RMT predictions for time-
reversal-symmetric and for broken-time-reversal-symmetric 
cavities. We note, however, that Ref. [19] is for the case of 
perfectly coupled ports and that it is desirable to also deal with 
arbitrary port couplings. 

N

In Ref. [20, 21] a novel method to characterize the 
direct processes between the cavity and the driving ports was 
introduced. This method, which is motivated by 
electromagnetic-wave propagation inside complex enclosures, 
makes use of impedances to characterize the direct-processes 
rather than the ensemble-averaged scattering matrix as in Ref. 
[12]. For an -port scattering system, the Scattering Matrix N
S
t

 models the scattering region of interest in terms of an 
complex-valued matrix. Specifically, it expresses the 

amplitudes of the  outgoing scattered waves ( ) in terms 
of the  incoming waves ( a

NxN
N b~

N ~ ) at the location of each port 

(i.e., aSb ~~ t
= ). The impedance matrix Z

t
, on the other hand, 

is a quantity which relates the complex voltages (V~ ) at the 

 driving ports to the complex currents (N I~ ) in the  ports 

(i.e. ).  The matrices  and 

N
IZV ~~ t

= S
t

Z
t

 are related through 
the bilinear tran formation, 

 2

s
2/112/1 )()( −− −+= oooo ZZZZZZS

ttttttt
where oZ

t
 is the 

 real, diagonal matrix whose elements are the 
characteristic impedances of the waveguide (or transmission 
line) input channels at the  driving ports. Like 

NxN

N S
t

, Z
t

 is 
also a well-established physical quantity in quantum 
mechanics. Just as the elements of  represent the transition 
probabilities from one state to the other in a quantum 

scattering system, 

S
t

Z
t

 is an electromagnetic analog to 
Wigner’s Reaction Matrix [22], which linearly relates the 
wave function to its normal derivative at the boundary 
separating the scattering region from the outside world.  
 References [20, 21] have shown that the direct 
processes can be quantified by the “radiation impedance” of 
the driving-ports. For a cavity driven by a single port, the 
radiation impedance of the port is that impedance observed at 
the reference plane of the port which retains its coupling 
geometry but has the distant walls of the cavity moved out to 
infinity and an outward radiation condition imposed. 
Experimentally, this can be realized by lining the walls that 
are distant from the port with microwave absorber. The one-
port radiation impedance, denoted ,  is thus a frequency-
dependant, complex scalar quantity which depends only on the 
local structure of the port and is not influenced by the shape of 
the distant cavity boundaries; 

radZ

]Im[]Re[ radradrad ZiZZ += ,where  is the 
“radiation resistance” which quantifies the energy dissipated 
in the far-field of the radiating port, and  is the 
“radiation reactance” which arises from energy stored in the 
near-field of the radiating port. thus presents a non-
statistical experimentally viable way to quantify the direct 
processes in a wave-chaotic system for any given port 
geometry; without resorting to averaging.  

]Re[ radZ

]Im[ radZ

radZ

This “radiation impedance” approach has been used 
successfully by Ref. [23, 24] for a two-dimensional, wave-
chaotic resonator which is driven by a single port. In Ref. [23], 
the authors used the measured radiation impedance of 

the driving port to normalize the measured cavity data 
radZ

Z  and 
recover the universal normalized cavity impedance 

]Re[/])Im[( radrad ZZiZz −= . This normalized 
impedance z  represents the scalar cavity impedance when the 
driving port is perfectly coupled to the cavity (i.e., 

orad ZZ = , where  is the characteristic impedance of the 
transmission line connected to the port). Reference [23] has 
shown that the Probability Density Functions (PDFs) of 

 and  are independent of the geometry of the 
coupling port; but rather depend solely on the degree of 
quantifiable loss in the system. Reference [24] carried forward 
the one-port results of Ref. [23] to relate 

oZ

]Re[z ]Im[z

z  to the normalized 
scattering coefficient )1/()1( +−= zzs , which describes 
the scattering fluctuations in a cavity which is perfectly-
coupled to its driving-port. This expression for  follows 
from classical electromagnetic theory and relates the scattering 
coefficient at the plane of measurement with the load 
impedance [25] on a transmission line. In Refs. [26, 27] a 
similar expression for the normalized scattering coefficient is 
given in terms of Wigner’s Reaction Matrix (

s

K ), i.e.  
)1/()1( iKiKs +−=(  with . The two quantities  

and 
iKz = s

s(   differ in phase by π  radians. This extra phase 
contribution can be easily absorbed into the uniformly-
distributed phase of  (Ref.[24]) thereby yielding identical 
statistical descriptions for  and 

s
s s( .  



Both Refs. [23, 24] have been able to experimentally 
verify several universal statistical properties of z  and , 
which are in good agreement with numerical results from 
Random Matrix Theory. The “radiation impedance” approach 
to characterizing the direct processes in wave-chaotic systems 
has also been independently investigated by Ref. [28] in a 1-
port, three-dimensional, mode-stirred chamber. References 
[20, 21] have also shown that in the limit that the number of 
samples determining the average  goes to infinity, 

thereby making contact with the Poisson Kernel 

approach, where . This 
connection has been experimentally established in Refs. [24, 
29]. 

s

>< S
>=< SSrad

)/()( oradoradrad ZZZZS +−=

 
I B: Extending the “Radiation Impedance” approach to    

2-Port Wave-Chaotic Systems. 
 
 Here, we experimentally extend the “radiation 

impedance” approach of Refs. [20, 21] to two-port chaotic 
cavities. In general, for a N -port system, the radiation 
impedance is now an   complex-valued, symmetric 

matrix (

NXN

radZ
t

).  If the  ports are very far apart, N radZ
t

 is 
diagonal, but we do not assume that here. Reference [21] has 
shown that the measured  impedance matrix of a -

port, wave-chaotic cavity (

NxN N
Z
t

) has a mean-part given by the 

radiation impedance matrix ( radZ
t

) and a universal fluctuating 

part ( zt ), which is scaled by the radiation resistance matrix 
( ]Re[ radZ

t
). Thus, 

.])(Re[])(Re[]Im[ 2/12/1
radradrad ZzZZiZ
ttttt

+=    (1) 

 From (1), we can easily extract zt , 
.])])(Re[Im[(])(Re[ 2/12/1 −− −= radradrad ZZiZZz

ttttt
 (2) 

The normalized scattering matrix  is ,  st

 ,)1)(1( 1−+−=
ttttt zzs                                 (3) 

where  is the  identity matrix. 1
t

NxN
 The normalized scattering matrix  can also be  

obtained from the cavity scattering matrix  and the radiation 

scattering matrix 

st

S
t

radS
t

 by converting these quantities to the 

cavity and radiation impedances, Z
t

and radZ
t

, respectively 
through  

2/112/1 )1)(1( oo ZSSZZ
ttttttt

−−+=  and  
2/112/1 )1)(1( oradradorad ZSSZZ

ttttttt
−−+= ,        (4) 

and by then using Eqs.(2) and (3). The matrix oZ
t

 is a real 
diagonal matrix whose elements are the characteristic 
impedances of the transmission lines connected to the driving 
ports. 

The normalized quantities zt  and  represent the 
impedance and scattering matrix when the ports are 

perfectly coupled to the cavity, i.e., when 

st

N
orad ZZ
tt

= . Since, 

in general, radZ
t

 is a smoothly varying function of frequency 
and of the coupling-port structure, Eqs. (2) and (3) yield the 
perfectly-coupled  (ideally matched) impedance and scattering 
matrix over any arbitrarily large range of frequency and for 
any port geometry.  

Reference [21] predicts that the PDFs of the 
eigenvalues of zt  which are contained in the diagonal matrix 

zt
t
λ , and PDFs of the eigenvalues of  which are contained in 

the diagonal matrix 

st

st
t
λ  are qualitatively similar to the PDFs 

of z  and  in the 1-port case and that they are dependent 
only on the loss-parameter of the cavity. Loss is quantified by 
the expression  [20, 21]. Here, 

s

)/( 22 Qkk nΔ cfk /2π=  is 

the wavenumber for the incoming frequency and  is 
the mean-spacing of the adjacent eigenvalues of the Helmholtz 
operator, , as predicted by the Weyl Formula [30] 
for the closed system. The use of the Weyl Formula here is 
conventionally accepted for lack of a more complete treatment 
which is applicable to open systems or to systems with high 
absorption (as discussed in this paper). The quantity Q 
represents the loaded quality factor of the cavity. The quantity 

 thus represents the ratio of the frequency width 
of the cavity resonances due to distributed losses to the 
average spacing between resonant frequencies. Reference [20] 

also predicts that the variance( )  of the PDFs of 

f 2
nkΔ

22 k+∇

)/( 22 Qkk nΔ

2σ ]Re[ zt
t
λ  

and ]Im[ zt
t
λ  for time-reversal symmetric systems with 

 are related to  through, 1)/( 22 >>Δ Qkk n )/( 22 Qkk nΔ

)/(
11

22
2

]Im[
2

]Re[ Qkk n
zz Δ
==
π

σσ λλ tt
tt            (5) 

This relation has been verified experimentally in Ref. [23] for 
a one-port cavity and will be assumed to hold true for the 2-
port results discussed in this paper for data-sets with 

. For data-sets with , the 
following procedure is employed.  First, we numerically 
generate marginal PDFs of the real and imaginary parts of the 
normalized impedance eigenvalues using random-matrix 
Monte-Carlo simulations with square matrices of size 

5)/( 22 >Δ Qkk n 5)/( 22 <Δ Qkk n

1000=N , and the value of  in the simulations 
ranging from 0.1 to 5 in steps of 0.1. We determine the 
variance ( ) of these numerically generated PDFs and fit 
their dependence on  to a polynomial function 

 of high order. We then determine the 

variance of the PDF of the real part, i.e.  (which is 

equal to the variance of the PDF of the imaginary part 
to good approximation [20, 21, 23]) of the 

experimentally-determined normalized impedance eigenvalues 
and solve the inverse polynomial function 

)/( 22 Qkk nΔ

2σ
)/( 22 Qkk nΔ

))/(( 222 Qkk nΔΘ=σ
2

]Re[ zt
t
λσ

2
]Im[ zt

t
λσ
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)()/( 2
]Re[

122
z

Qkk n t
t
λσ−Θ=Δ  to obtain a unique estimate of 

 corresponding to that experimental data-set. )/( 22 Qkk nΔ
 This paper is organized into the following sections. 
Section II explains the experimental setup and the data 
acquisition process. By using the measured frequency-
dependent radiation impedance matrix, we carry out the 
normalization of the cavity impedance to uncover the 
universally fluctuating zt ; which in turn yields st  and the 
normalized admittance matrix  . Section III is divided into 
four sub-sections and presents our experimental results on the 
universal fluctuations in the eigenvalues of ,

yt

st zt  and yt . 
Firstly, in sub-section III A, the statistical independence of the 
magnitude and phase of the eigenvalues of st  is 
experimentally established. The marginal distributions for the 
magnitude and phase of the eigenvalues of st  are then 
compared with predictions from RMT.  Sub-section III B then 
explores the evolution of the joint PDF of the -eigenphases 
as a function of increasing loss. In sub-section III C, we 
experimentally test the predictions for the joint PDF of 

st

sstt † 
(where † denotes the conjugate transpose) from Ref. [31] as a 
function of cavity loss.  Sub-section III D then shows 
experimental data testing the similarity in the PDFs for the 
eigenvalues of zt  and  and also compares these 
experimentally obtained PDFs with those from RMT. A 
technical issue encountered in these 2-port experiments is the 
presence of non-zero, off-diagonal terms in the measured 

yt

radZ
t

. These terms account for the direct-path processes 
(“cross-talk”) between the two ports and come about because 
of the finite physical separation between the two-ports in the 
experiment during the radiation measurement. The role of 

these non-zero, off-diagonal radZ
t

 terms in determining the 

universal PDFs of zt  is explained in Section IV. Section V 
concludes this paper with a summary of our experimental 
findings.  

 
II: Experimental Setup, Data Acquisition and 

Construction of normalized zt , st  and yt : 

 
 Microwave-cavity resonators with irregular shapes 
(where the classical ray trajectories are chaotic) have proved 
to be a favored test-bed to validate statistical predictions on 
chaotic scattering [7]. In this paper, we present findings on an 
air-filled, quarter bow-tie shaped billiard cavity [Fig.1 (a)] 
driven by two-ports. The cavity is 7.87 mm deep and behaves 
as a two-dimensional resonator when the driving frequency is 
less than 19.05 GHz. The curved walls ensure that the ray 
trajectories are chaotic and that there are only isolated 
classically periodic-orbits [32]. Experimental studies on the 
eigenvalue statistics [33], eigenfunction statistics [34, 35], 1-
port impedance [23] and 1-port scattering statistics [24] as 
well as an impedance-based Hauser-Feschbach-type relation 
[36] have produced good agreement with theoretical 
predictions based on RMT.  
 To set up the investigation, we introduce two driving 
ports [Fig.1(b)] which are placed roughly 20 cm apart, and are 

labeled Port-1 and Port-2 . The ports are located sufficiently 
far away from the side-walls of the cavity so that the near-field 
structure of each port is not altered by the walls. Both ports are 
sections of coaxial transmission lines, where the exposed 
center-conductor extends from the top plate of the cavity and 
makes contact with the bottom plate, injecting current into the 
bottom plate [Fig.1(c)]. The ports are non-identical; the 
diameter of the inner conductor is 2a=1.27 mm for Port-1 and 
2a=0.635 mm for Port-2.  

 
Fig.1: (a) Top view of quarter-bow-tie microwave cavity used for the 
experimental “Cavity Case”. The two perturbations with serrated edges 
are shown as the gray shapes. The small, gray, uniformly-spaced 
rectangles lining the side walls of the cavity represent 2cm-long strips of 
microwave absorber which are used to control the loss in the cavity.(Loss 
Case 0 : 0 strips, Loss Case 1: 16 strips, Loss Case 2: 32 strips).  (b) The 
implementation of the experimental “Radiation Case” is shown. The gray 
lining on the side walls is a homogenous layer of microwave absorber ~ 2 
mm thick. The physical dimensions of the cavity are shown in the 
schematic. The approximate locations of the two driving-ports are also 
shown.  (c) Cross-section view of both driving-ports inside the cavity. The 
cavity is 7.87 mm in depth. The diameter of the inner conductor is 2a 
(=1.27 mm for Port 1; =0.635 mm for Port 2). 

 
As in our previous studies [23, 24], the normalization 

of the measured data is a two-step procedure. The first step, 
what we refer to as the “Cavity Case” involves measuring a 
large ensemble of the full-2x2 scattering matrix 

using an Agilent E8364B Vector 

Network Analyzer. To realize this large ensemble, two 
metallic perturbers (shown as gray solids in Fig.1.(a) ), each of 
typical dimensions 6.5 cm x 4 cm x 0.78 cm are used. The 
perturbers are roughly the order of a wavelength in size at 5 
GHz. The edges of the perturbers are intentionally serrated to 
further randomize the wave scattering within the cavity by 
preventing the formation of standing waves between the 
straight wall segments of the cavity and the edges of the 
perturbations. The perturbers are systematically translated and 
rotated through one hundred different locations within the 
volume of the cavity. Hence each orientation of the two 
perturbers results in a different internal field structure within 
the cavity. Thus we measure one hundred cavity 
configurations all having the same volume, coupling geometry 
for the driving ports, and almost exactly the same cavity 

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

SS
SS

Scav
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conduction loss. For each configuration of the perturbers, S
t

 
is measured as a function of frequency from 3 to 18 GHz in 
16000 equally spaced steps. Thus, an ensemble of 1,600,000 
cavity scattering matrices  is collected. Special care is taken 
not to bring the perturbers too close to the ports so as not to 
alter the near-field structure of the ports.  

S
t

The dominant loss mechanism in the empty cavity is 
due to ohmic losses in the broad top and bottom plates of the 
cavity. The fluctuations in loss from mode-to-mode are small 
and come from differences in field configurations around the 
side walls. The degree of loss can be increased in a controlled 
manner by partially lining the inner side-walls with 2 cm-long 
strips of microwave absorber [Fig.1(a)] having uniform 
spacing. Three lossy Cavity Cases – labeled “Loss Case 0” : 
with no absorbing strips, “Loss Case 1” : with 16 absorbing 
strips and “Loss Case 2” : with 32 absorbing strips, are 
measured. Along with frequency, the three “loss cases” lead to 
an experimental control over the value of  from 
0.9 to 28. 

)/( 22 Qkk nΔ

 

   
Fig.2: (Color Online) Spectral correlation function 
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of the measured cavity reflection coefficient. Each red-circle symbol 
represents the correlation between the one hundred different renditions 

of the Loss Case 0 cavity |S11| at frequency with the one 

hundred different renditions of the same cavity |S

GHzfo 3=
11| at frequency 

ffo δ+ .  The mean mode-spacing is determined to be 

. Inset: The PDF of the raw-data transmission 

coefficient of the two ports ( ) is shown for Loss Case 0 cavity 

from 3 to 18 GHz. Note the broad range of coupling values present in the 
un-normalized data. 

MHzfWeyl 42≈Δ

)( coupTP

 
 

To make a quantitative assessment of the degree of 
“non-ideal coupling” (mismatching) of the two ports with the 
cavity, we compute the transmission coefficient  of the 
ports [16] as a function of frequency from 3 to 18 GHz. We 
define 

coupT

2|ˆ|1
><

−=
ScoupT λ , where are the two complex 

scalar eigenvalues of . Here,  is the average 

over the measured ensemble of  at each frequency. 

><S
tλ̂

>< S
t

>< S
t

S
t

)0(1=coupT represents the case when the ports are perfectly 
matched (mismatched) to the cavity. The inset in Fig.2 shows 
the PDF of the measured   (i.e. ) for a Loss 
Case 0 cavity from 3 to 18 GHz. The PDF is fairly widely 
spread over the range 0 to 1 with a mean value of ~0.7, and 
with a standard deviation of ~0.3. An analysis of the coupling 
and loss for the scattering matrix in similar microwave cavities 
is presented in Ref. [ 37]. 

coupT )( coupTP

The degree to which the two perturbations produce a 
change in the internal field structure of the cavity can be 
qualitatively inferred by looking at the frequency correlations 
in the measured S

t
 data. In Fig. 2 for Loss Case 0, the 

frequency correlation function 

)|(|)|(|
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with GHzfo 3=  is shown as the red circles. The averaging 
>< ...  is done over the one hundred different configurations 

of the perturbations inside the cavity, and )|(| 11 fSσ  represents 
the standard deviation of the one hundred different 
measurements for cavity  at frequency . The 

frequency 

|)(| 11 fS f
GHzfo 3=  represents the lowest of the 

frequencies that we experimentally tested; and therefore the 
worst-case scenario for performing the approximation to true 
ensemble averaging. Based on the area and perimeter of the 
cavity, the Weyl formula [30] yields a typical mean-spacing of 

MHzfWeyl 42≅Δ  between the eigenmodes of the cavity 

around . From Fig.2, it is observed that the experimentally 
determined correlations in frequency die off within one mean-
spacing 

of

WeylfΔ . However, the correlation function in Fig.2 is 
similar to those obtained under local, rather than global, 
perturbations of the system [38]. We have previously 
identified the fact that short ray orbits inside the cavity will 
produce systematic deviations of the finite ensemble average 
from a true ensemble average [20]. We therefore invoke 
ergodicity and also employ frequency averaging of the data. 
Since the frequency averaging ranges that we use below are 
very much larger than WeylfΔ  (typically by a factor of ~20), 
this confirms that our frequency (in addition to perturber 
configuration averaging) is an effective means of 
approximating a true ensemble average. 
 The second step of our normalization procedure is 
what we refer to as the “Radiation Case” [Fig.1(b)]. In this 
step, the side-walls of the cavity are completely lined with ~ 2 
mm thick microwave absorber (ARC-Tech DD 10017) which 
gives about 20-25 dB reflection loss between 3 and 18 GHz 
for normal incidence. The perturbers are removed so as not to 
produce any reflections back to the ports. Port-1 and Port-2 are 
left untouched- so that they retain the same coupling geometry 
as in the “Cavity Case”. The radiation measurement now 
involves measuring the resultant 2x2-scattering matrix, which 

we label , from 3 to 18 GHz with ⎥
⎦

⎤
⎢
⎣

⎡
=

radrad

radrad
rad SS
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the same 16000 frequency steps as in the “Cavity Case”. The 
microwave absorber serves to severely suppress any 
reflections from the side-walls. This effectively simulates the 
situation of the side-walls of the cavity being moved out to 
infinity (radiation-boundary condition). The off-diagonal 
terms in radS

t
 correspond to direct-path processes between the 

two ports. The contribution of these terms has been taken into 
account in the analysis and results that follow (Section III 
(A,B,C,D)). The hazards associated with ignoring these terms 
in the normalization process deserves special mention and are 
discussed in Section IV. 
 Having measured the ensemble of cavity S

t
 and the 

corresponding radiation radS
t

, we convert these quantities into 

the corresponding cavity impedance Z
t

 and radiation 
impedance radZ

t
 matrices respectively using Eq. (4), where 

each port has a single operating mode with characteristic 
impedance of  over the frequency range of the 
experiment. 

Ω50

Every measured Z
t

 is then normalized with the 

corresponding measured radZ
t

 at the same frequency using 

Eq. (2). Having obtained the normalized impedance matrix zt , 
it is then converted to the normalized scattering matrix st  
using Eq. (3); and the normalized admittance matrix 

(yt 1−= zy tt
).  These normalized quantities represent the 

corresponding electromagnetic response of the chaotic-cavity 
in the limit of perfect coupling between the driving ports and 
the cavity over the entire frequency range of the experiment 
from 3 to 18 GHz.  

 
III: Experimental Results: 

 
In this section, we give our experimental results on 

the universal statistical fluctuations in the eigenvalues of st , 
zt  and . Each 2x2 , yt st zt  or  yields two complex 
eigenvalues – which possess certain universal statistical 
properties in their marginal and joint PDFs.  

yt

III A: Statistical Independence of || stλ  and 
stλ

φ  

Having obtained the ensemble of normalized st , we 
diagonalize  using an eigenvalue decomposition, st

1−= sss VVs ttt
tttt λ ;where, sVt

t
 is the 2x2 eigenvector matrix of 

; and st st
t
λ  is a diagonal matrix containing the two complex 

eigenvalues of . In the time-reversal symmetric, lossless 

limit,  is unitary. This dictates that 

st

st sVt
t

 be an orthogonal 

matrix and ⎥
⎦

⎤
⎢
⎣

⎡
=

]~[0
0]~[~

2

1

φ
φλ

iExp
iExp

st
t

. In the presence 

of loss, sVt
t

 is no longer orthogonal and  now has complex, 

sub-unitary eigenvalues, i.e. , 

where 

st

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

||0
0||

2

1
φ

φ

λ
λ

λ i

i

s e
e

t

t

1|| 2,1 <λ . Reference [24] has shown that for a 1-port 
system, the magnitudes and phases of the normalized 1-port 
scattering coefficient  are statistically independent. The 
independence was shown to be extremely robust and is 
unaffected by the presence of loss. For a two-port setup, as in 
the experiments presented in this paper, this would imply 
statistical independence of the magnitude and phases of the 
eigenvalues of 

s

st .  
  

 
 

Fig.3: (Color Online) (a) The density of eigenvalues of  in the complex 

plane is shown for frequencies in the range 7.6 GHz to 8.1 GHz for Loss 
Case 0. The gray-scale code white, light gray, dark gray, black are in 
ascending density order.  (b) Angular slices ( ) with the symbols 
(stars, hexagons, circles, squares) indicate regions where the PDF of |  
of the data in (a) is calculated and shown. Observe that the four PDFs are 
nearly identical. The blue solid line is the numerical prediction from 
Random Matrix Theory using the loss parameter . 

The red error bars indicate the statistical binning error in the histograms. 
(c)  Experimental histogram approximations to the PDF of the eigenphase 

of 

stλ̂

o90
ˆ| stλ

2.1)/( 22 =Δ Qkk n

st  (i.e.,
stλ

φ ˆ ). Two annular rings defined by  and 

 of the data in (a) are taken and the histograms of the 

phase of the points within these regions are shown as the solid diamonds 
and hollow triangles respectively.  The red error bars indicate typical 
statistical binning errors for the data. The blue solid line is a uniform 
distribution (

35.0|ˆ|0 ≤≤ stλ

8.0|ˆ|35.0 ≤≤ stλ

)2/(1)( πφ =P ). 

 
To test this hypothesis, the two complex eigenvalues 

of the st  ensemble are grouped into one list, which we shall 

refer to as “ ”. We observe that grouping the two 
eigenvalues together as opposed to randomly choosing one of 
the two eigenvalues does not change the statistical properties 
of the results that follow. Figure 3 (a) shows a plot in the 
complex plane of the eigenvalue density for a representative 
set of measured 

stλ̂

st  ranging between 7.6 to 8.1 GHz where the 
loss-parameter is roughly constant. The gray-scale level at any 
point in Fig.3(a) indicates the number of points for 
{  that lies within a local rectangular region 
of size 0.01 x 0.01. Next, angular slices which subtend a polar-
angle of 

]}ˆIm[],ˆRe[ ss tt λλ

2/π  are taken and histogram approximations to the 

 6
PDF of  of the points lying inside each of the four slices |ˆ| stλ



are computed. This is shown by the stars, hexagons, circles 
and squares in Fig. 3(b). It can be observed that the PDF 
approximations are essentially identical and independent of 
the angular-slice. By grouping the real part of the eigenvalues 
of zt  in to one list and computing its variance (i.e. 2

]ˆRe[ ztλ
σ ), 

we solve the inverse polynomial n 
)()/( 2

]ˆRe[
122

z
Qkk n tλσ−Θ=Δ  to yield an estimate of 

 this data set. The blue solid 
l RMT prediction [39] which is 

computed using a single value of 2.1)/( 22 =Δ Qkk n . The 
red error bars in Fig. 3(b) which f the 
typical statistical binning error of the experimental histograms 
show that the data agrees well with the numerical RMT PDF.  

In Fig.3(c), the histogram approximations of the 
phase of the points lying within two-annular rings defined by

functio

1.02.1)/( 22 ±=Δ Qkk n  
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for
line shows the numerica

 

are representative o

35.0|ˆ|0 ≤≤ stλ (solid diamonds) and 

8. (hollow triangles) are shown. A nearly 
 is obtained for both cases indicating that 

the PDF of the phase of stλ̂  is independent of the radius of the 
annular ring. Also show n blue is the uniform distribution 
with )2/(1)(

0|ˆ|35.0 ≤≤ stλ
uniform distribution

n i
πφ =P . Figure 3 thus supports the hypothesis 

that t d phase of the eigenvalues of she magnitude an
t

 are 
statistically independent of each other and that the eigen- ase 
of st  is uniformly distributed from 0  to 

ph
π2 . 

III B: Joint PDFs of eigenphases of st . 
 Section III A has established the uniform distribution 

 the mof arginal PDF of the eigenphases of s  Here we 
explore the statistical inter-relationships between the two 
eigenphases of st  by looking at their joint PDFs i.e., 

),( 21

t
.

φφP . In the lossless limit the eigenvalues of st  are of 
unit mod us and their marginal distribution is un orm in 

g the unit-circle. Reference [8] has shown that the 
joint PDF of the eigenphases 1

ul if

 In order to make comparisons of the data with 
numerical computations from RMT, we transform the 
eigenphases  1φ  and 2φ  to 1κ  and 2κ , as follows, 

22

12211 )(2
φκ

φφππφφκ
=

−+−−= H
               (6) 

where  is the Heaviside step function ()(xH 0)( =xH  for 
0<x ; 1)( =xH  for ). This transformation of 

variables has the effect of making 

0>x
1κ  and 2κ statistically 

independent, with all the correlation information between 1φ  

and 2φ  being contained in 1κ ; and 2κ  being uniformly 
distributed (as shown in Fig.3(c)). In the lossless case, it can 
be easily deduced from , that βφφφφ ||),( 21

21
ii eeP −∝

4/)2/()( 11 κκ CosP =  for 1=β . 
  

 
Fig.4: (Color Online) (a) The joint PDF ( ),( 21 κκP ) of the transformed 

eigenphases 1κ  and 2κ  for Loss Case 0 (triangles: left), Loss Case 1 
(circles: center) and Loss Case 2 (stars: right) in the frequency range of 
10.4-11.7 GHz. The gray-scale code white, light gray, dark gray, black are 

in ascending density order. (b) Marginal PDFs for 1κ  (Loss Case 0 
(triangles: left), Loss Case 1 (circles: center) and Loss Case 2 (stars: 
right)) of the data shown in the top row. The dashed red line is the 
lossless prediction 4/)2/()( 11 κκ CosP = . The blue solid lines are 

the numerical RMT prediction for )( 1κP  with =1.6 (left); 

5.7 (center) and 14.5 (right). 
)/( 22 Qkk nΔ

phase alon
φ  and 2φ , shows a clear anti-

correlation, i.e. βφφφφ ||),( 2
1

ii eeP −∝ , where 
)2(1=

1
2

β  for a time-re  system. In 
less GOE case this anti-correlation is 

216.021 −>≅<

versal(broken) GOE(GUE)
the loss

φφ , where πφπ ≤≤− 2,1  [21]. As losses 

genvalues of 
t

nger confined to 
move along the unit-circle; but rathe  are distributed inside the 
unit circle in a manner dependent pon the loss in the system 
(as was shown in Fig.3(a)).  The sub-unitary modulus of the 
eigenvalues thus presents an extra degree of freedom for 
eigenvalue avoidance, hence we expect a reduced anti-
correlation of the eigenphases as the losses increase. To our 
knowledge, there exists no analytic formula for the evolution 
of the joint PDF of the eigenphases of st  as a function of loss. 
In the following paragraphs, we thus compare our 
experimental results for the joint  PDF of the eigenphases of 
st  with  numerical computations of results from RMT [39]. 

are introduced, the ei s
 
The top row of Fig.4 shows the density plots of 1κ  

and 2κ  for the three different loss-cases (Loss-Case 0: 
triangles, Loss-Case 1: circles, Loss-Case 2: stars) in the 
frequency range of 10.4-11.7 GHz. This corresponds to 

=Δ )/( 22 Qkk n 1.06.1 ± , and1.07.5 ± 1.05.14 ±  
respectively. For the data set represented by the triangles, the 
value of  was determined by computing the 

variance of the real part of the grouped eigenvalues of 

)/( 22 Qkk nΔ
zt (i.e. 

) and solving the inverse polynomial function 

. For the data sets represented 

2
]ˆRe[ ztλ

σ

)()/( 2
]ˆRe[

122

z
Qkk n tλσ−Θ=Δ

 are no lo

u
r



by the circles and stars, the value of  was 
determined by computing the variance of the real part of the 
grouped eigenvalues of 

)/( 22 Qkk nΔ

zt  and Eq.(5). As the plots indicate, 
the statistical variation is entirely contained in the 1κ  

direction, with 2κ being nearly uniformly distributed. The 
gray-scale on the plots indicates the number of points for 
{ 1κ , 2κ } which lie within a local rectangular region of size 
0.01 x 0.01. The corresponding anti-correlation of the 
eigenphases 

15.0,16.0,17.0, 21 −−−>≅< φφ ( πφπ ≤≤− 2,1 ) for 
the triangles, circles and stars respectively. 
 The bottom row of Fig. 4 shows histogram 
approximations to the Marginal PDFs of 1κ  for all three cases 
of loss (Loss-Case 0: triangles, Loss-Case 1: circles, Loss-
Case 2: stars) for the data shown in the top row. The blue solid 
line is the numerical RMT computation for )( 1κP  which is 
based upon the loss parameters stated above. The red dashed-
line is the predicted PDF of 1κ  in the lossless case. The red 
error-bars indicate the typical statistical binning error for the 
experimental PDF histograms. The agreement between the 
experimentally determined )( 1κP  (symbols) and the 

numerically generated )( 1κP (blue trace) is good and well 
within the error-estimates. We observe that as the losses 
increase, the histograms for )( 1κP  tends to grow 
progressively wider and develop smooth tails - which results 
in a reduced anti-correlation between 1φ  and 2φ , as expected. 

III C: Joint PDF of eigenvalues of sstt †
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We now consider the joint PDF of the eigenvalu s of e
sstt † , where † denotes the conjugate transpose. Since sstt † is 

Hermitian, its eigenvalues are purely real. The matrix sstt † is 
of significant interest in the quantum-transport community as 
it determines the conductance fluctuations of ballistic 
quantum-dots in the presence of dephasing/loss. Owing to the 
analogy between the time-independent Schrödinger equation 
and the two-dimensional Helmholtz equation, the microwave 
billiard experiment presents itself as an ideal platform to test 
statistical theories for these quantum fluctuations without the 
complicating effects of thermal smearing [40] and Coulomb 
interactions, as discussed in Ref. [41].  

Models have been introduced to quantify the loss of 
quantum phase coherence (dephasing) of transport electrons in 
quantum dots [42, 43, 44, 45]. These models generally utilize 
a fictitious lead attached to the dot that has a number of 
channels  each with transparency . Electrons that enter 
one of the channels of this lead are re-injected into the dot 
with a phase that is uncorrelated with their initial phase, and 
there is no net current through the fictitious lead. An 
alternative model of electron transport employs a uniform 
imaginary term in the electron potential [46, 47], leading to 
loss of probability density with time, similar to the loss of 
microwave energy in a cavity due to uniformly distributed 
losses in the walls and lids. As far as the conductance is 
concerned, it was shown that these two models are equivalent 
in the limit when the number of channels in the dephasing lead 

φN φΓ

∞→φN  and 0→Γφ , with the product φφγ Γ= N  
remaining finite [31, 43, 48]. In this case, the dephasing 
parameter γ  is equivalent to a loss parameter describing the 
strength of uniformly distributed losses in the system. Other 
models have been proposed that consider parasitic channels 
[43, 49] or an “absorbing patch” or “absorbing mirror” [50] to 
describe losses in a microwave cavity. Here we examine the 
predictions of Brouwer and Beenakker using the dephasing 
lead model in the limit mentioned above. In this case the 
dephasing parameter γ  is treated as a loss parameter 
describing fairly uniformly distributed losses in our 
microwave cavity, and is found to be proportional to the loss 
parameter  that we introduced in this and other 
publications [23, 24, 41, 51]. 

)/( 22 Qkk nΔ

 Reference [31] has shown that the eigenvalues of 
sstt † can be denoted as 11 T−  and  (where  and  

determine the absorption strength of this fictitious port) with 
the statistical properties of  and  dependent on the 

parameter 

21 T− 1T 2T

1T 2T
γ . When 0=γ ,  and  equal zero and 1T 2T st  is 

unitary. As γ  increases,  and  migrate towards 1.  
Equation 17(a) (Eq.(7) below) and Eq.17(b) of Ref. [31] are 
exact analytic expressions for the joint PDF of  and  in 
terms of 

1T 2T

1T 2T
γ  for both the GOE and GUE cases respectively. At 

all values of γ , the analytic expression for 

);,( 21 γTTP shows strong anti-correlation between  and 

 [31], 
1T

2T

)).66182424(

)2466)((
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1

);,(

32
21

2
21

2
21

1
2

1
1

4
2

4
1

21

γγγγ

γγγγ

γγγγ

γ

γγ

γγ

γγ

++++−+

+++−+−

++−−+−

=

−−−−

eeTT

eeTT

eeTTTTExpTT

TTP
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For our experiment, once the ensemble of st  has 
been obtained,   and  can be easily determined by 
computing the eigenvalues of 

1T 2T
sstt †. In Fig. 5, contour density 

plots of is shown for the Loss Case 0 (Fig. 5(a) : 
3.2-4.2 GHz) and Loss Case 0 (Fig. 5(b): 13.5-14.5 GHz). 
This corresponds to  values of 

),( 21 TTP

)/( 22 Qkk nΔ 1.01±  for Fig. 

5(a) and 1.09.2 ±  for Fig. 5(b). These values of 
 are determined from estimating the variance of 

the real part of the grouped eigenvalues of 

)/( 22 Qkk nΔ

zt (i.e. ) and 

solving the inverse polynomial function 
 for both data sets. The color-

scale level indicates the number of points that lie in a local 
rectangular region of size 0.01 x 0.01 for Fig. 5(a) and 0.005 x 
0.005 for Fig.5(b) (note the change in scales for the plots). We 
observe that as losses increase the  cluster of 1T  and 2T  
values which are centered around ~0.75 for Fig. 5(a) migrates 

2
]ˆRe[ ztλ

σ

)()/( 2
]ˆRe[

122

z
Qkk n tλσ−Θ=Δ



towards values of  and  approaching 1 (Fig. 5(b)). We 

also observe a strong anti-correlation in for 

. This anti-correlation is manifested in all the data 

measured at varying degrees of loss from =0.9 
to 28. 

1T 2T
),( 21 TTP

21 TT =

)/( 22 Qkk nΔ

  

 
Fig.5: (Color Online) The experimental joint PDF of  and  (i.e., 

) for Loss Case 0: 3.2-4.2 GHz (a) and 13.5-14.5 GHz (b). The 
color codes blue, green, yellow and red are in ascending density order. 
The black contours are theoretical predictions for obtained 

from Eq. 7 for 

1T 2T
),( 21 TTP

);,( 21 γTTP
4.12=γ  (a) and 5.36=γ (b). 

  
To estimate the value of γ  for our experimental data 

sets, we derive an analytic expression for  in terms of 〉〈T γ  
from Eq. (7) [41],  

)))2/()2))2(2((2

)())2(22(4)1(4((
4
1

2/ γξγγ

γξγγγ
γ

γγ

γγγγ

−−−+−

−+−−+−−=〉〈 −

ee

eeeeT  (8) 

where ∫
∞

−

−

−=
z

t

dt
t

ez)(ξ  is the exponential integral function. 

By determining the value of  from the measured data set, 
Eq.(8) then uniquely determines the corresponding value of 

〉〈T

γ ( 〉〈≡ Tγ ). This approach yields values of 

1.04.12 ±=〉〈Tγ  and 1.05.36 ±=〉〈Tγ   for the data in 
Fig. 5(a) and Fig. 5(b), respectively. Using these values of 

〉〈Tγ , we plot the analytic contour curves defined by Eq. (7) 
for the two loss cases, shown as the solid black lines in Fig. 5. 
The theoretical curves reflect the same number of contour 
levels shown in the data.  We observe relatively good 
agreement between the theoretical prediction of Ref. [31] and 
the experimental data. This agreement between the 
experimental data and the theoretical prediction is also 
observed to extend over other loss-cases and frequency ranges.  
Comparing the value of  from each experimental 

data set with the corresponding value of 

)/( 22 Qkk nΔ

〉〈Tγ , we empirically 

determine a linear relation between  and )/( 22 Qkk nΔ γ , i.e 

 using 70 points for )/()1.05.12( 22 Qkk nΔ±=γ 〉〈Tγ  
between ~11 and ~300 [41].  

 
III D: Marginal PDFs of eigenvalues of  zt  and yt : 

In this section we determine the marginal PDFs of the 
eigenvalues of the normalized impedance zt  and normalized 
admittance yt . It has been theorized in [27] that these two 
quantities have identical distributions for their eigenvalues. 
References [20, 21] show that attaching an arbitrary lossless 
two-port network at the interface between the plane of 
measurement, and the cavity does not alter the statistics of zt . 
If we now assume that this lossless two-port is a transmission 
line with an electrical-length equal to one-quarter wavelength 
at the driving frequency, then the lossless two-port acts as an 
“impedance inverter” [25] thereby presenting a cavity 
admittance at the plane of measurement. This similarity in the 
statistical description of zt  and yt  is predicted to be extremely 
robust and independent of loss in the cavity, coupling, driving 
frequency, etc. 

 

 
Fig.6: (Color Online) PDFs for the real (a) and imaginary (b) parts of the 

grouped eigenvalues of the normalized cavity impedance  (hollow 
stars : Loss Case 0; hollow circles : Loss Case 1; hollow triangles : Loss 
Case 2) in the frequency range of 10.5-12 GHz. The PDFs for the real (a) 
and imaginary (b) parts of the grouped eigenvalues of the normalized 

cavity admittance  (solid stars : Loss Case 0; solid circles : Loss Case 

1; solid triangles : Loss Case 2) in the frequency range of 10.5-12 GHz are 
also shown. The red error bars indicate the typical statistical binning 
error of the data. Also shown are the single parameter, simultaneous fits 
for both impedance and admittance PDFs (blue solid lines), where the loss 
parameter  is obtained from the variance of the data in (a). 

ztλ̂

ytλ̂

)/( 22 Qkk nΔ
 
For our experimental test of this prediction, we 

consider the three loss cases, Loss Case 0, 1 and 2, in the 
frequency range 10.5-12GHz. By an eigenvalue 
decomposition, each zt  and  matrix yields two complex 

eigenvalues, which we group together to form  and  
respectively. We observe that grouping the two eigenvalues 
together as opposed to randomly considering one of the two 
eigenvalues separately does not alter the statistical results that 

follow. Histograms of the real and imaginary parts of  and 

yt

ztλ̂ ytλ̂

ztλ̂
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ytλ̂  are plotted in Fig. 6. The hollow stars, circles and 
triangles in Fig.6(a) (Fig.6(b)) correspond to the histogram 

approximations of the PDF of  (  ) for Loss 
case 0, 1 and 2 respectively. The evolution of these PDFs for 

 and  with increasing loss, are in qualitative 
agreement with the description given in Ref. [21]. As losses 

increase, we observe that the PDFs of   shifts from 

being peaked at ~ 0.6 (Loss Case 0) to developing a 

Gaussian-type distribution that peaks near ~1 (Loss 
Case 2). While in Fig. 6(b), as losses increase, the PDFs lose 
their long tails and become sharper. The solid stars, circles and 
triangles in Fig. 6(a) (Fig. 6(b)) correspond to the histogram 
approximations of the PDF of  ( ) for Loss 
case 0, Loss Case 1 and Loss Case 2 respectively. The 

agreement between the PDF approximations for  and 

(  and ) is good for all the three loss 
cases. The red error bars are representative of the statistical 
error introduced from the binning of the data in the 
histograms. By computing the variance of the PDFs for 

 and by using the inverse polynomial function 

, we obtain a loss parameter of 

 (Loss Case 0-stars); From the 

variance of the PDFs for  and by Eq. (5), we obtain a 

loss parameter of  (Loss Case 1-

circles) and  (Loss Case 2-
triangles). Using these loss parameter values, a Monte Carlo 
RMT computation [39] yields the solid blue lines which 
simultaneously fit the data shown in both Fig. 6(a) and Fig. 
6(b) for the three loss cases. The agreement between the 
experimentally observed values and the RMT result are in 
good agreement for all three cases and within the bounds of 
the error bars.  

]ˆRe[ ztλ ]ˆIm[ ztλ

]ˆRe[ ztλ ]ˆIm[ ztλ

]ˆRe[ ztλ
]ˆRe[ ztλ

]ˆRe[ ztλ

]ˆRe[ ytλ ]ˆIm[ ytλ

]ˆRe[ ztλ
]ˆRe[ ytλ ]ˆIm[ ztλ ]ˆIm[ ytλ

]ˆRe[ ztλ
)()/( 2

]ˆRe[
122

z
Qkk n tλσ−Θ=Δ

1.09.1)/( 22 ±=Δ Qkk n

]ˆRe[ ztλ
1.03.6)/( 22 ±=Δ Qkk n

1.016)/( 22 ±=Δ Qkk n

 

 
 

Fig.7: (Color Online) The variance of (blue squares), ]  

(green hexagons);  (red stars) and  (black circles) 

distributions are shown as a function of frequency from 6 to 18 GHz for 
Loss Case 0. The agreement between these four quantities is good and 
robust over the entire frequency range despite the change in cavity Q. 

]ˆRe[ ztλ ˆRe[ ytλ

]ˆIm[ ztλ ]ˆIm[ ytλ

 
We observe that there is a robust agreement between 

the distributions for  and  as well as between 

 and  over a broad range of frequencies, 
coupling conditions and loss. To highlight this robust nature, 

in Fig. 7, we plot the variance of  (blue squares), 

 (green hexagons),  (red stars) and  
(black circles) for a Loss Case 0 cavity measurement. Each 
symbol corresponds to a 1 GHz wide sliding window that 
steps every 500 MHz over the frequency range from 6 to 18 
GHz. It can be seen that the four symbols closely overlap each 
other over the entire frequency range.  The agreement between 
the symbols (as predicted by Ref. [20, 21, 27]) is remarkable 
despite the variation in coupling, frequency and loss (which 
varies from  ~ 1 to 3.5 over this frequency 
range) within the cavity.  

]ˆRe[ ztλ ]ˆRe[ ytλ

]ˆIm[ ztλ ]ˆIm[ ytλ

]ˆRe[ ztλ
]ˆRe[ ytλ ]ˆIm[ ztλ ]ˆIm[ ytλ

)/( 22 Qkk nΔ

 
 

IV: Importance of the Off-Diagonal  Radiation Elements 
in radZ

t
 

The “radiation impedance” approach to filter out the 
direct processes involved in a chaotic scattering experiment 
relies on the accuracy of the measured radiation impedance 
matrix. This section explains a key technical issue faced while 
experimentally measuring the radiation impedance matrix of 
the driving ports; specifically, the presence of non-zero, off-
diagonal terms in the measured radiation impedance matrix. 

The conjecture that the statistical properties of real-
world, physically realizable, wave-chaotic scattering systems 
can be modeled by an ensemble of large matrices with random 
elements (governed by certain system symmetries) is 
applicable only in the semi-classical or short wavelength limit. 
For the purpose of this conjecture, in the presence of ports, a 
consistent definition of the short wavelength limit is that, 
when taking this limit, the size of the ports connecting to the 
cavity remain constant in units of wavelength. With this 
definition of the limit, the ratio of the distance between the 
ports to their size approaches infinity. Thus radZ

t
 becomes 

diagonal and approaches a constant at short wavelength. 
The conjecture that RMT describes the scattering 

properties in a specific case assumes that, in the short 
wavelength limit, rays entering the cavity bounce many times 
before leaving (i.e., they experience the chaotic dynamics). 
With the above definition of the short wavelength limit of the 
ports, this would be the case since the fraction of power 
reflected back to a port via short (e.g., one or two bounce) 
paths approaches zero. At finite wavelength, however, it can 
be anticipated that there could be noticeable deviations from 
the RMT predictions and that these would be associated with 
short ray paths. In our experimental determinations of radZ

t
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we have effectively eliminated the largest source of such non-
universal behavior, namely, the short ray paths that go directly 
between ports 1 and 2. This is the case because these ray paths 
are already included in our experimental radZ

t
. 

In particular, lining the inner walls of the cavity with 
microwave absorber for the “Radiation Case” of the 
experiment, serves to essentially eliminate reflections off the 
side-walls, but plays no role in suppressing the direct-path 
interaction (cross-talk) between the two ports. This cross-talk 
is manifested primarily as non-zero, off-diagonal terms in the 
measured radZ

t
 with enhanced frequency dependence relative 

to the one-port case.  
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Fig.8: (Color Online) Magnitude of the elements of the measured 
radiation impedance matrix are shown as a function of frequency from 3 

to 18 GHz for the setup in Fig.1 (b,c). Inset: PDF of  for the 
Loss Case 0 cavity in the frequency range 4-5 GHz, which is obtained by 
considering the full 2x2 radiation impedance matrix (stars) and by 
considering only the contribution of the diagonal elements of the 
radiation impedance matrix (circles). The blue solid line is the RMT 

numerical prediction for =1 which is obtained from the 

variance of the data represented by the stars. 

]ˆIm[ ztλ

)/( 22 Qkk nΔ

 
Figure 8 shows the magnitudes of the elements of the 

radiation impedance matrix radZ
t

 for the two-port setup 
shown in Fig. 1(b). Frequency ranges where there is 
significant cross-talk between the two ports are manifested as 
large values of . Note the complicated 

structure of the measured elements of 

|||| 1221 radrad ZZ =

radZ
t

. 
To highlight the contribution of short ray paths, the 

inset of Fig. 8, shows the PDF of the eigenvalues of the 
normalized impedance for two scenarios of the Loss Case 0 
cavity in the 4-5 GHz frequency range.  The circles represent 

the PDF of  that is obtained by setting the off-
diagonal terms of the measured radiation impedance matrix to 

zero. The solid stars however, represent the PDF of  
which is obtained by considering 

]ˆIm[ ztλ

]ˆIm[ ztλ
all the elements of the 

measured radiation impedance matrix during the 
normalization process (Eq. (2)) to obtain zt . The red error 
bars are representative of the statistical error introduced from 

the binning of the data in the histograms indicated by the solid 
stars. We observe a clear discrepancy between the two curves 
and also note that the PDF represented by the circles does not 

peak at 0. Using the variance of the measured  (stars) 
and the inverse polynomial function 

, we obtain a loss parameter 

value of  for this frequency range. We 

use this value to generate the PDF of  using Random 
Matrix Monte Carlo simulation [39]. The resultant numerical 
prediction is shown as the solid blue line. We observe good 
agreement between the numerical RMT prediction and the 

experimentally determined PDF of  by considering 
the full 2x2 radiation impedance matrix. Our choice of the 4-5 
GHz range is motivated by the fact that in this range, the ratio 
of  is the largest.  This result establishes 

the importance of off-diagonal terms in 

]ˆIm[ ztλ

)()/( 2
]ˆIm[

122

z
Qkk n tλσ−Θ=Δ

1.01)/( 22 ±=Δ Qkk n

]ˆIm[ ztλ

]ˆIm[ ztλ

||/|| 2221 radrad ZZ

radZ
t

, and helps to 
validate our approach to removing short-path direct processes 
between the ports. 
 

V Summary: 
 The results discussed in this paper are meant to 
provide conclusive experimental evidence in support of the 
“radiation impedance” normalization process introduced in 
Ref. [21] for multiple-port, wave-chaotic cavities. The close 
agreement between the experimentally determined PDFs and 
those generated numerically from RMT, support the use of 
RMT to model statistical aspects of real-world, semi-classical 
wave-chaotic systems. This paper is a natural two-port 
extension of the one-port experimental results of Ref. [23, 24].  
The extension to two-ports makes these results of much 
broader appeal to other fields of physics and engineering 
where wave-transport through complex, disordered media is of 
interest. 
 We have shown that the full 2x2 radiation impedance 
matrix of the two-driving ports can accurately quantify the 
non-ideal and system-specific coupling details between the 
cavity and the ports as well as the cross-talk between ports, 
over any frequency range. Hence, given our experimentally-
measured, non-ideally coupled cavity data, this normalization 
procedure allows us to retrieve the universal statistical 
fluctuations of wave-chaotic systems which are found only in 
the limit of perfect coupling. We have experimentally tested 
the evolution of these universal fluctuations traversing from 
the regime of intermediate to high loss and for different 
coupling geometries. We find good agreement between the 
PDFs obtained experimentally to those generated numerically 
from RMT. Of particular significance is the joint PDF of the 
eigenphases of st , and the eigenvalues of  sstt † which lead to 
the universal conductance fluctuations statistics of quantum-
transport systems. Our results are not restricted to microwave-
billiard experiments but also apply to other allied fields, such 
as quantum-optics, acoustics and electromagnetic 
compatibility. 
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