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Abstract: 
 The mathematical equivalence of the time-independent Schrödinger equation and the Helmholtz equation is exploited to provide a 
novel means of studying universal conductance fluctuations in ballistic chaotic mesoscopic systems using a two-dimensional microwave-
cavity. The classically chaotic ray trajectories within a suitably-shaped microwave cavity play a role analogous to that of the chaotic 
dynamics of non-interacting electron transport through a ballistic quantum dot in the absence of thermal fluctuations. The microwave 
cavity is coupled through two single-mode ports and the effect of non-ideal coupling between the ports and cavity is removed by a 
previously developed method based on the measured radiation impedance matrix. The Landauer-Büttiker formalism is applied to obtain 
the conductance of a corresponding mesoscopic quantum dot device. We find good agreement for the probability density functions of the 
experimentally derived surrogate conductance, as well as its mean and variance, with the theoretical predictions of Brouwer and 
Beenakker. We also observe a linear relation between the quantum dephasing parameter and the cavity ohmic loss parameter. 

 
Much attention has been focused on the problem of 

mesoscopic transport through a quantum dot in which a two-
dimensional electron gas system contained within an arbitrarily-
shaped potential-well boundary is connected to two electron 
reservoirs through leads– the source ( s )  and drain ( d ). Recently 
it has been possible to fabricate quantum dots with low impurity 
content where the elastic mean free paths of the enclosed electrons 
are typically much larger than the physical size of the dot [1]. 
Electron transport through such “ballistic dots” is governed by 
elastic collisions off the enclosing potential-well boundaries. It has 
been observed that the terminal conductance of such dots, defined 
as )/(ˆ

dss VVIG −=  where sI  is the source current flowing into the 
dot and )( ds VV −  is the potential difference between these two 
leads, exhibits strong, reproducible fluctuations on the order of the 
quantum of conductance ( heG /2

0 = ) [2, 3, 4]. These fluctuations 
arise from quantum-interference effects due to the phase-coherent 
electron transport within such dots and have been explained using 
the hypothesis that the fluctuations are governed by random matrix 
theory [5]. Similar universal conductance fluctuations (UCF) have 
also been observed in other systems such as quasi-one-dimensional 
metal wires [6, 7].  

In a quantum dot, this phase coherence is partly lost by 
opening the system to the outside world during the process of 
measurement of the conductance. Quantum phase decoherence 
(dephasing) can also be induced due to the presence of impurities 
within the dot, thermal fluctuations, or electron-electron 
interactions, all of which lead to more classical properties for 
electron transport [8]. Significant theoretical and experimental 
effort has been devoted to studying the dephasing of the transport 
electrons in quantum dots [9, 10, 11].  One class of theoretical 
dephasing models utilizes a fictitious “voltage probe” attached to 
the dot that has a number of modes φN  each with transparency 

φΓ . Electrons that enter one of the modes of this probe are re-
injected into the dot with a phase that is uncorrelated with their 
initial phase, and there is no net current through the fictitious 
probe. An alternative model of electron transport employs a 
uniform imaginary term in the electron potential [12, 13], leading 
to loss of probability density with time. It was shown that [14], as 
far as the conductance is concerned, these two models yield 
equivalent predictions in the limit when the number of channels in 
the dephasing lead ∞→φN  and 0→Γφ , with the product 

φφγ Γ= N  remaining finite (“the locally weak absorbing limit”) 
[15]. A similar idea exists for describing ohmic losses in the 
microwave cavity in terms of non-ideally coupled “parasitic 
channels” [16]. Since the ohmic losses in the microwave cavity are 
to good approximation uniformly distributed, we can make use of 
the equivalence of the imaginary potential and voltage leads 
models mentioned above to relate the de-phasing parameter �  
employed by electron-transport theory [14] to the loss parameter of 
our microwave cavity ( )/( 22 Qkk nΔ ) [17, 18, 19, 20]. Here, 

cfk /2π=  is the wavenumber for the incoming frequency 

f and 2
nkΔ  is the mean-spacing of the adjacent eigenvalues of the 

Helmholtz operator, 22 k+∇ , as predicted by the Weyl Formula 
[21] for the closed system. The quantity Q represents the loaded 
quality factor of the cavity. Using the prescription outlined by ref. 
[14] we can directly determine the analog of conductance for the 
microwave cavity and make detailed comparisons of data to 
theory.  

We use an electromagnetic analog of a quantum dot in the 
form of a two-dimensional chaotic microwave resonator. In the 
case of a cavity thin in one dimension, Maxwell’s equations reduce 
to a two-dimensional scalar Helmholtz equation. Owing to the 
analogy between the scalar Helmholtz equation and the 
Schrödinger equation [22], the chaotic microwave cavity is an 
ideal surrogate for a ballistic quantum dot without the complicating 
effects of thermal fluctuations [4], Coulomb interactions, or 
impurities. The microwave analog also permits detailed 
measurements of the eigenvalues [23, 24, 25], eigenfunctions [26, 
27], scattering and reaction matrices [18, 19, 20, 28, 29, 30], in a 
system where every detail of the potential and the coupling 
channels can be controlled.  
 Adopting a variant of the Landaeur-Buttiker formalism, 
the normalized conductance ( oGGG 2ˆ= ) can be expressed in 

terms of the scattering matrix 
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when the leads (ports) are perfectly coupled to the cavity [31]. i.e., 
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 In the time-reversal symmetric case with single-mode 
leads, Ref. [14] has shown that as γ  increases the probability 

2 Dept. of Electrical and Computer Engineering. 
3 Institute for Research in Electronics and Applied Physics. 
4 Center for Superconductivity Research. 
5 Now at George Washington University. 



 2

density function of G  (i.e. );( γGP ) becomes more and more 
sharply peaked around the classical value of 2/1=G . In the limit 
of large γ , an asymptotic analytic expression  for );( γGP is 
predicted to be [14], 

||)||1(
2
1);( xexxGP −−+= γγ   with )2/1(2 −= Gx γ .     (2) 

This yields a large-γ  asymptotic expression for the mean and 
variance of G  which are predicted to be [14], 
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Fig.1: (Color Online) (a) PDFs for the normalized conductance );( γGP  
obtained from a chaotic cavity for dry-ice case : 4.1-4.7 GHz (hexagons) 
( 1.09.0)/( 22 ±=Δ Qkk n

; 1.02.11 ±=〉〈Tγ ) and in (b) Loss Case 0 : 16.8-17.6 

GHz (stars) ( 1.08.2)/( 22 ±=Δ Qkk n
; 1.01.35 ±=〉〈Tγ ); Loss Case 1 : 8.3-9.5 

GHz (circles) ( 1.06.6)/( 22 ±=Δ Qkk n ; 1.02.82 ±=〉〈Tγ ) and Loss Case 2 : 

16.8-17.6 GHz (squares) ( 1.07.21)/( 22 ±=Δ Qkk n
; 1.01.272 ±=〉〈Tγ ). Inset : 

(i) Schematic (not to scale) diagram for the quarter-bow-tie chaotic cavity. The 
gray jagged shapes are the two metallic perturbations used to perform 
ensemble averaging. (ii) Schematic of the coupling geometry of each port 
shown in profile. (iii) Implementation of the outward radiation boundary 
condition used for the normalization of the measured cavity impedance. 

 
The microwave cavity under study is a metallic, air-filled, 

quarter bow-tie shaped chaotic resonator (inset (i) of Fig. 1(a)) 
which is quasi-two-dimensional for frequencies below 19.05 GHz. 
The cavity is driven by two single-mode, coaxial transmission lines 
whose inner conductor (diameter 2a=1.27mm for Port 1, 
2a=0.635mm for Port 2) extends from the top plate of the cavity 
and makes contact with the bottom plate (inset (ii) of Fig.1(b)). An 
ensemble data set of one-hundred similar cavities with different 
internal field configurations is generated by rotating and translating 
two metallic perturbations, each of which are roughly the size of a 
wavelength at 5 GHz (inset (i) of Fig. 1(a)), within the cavity 
volume. This approach of configuration averaging to approximate 
a pure ensemble average is similar in principle to deforming the 
shape of the potential-well boundary of a quantum dot as 
performed by [4] although in our case the volume of the system is 
fixed. In addition to the intrinsic ohmic loss in the cavity, the 
degree of loss can be further increased in a controlled manner by 
partially lining the inner side-walls of the cavity with 2 cm-long 
strips of microwave absorber having uniform spacing. This results 
in three experimental Loss Cases - Loss Case 0: no absorbing 
strips, Loss Case 1: 16 absorbing strips, Loss Case 2: 32 absorbing 
strips. A fourth experimental Loss Case is created by placing the 
Loss Case 0 cavity in a bath of dry-ice (solid CO2 at -78.5oC). This 

has the effect of slightly increasing the Loss Case 0 cavity Q value 
(by ~10%). We refer to this case as the “dry-ice case”. A more 
detailed explanation of our experimental setup and data analysis 
can be found in [18, 20]. 

For our investigation, we generate a large ensemble of 
2x2 cavity scattering matrices ( S

t
) for the four loss cases through 

measurements for different configurations of the perturbers at 
many frequencies in a range from 3 to 18 GHz (covering ~ 800 
modes of the cavity). Using the “radiation impedance” approach 
[17, 18, 20] (inset (iii) of Fig.1(b)), the non-ideal coupling details 
of the two ports are removed to yield an ensemble of normalized 
2x2 scattering matrices ( st ) from which the conductance statistics 
are derived using  Eq. (1).  

Prior to reporting results for different “data sets” where 
each data set corresponds to one of our four loss cases and a 
frequency range typically spanning about 1 GHz, we estimate the 
value of γ  for each data set. We derive an analytic expression for 

〉〈T  in terms of γ  from Eq. (17a) of [14], where T  is the 
absorption probability and is related to the eigenvalues of sstt † [14, 
20].  
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ez)(ξ  is the exponential integral function. By 

determining the value of 〉〈T  from the measured data set, Eq.(5) 

then uniquely determines the corresponding value of γ ( 〉〈≡ Tγ ). 

To determine the cavity loss parameter )/( 22 Qkk nΔ  for 
our data sets, we employ two procedures. For data sets with 

5)/( 22 ≤Δ Qkk n , we numerically generate marginal PDFs of the 
real and imaginary parts of the normalized impedance 
( 1)1)(1( −−+=

ttttt ssz ) eigenvalues using random-matrix Monte-
Carlo simulations with square matrices of size 1000=N , and the 
value of )/( 22 Qkk nΔ  in the simulations ranges from 0.1 to 5 in 

steps of 0.1. We determine the variance ( 2σ ) of these numerically 
generated PDFs and fit it to a polynomial function 

))/(( 222 Qkk nΔΘ=σ  of order 20. We then determine the 
variances of the real and imaginary parts of each experimental data 
set and solve the inverse polynomial function 

)()/( 2122 σ−Θ=Δ Qkk n  to obtain a unique estimate of 

)/( 22 Qkk nΔ  corresponding to each data set. For data sets with 

5)/( 22 >Δ Qkk n , we use the relation 
))/((

1
22

2

Qkk nΔ
=
π

σ [17, 

20, 32] which has been validated experimentally in Ref. [18]. 
 
To report our results, we begin by examining the 

relationship between the estimated dephasing parameter 〉〈Tγ  and 

the estimated cavity loss parameter )/( 22 Qkk nΔ . By employing a 
sliding frequency window 1 GHz wide that runs over each of the 
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three Loss Cases - 0, 1, 2 from 3 to 18 GHz, we estimate the value 
of 〉〈Tγ  and the corresponding value of )/( 22 Qkk nΔ  for each 
window. The comparison is shown as the black circles in the inset 
of Fig. 2. A linear fit yields the empirical expression 

)/()1.05.12( 22 Qkk nT Δ±=〉〈γ  for ~70 points with values for 

〉〈Tγ  ranging from ~11 to ~300. By comparing the Poynting 
theorem for the electromagnetic cavity with the continuity equation 
for the probability density in the quantum system, we find 

)/(4 22 Qkk nΔ= πγ , with ...56.124 =π .  This result can be 
considered an empirical confirmation of the proposed equivalence 
of the imaginary potential (uniform volume losses) and de-phasing 
lead models in the limit considered in [14]. The 1 GHz width of 
our sliding window was chosen to be large enough to overcome the 
effects of short-ray paths (which are not removed by only 
configuration averaging [17, 20]), but at the same time small 
enough that the cavity losses can be assumed to be approximately 
constant over this frequency range.  

 
Fig.2: (Color Online) The universal scaling behavior of the conductance 
distributions is shown. The vertical-axis represents ]),([10 γ

γGPLog  with the 

corresponding )2/1(2 −= Gx γ  along the horizontal-axis for three 
representative data sets consisting of Loss Case 1 : 5.01-6.08 GHz (stars) 
( 1.05.4)/( 22 ±=Δ Qkk n

; 1.06.56 ±=〉〈Tγ ); Loss Case 1 : 13.6-14.6 GHz 

(circles) ( 1.03.7)/( 22 ±=Δ Qkk n
; 1.06.91 ±=〉〈Tγ ) and Loss Case 2 : 13.6-

14.6 GHz (squares) ( 1.07.17)/( 22 ±=Δ Qkk n ; 1.05.220 ±=〉〈Tγ ). Inset: 

The relation between the experimentally determined 〉〈Tγ  and )/( 22 Qkk nΔ . 

 
In Fig. 1, the experimentally obtained histogram 

approximation (symbols) to the PDF of the normalized 
conductance ( );( γGP ) derived from the normalized scattering 
matrix st  and Eq. (1) is shown for four cavity data sets. The 
colored solid lines (magenta, black, green, red) are the asymptotic 
analytic expression for ),( γGP  (Eq. (2)) with values of γ  that 

correspond to the estimated 〉〈Tγ  values obtained from the four 
cavity data sets.  The purple-colored solid line in Fig.1(a) is a 
random matrix Monte-Carlo simulation for values of 〉〈Tγ  
corresponding to the data set in Fig.1(a). The red error bars 
(roughly the size of the symbols) in Fig.1 which are representative 

of the typical statistical binning error of the experimental 
histograms show that the agreement between the data (shown by 
the symbols) and the theoretical predictions (shown by the solid 
curves) improves as the value of 〉〈Tγ  increases. This is to be 
expected as Eq. (2) is valid only in the high dephasing limit 
( 1>>γ ). Similar good agreement between the data and Eq. (2) is 
obtained for all of the ~40 data sets that we examined in which the 
frequency ranges and cavity loss cases resulted in an estimate of 
the 〉〈Tγ  parameter to be greater than ~18. 

 
 

Fig.3: Evolution of the variance of the experimentally determined );( γGP  

distributions (i.e., )var(G ) for increasing values of 〉〈Tγ  plotted on a 

logarithmic scale. Inset: Evolution of the mean of the experimentally 

determined );( γGP  distributions (i.e., 〉〈G ) for increasing values of 〉〈Tγ . 

 
In order to bring out the universal scaling behavior of the 
);( γGP  distributions (Eqs. (2)) and also to test that these 

distributions remain strictly non-Gaussian for increasing values of 
γ  (as predicted by [14]), we rescale the );( γGP distributions by 

plotting ]);([10 γ
γGPLog  versus )2/1(2 −= Gx γ  in Fig. 2 

for three representative data sets with 〉〈Tγ  ranging from ~56 to 
~220. We observe that the three data sets roughly fall on top of 
each other. The solid blue curve is the theoretical curve, Eq.(2) 
which is in good agreement with the data.  We observe some 
deviation of the symbols from the theoretical curve near 2+≅x . 
This is attributed to the lack of adequate statistics in the tails of the 
experimentally determined histogram approximations to the 
probability density functions of the conductance. Overall, for 
values of x  ranging from 4−  to 2+ , the agreement is 
qualitatively good and applies over other data sets where 〉〈Tγ  
ranges from ~18 to 330.  The asymmetric (non-parabolic) nature of 
the experimental data (symbols) confirms that the experimentally 
obtained );( γGP  remains strictly non-Gaussian and negatively 
skewed even for large values of γ , as predicted by [14]. 
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In Fig. 3, we again employ the sliding frequency window 
of width 1 GHz to test the asymptotic (� >> 1) relations for the 
mean >< G  (Eq.3) and variance )var(G  (Eq.4) of );( γGP  as 
a function of dephasing (loss) parameter γ . As before, we 

determine the value of 〉〈Tγ  for each frequency window data set 
that runs from 3 to 18 GHz for the three Loss Cases. We then 
determine the corresponding values of the mean and variance of 
the corresponding conductance distributions );( γGP  of each 
frequency window.  In the inset of Fig. 3, each star indicates the 
experimentally estimated mean value of G (i.e, >< G ) for the 
corresponding value of 〉〈Tγ . The standard deviation about the 

experimentally determined mean is of order 510− . We observe 
that as 〉〈Tγ  increases, the stars asymptotically approach the 

classical value of 2/1>=< G . The solid black curve represents 
the leading terms in Eq. (3).  

The circles in Fig. 3 show a similar analysis for the 
variance ( )var(G ) of the normalized conductance distributions 

);( γGP  as a function of γ .  The solid black curve represents the 
leading term in Eq. (4). The mean value of the absolute deviation 
of the circles about the function )( 〉〈Tf γ  is about 0.06. We 
observe that the circles closely follow the functional approximation 
for the theoretical curve (Eq. (4)) for the range of 〉〈Tγ  values from 
~ 18 to ~330, with no adjustable parameters.  

The results discussed in this paper provide experimental 
evidence in support of the theoretical arguments proposed by [14] 
and the hypothesis that random matrix theory provides a good 

description of the conductance fluctuation statistics in a ballistic 
chaotic quantum-dot in the presence of dephasing. We have shown 
that in the “locally weak absorbing limit” as discussed in [14], the 
dephasing parameter can be related to the cavity loss parameter. 
We have derived an empirical linear relation between γ  and the 

cavity loss-parameter )/( 22 Qkk nΔ  based on our experimental 
data. The finite conductivity of the metallic walls of the cavity 
translates to a minimum-possible experimentally accessible value 
of γ  ~11 for our experiments (at least for the present cavity 
geometry and temperatures of -78.5oC and above). We have shown 
that our experimentally determined conductance distributions and 
the asymptotic analytic functional forms for the PDF of G 
( )(GP ), its mean value ( >< G ) and variance ( )var(G ) are in 
good agreement over a broad range of large γ  values.  This also 
establishes the microwave analog as a method to study detailed 
theories of non-interacting quantum transport and de-coherence in 
quantum coherent systems.   
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