

EM Noise Mitigation in Circuit Boards and Cavities

Omar M. Ramahi, Xin Wu, Lin Li, Baharak Mohajeriravani,Shahrooz Shahparnia, Neil Goldsman, and Xi Shao Mechanical Engineering Department, Electrical and Computer Engineering Department and CALCE Electronic Products and Systems Center University of Maryland, College Park, MD

Microwave Effects and Chaos in 21st Century Analog & Digital Electronics AFOSR MURI November 2003 Review MURI contract F496200110374 Chicago, IL November 14-15, 2003

Previous Work and Recent Work

Developing 3-dimensional full-wave predictive tools for cavity Resonance and S Parameters

[completed]

Developing fast predictive modeling tools for PCB analysis[completed]

Using lossy material coating to reduce aperture radiation
 [parametric study; experimental validation]

Previous Work and Recent Work

Reducing noise in printed circuit boards using high impedance surface
 [experimental verification; concept improvement; wideband extension]

Reduction of coupling between cavities using high-impedance surfaces
[concept validation through numerical experiments]

Part I: Noise mitigation from apertures without reduction of aperture size

Transmission Line Interpretation of Apertures

7

Transmission Line Interpretation of Apertures with Matched Termination

2

"Loaded" Aperture

Aperture without Coating

A. James Clark School of Engineering, University of Maryland at College Park

Reduction of Radiated Field at Resonance

A. James Clark School of Engineering, University of Maryland at College Park

Reduction of Radiated Field at Resonance

A. James Clark School of Engineering, University of Maryland at College Park

Surface Current Density Distribution

Effect of Coating on Aperture Field: Experimental Validation

Effect of Coating on Aperture Field: Experimental Validation

Part II: Reduce switching and other noise in Printed Circuit Boards

EM Noise in PCB

3

Coupling to Sensitive Devices in a Multi-Layer Stack up

3

Decoupling Capacitors around Noise Source

A. James Clark School of Engineering, University of Maryland at College Park

Classical Methods: Ineffective at Microwave Frequencies

•Effect of Capacitors Placement at 200MHz and 1GHz

Possible Solutions

Embedded Capacitors

High-Impedance Surface as a novel concept for switching noise mitigation

High-Impedance Surface for Surface Wave Suppression

Top view of HIS with square patches

Interpretation: HIS as a Series of Parallel LC Resonators

Power Plane with Embedded HIS

Widening the Gap!

A. James Clark School of Engineering, University of Maryland at College Park

HIS Inductance-Enhanced Power Planes

Physics-Based Model of a Unit Cell

Compact Model of Complete Power Plane

2D cascaded model of a 10cmx10cm power plane with a total of 100 cells

Full-Wave Model vs. Circuit Model

Wideband Noise Mitigation in PCBs Can we increase the stop band?

Concept: cascaded filter design

5

Experimental Validation

Experimental Validation

Part III: Reduction of coupling between cavities

Close Proximity Cavities

Top View

Side View

4

Effect of HIS on Coupling

Effect of HIS on Coupling

Field Pattern at 12.6GHz

A. James Clark School of Engineering, University of Maryland at College Park

Field Patterns at 12.6GHz (H-plane)

7

"Inductive" vs. "Capacitive" HIS

<u>Part IV:</u> EMI Reduction from PCBs (Interference and Immunity)

External Radiation from PCBs

EMI Reduction through HIS

Concept: Same as switching noise mitigation... If waves don't travel within the PCB, they will not radiate!

EMI Measurement Setup

5mm x 5mm patches

10cm x 6.5cm board

4

Effect of HIS on EMI

4

Effect of HIS on EMI

Effect of HIS on EMI

- Cavity radiation reduction using HIS
- Derivation of analytical expressions for some chaos cavities
- Reduced-size bandgap material for miniaturized systems
- Extension of the cascaded HIS concepts to general surface suppression applications

- Cavity radiation reduction using HIS
- Derivation of analytical expressions for some chaos cavities
- Reduced-size bandgap material for miniaturized systems
- Extension of the cascaded HIS concepts to general surface suppression applications

- Cavity radiation reduction using HIS
- Derivation of analytical expressions for some chaos cavities
- Reduced-size bandgap material for miniaturized systems
- Extension of the cascaded HIS concepts to general surface suppression applications

- Cavity radiation reduction using HIS
- Derivation of analytical expressions for some chaos cavities
- Reduced-size bandgap material for miniaturized systems
- Extension of the cascaded HIS concepts to general surface suppression applications