EM Effects on Semiconductor Devices Gates and Integrated Circuit Interconnects

Dept. of Electrical and Computer Engineering, UMCP

Neil Goldsman

Collaborators:

Bruce Jacob, Omar Ramahi Agis Iliadis, John Rodgers Xi Shao, Parvez N. Guzdar⁴ Akin Akturk, Zeynep Dilli, Yun Bai, Todd Firestone

EM Effects on Semiconductor Devices Gates and Integrated Circuit Interconnects

Goal: Through modeling and experiment characterize microwave coupling on integrated circuits and its effect on device and circuit performance.

Method: Develop modeling tools to analyze and predict effects on devices, fundamental circuit blocks, and interconnects.Base modeling tools on Semiconductor Equations and Schrödinger Equation and Maxwell's Equations.

Verify with experiments: Chips fabricated through MOSIS

Outline

EM Coupling: Levels Investigated Task 1: Device Level Task 2: Gate Level (Inverters) Task 3: Interconnects and Passive Elements

CMOS INVERTER

Task 1: EM Coupling to Semiconductor Devices

- EM coupling may induce large voltages on semiconductor device terminals inside IC's
- Large terminal voltages can damage devices permanently and cause upsets.
- Most modern IC's are composed of MOSFETs.
- Pentium IV contains 40 million nanoscale MOSFETs.
- MOSFETs are exceptionally vulnerable.
- Task 1 focuses on detailed modeling of MOSFETs to understand their internal mechanisms of EM induced failure.

MOSFET Cross-Section and Illustration of Vulnerabilities: Oxide and Avalanche Breakdown

Problems:

-Scaling to the nanometer gate length requires oxides less than 20Angstroms.
-Such thin oxides give rise to such large gate current that devices will not function.
-Large internal fields cause impact ionization, avalanching and damaging filaments
-Problems especially important for EM coupling, which can induce large voltages to Gate and Drain Electrodes!

Developed Quantum Device Simulator to Investigate Internal MOSFET Subject to Large Coupled EM Terminal Voltages

Solve QM Device Equations Numerically. Inputs are device structure, doping profile & basic physics.

Device Doping Profile

Electron Transport Physics Include:

- -Acoustic & Optical Phonons
- -Band Structure
- -Ionized Impurities
- -Impact Ionization & Breakdown
- -Surface Roughness
- -Gate Current and Oxide Breakdown

Quantum Device Modeling Gives Internal Fields, Currents and Problem Spots:

Internal MOSFET Avalanche Rate

Resulting Parasitic Substrate Current

Using the new simulator to model EM induced avalanche breakdown

-Results indicate 2V on drain of $0.1 \mu m$ causes excessive electron-hole pair generation peak in channel.

-Simulations agree with experiment on resulting substrate current

-Excessive substrate current causes permanent filament damage

Gate Current: Mathematical Model

The final gate leakage current will be the summation of the tunneling and thermionic current

$$J_{gate}(x) = J_{tu}(x) + J_{th}(x)$$

Where tunneling current

$$J_{tu}(x) = \int_{0}^{E_{peak}} f(\xi, x) g(\xi) v_{\perp}(\xi) T_{tun}(\xi, x) d\xi$$

And thermionic current

$$J_{ther}(x) = \int_{E_{peak}}^{\infty} f(\xi, x) g(\xi) v_{\perp}(\xi) T_{ther}(\xi, x) d\xi$$

 $J_{gate} = Gate Current Density$ f = Distribution Function g = Density of States $T_{tu} = Tunneling Probability$ $T_{ther} = Thermionic Probability$

Boltzmann-Schrödinger/Spherical Harmonic Device CAD Results: Gate Current (WKB Method)

Gate Tunneling Current Ig vs. Time DC and Transient

Transient does not increase gate current density, and thus probably does not increase probability of breakdown.

Resulting Electrostatic Potential inside 0.14µm MOSFET: Bias Conditions for Oxide Breakdown

 $V_G=2.8V$ $V_D=1.4V$ $V_S=V_B=0V$ If $|E_y| > 7MV/cm => Oxide Breakdown$

Device Simulations predicts induced gate voltage of 2X supply causes MOSFET oxide damage

Experimental Chip for EM Coupling and Gate Current Measurements.

Designed at UMD Fabricated by MOSIS

Task 2. EM Effects on Gates

Differential equation based modeling of EM effects on inverter circuits

- Stage 1: Develop simulation tool.
- Stage 2: Use tool to analyze distributed effects of EM GHz range coupling on fundamental computer chip circuit elements.

Developed Distributed Circuit Simulator

Applied to Inverters

DD Equations

$$\nabla^2 \phi = -\frac{q}{\varepsilon_{Si}} (p - n + D)$$

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla . \overrightarrow{J_n} - R_n + G_n$$
$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla . \overrightarrow{J_p} - R_p + G_p$$

Supplementary DD Equations

$$\vec{J_n} = -q\mu_n n \overrightarrow{\nabla \Phi} + q\mu_n V_T \overrightarrow{\nabla n}$$
$$\vec{J_p} = -q\mu_p p \overrightarrow{\nabla \Phi} - q\mu_p V_T \overrightarrow{\nabla p}$$

Coupled Discretized DD Equations are solved at each mesh point

Lumped KCL equation check at the output node and using the KCL equation, the output guess is updated for the next iteration, V_0^{i+1} :

$$I_{DN} - I_{DP} + I_{R_L} + I_{C_L} = 0$$

$$A_{N} + B_{N}V_{o}^{i+1} + A_{P} + B_{P}V_{o}^{i+1} + \frac{V_{o}^{i+1} - V_{SS}}{R_{L}} + C_{L}\frac{V_{o}^{i+1} - V_{o}^{i}}{\Delta t} = 0$$

$$V_{o}^{i+1} = \frac{V_{SS} + V_{o}^{i}\frac{R_{L}C_{L}}{\Delta t} - (A_{N} + A_{P})R_{L}}{1 + \frac{R_{L}C_{L}}{\Delta t} + (B_{N} + B_{P})R_{L}}$$

Modeling 20GHz, 1V Coupled to 0.1µm Inverter

-Output follows input reduced by 20%

-Enough to cause bit errors.

Simulated Coupled Output

Modeling 20GHz, 1V Coupled to 0.1µm & 0.25µm Inverters

Output follows input but with reduced amplitude in 0.25
Bit errors can still occur in larger device but may be less likely

0.25µm Output

Task 3. Interconnects and Passive Elements

Developed Finite Difference Time Domain Alternating Direction Implicit Method (FDTD-ADI) for Solving Maxwell's Equations on Chip.

Model Verification

• 2D guided-wave propagation

- Excitation frequency = 50 GHz;
- Metal conductivity = 3.9×10^7 S/m.
- Able to resolve skin current wave pattern inside metal ∞ cos(k_zz + y/δ) exp(-y/δ) δ: Skin depth.
 Y axis unit is 0.1um; Z axis unit is mm.

Simulating Signal Propagation along Metal-Insulator-Silicon-Substrate (MISS) Interconnect

Cross Section of Simulated MISS Structure

Simulation Performance

- Non-uniform grid in the cross section; smallest grid size in the cross section is 0.1 um. Uniform grid = 25 um in the propagation direction.
- Simulation $\Delta t = 2x10^{-13}$ sec. Courant's limit is $\Delta t < 0.33 \times 10^{-15}$ sec
- Simulation time is 3-4 hour on a PC for 1000 step simulation.
- Outer boundary condition: Mur's first order

Voltage observed at different Z locations along the MISS Strip

- A fast 1V, 20psec digital pulse of risetime= 2ps is excited
- Substrate doping $n = 10^{17} / cm^3$
- Metal conductivity = $5.8 \times 10^7 \text{ S/m}$.
- Shows digital signal losses and dispersion.

$\begin{array}{c} Silvert \\ Silvert \\$

Cross Section of Ey field

• Electric field concentrates inside the SiO₂ layer.

Cross Section of Current Jz inside Metal

- X, Y units are 0.1 um.
- Skin depth effect.
- metal edge effect.

Snap-shot of Substrate Current

- Top view

• Red and blue shade correspond to rising and falling of the signal.

• Top view shows potential interference and coupling in lateral direction (tenth mm scale).

• Side view Shows

current penetration to the substrate.

- Side View

Signal Propagation with Different Substrate Doping

n1 = 10¹⁸ /cm³ (solid)
n2 = 10¹⁶ /cm³
(dashed)
At the skin-effect mode, higher substrate doping conforms signal better.

Simulating EM Coupling between Interconnect Lines in Metal-Insulator-Silicon-Substrate (MISS) Structure

Voltage Pulse Coupling Results

Results: New simulator allows for resolving large variations in grid points Induced voltage 20% of applied signal even at $20\mu m$ apart.

Simulations show extensive coupling through substrate currents.

Substrate Current: Horizontal x-section

Substrate Current: Vertical x-section

EM Coupling Mechanisms in IC

Noise Injection:

- Capacitive Injection
- Hot Electron Injection

Noise Coupling

- Resistive Coupling
- Inductance Coupling

Noise Reception

- Capacitive Reception
- Threshold Voltage Modulation

IC Chip Layout

Coupling Measurement

Frequency:

50MHz

-1.5dBc/Hz

100MHz

-1.8dBc/Hz

500MHz

-2.2dBc/Hz

NKR 496.0 MHz

MARKEI

PEAK

NEXT PK RIGHT

HEXT PK

1 of 2

Phase Noise:

29.1 dBc/Hz

PR 27. 2001

6

21110153 APR 27, 2003

12.8 dBc/Hz

On-Chip EM Coupling

• Coupling between On-chip Inductors

Left: Results from literature and circuit model for coupled on-chip inductors

Right: Our test structure (in fab) for measuring coupling between inductors on different metal layers *Below:* Modeled mutual inductance rising with frequency

On-Chip EM Coupling

• Coupling between On-chip Inductors and Transistors

On-Chip EM Coupling

10

Planar inductor vs. Multilayer inductor

Same net length \rightarrow same net resistance, but higher inductance. (four-level multilayer)

Planar inductor vs. Multilayer inductor

Layouts for planar inductor (left) and multilayer inductor (right), in fabrication for probe-station measurements. The total length of the inductors are the same, and the two pictures are of the same scale. Note the much smaller footprint of the multilayer inductor.

Accomplishments

- Task 1: Developed quantum device modeling code
 - Used code to ascertain internal MOSFET vulnerable spots.
 - Found MOSFET drain junction area especially susceptible to avalanching, which can cause breakdown and filament formation leading to permanent device failure.
 - Developed method for modeling gate current and oxide breakdown
 - Calculations predict that induced voltages as little as 2.6V can cause device failure in current device technologies.
 - Voltages necessary for damage will decrease as device dimensions reduce according to semiconductor roadmap.

Accomplishments

- Task 2: Developed distributed CAD tool for modeling multi-transistor circuits.
 - Applied the new tool to modeling inverter switching due to GHz range coupled signals.
 - Simulations show details of fields and current densities of switching inside devices.
 - Simulations show current technology inverters (0.1µm) follow input signal of 20GHz which can cause bit errors. Larger devices (0.25 µm) are less likely to cause bit errors at 20GHz.
 - Capacitive loading (1 10 pF) causes inverter circuits to reach indeterminate average state causing bit errors with RC time constant.

Accomplishments

- Task 3: Developed Maxwell Equation based CAD tool for modeling on-chip interconnects and passive structures.
 - New tool overcomes Courant limit and is thus well suited for analyzing chips where resolving mm and µm size structure simultaneously.
 - Applied the new tool to modeling propagation of pulses along IC interconnect transmission lines.
 - Simulations show details of fields and current densities inside semiconductor substrate and metal interconnects
 - Simulations indicate significant losses and dispersion which depend on the doping density of the semiconductor substrate. Higher doping gives rise to less losses.
 - Simulations indicate extensive coupling between interconnect lines. 20% percent coupling is seen on lines as much as 20µm apart.
- Numerous test IC's designed and fabricated to EM effects on interconnects and devices. Experiments currently being set up.

Publications

- C.K. Huang and N. Goldsman, Non-equilibrium modeling of tunneling gate currents in nanoscale MOSFETs, *Solid State Electronics*, vol. 47: pp. 713-720, 2003.
- A. Akturk, N. Goldsman and G. Metze, ``Faster CMOS Inverter Switching Obtained with Channel Engineered Asymmetrical Halo Implanted MOSFETs, *Solid State Electronics*, vol. 47, pp.~185--192, 2003.
- X. Shao, N. Goldsman, O. M. Ramahi, P. N. Guzdar, A New Method for Simulation of On-Chip Interconnects and Substrate Currents with 3D Alternating-Direction-Implicit (ADI) Maxwell Equation Solver. *International Conference on Simulation of Semiconductor Processes and Devices*, pp. 315-318, 2003.
- 3. X. Shao, N. Goldsman, and O. M Ramahi, The Alternating-Direction Implicit Finite-Difference Time-Domain (ADI-FDTD) Method and its Application to Simulation of Scattering from Highly Conductive Material, *IEEE International Antennas and Propagation Symposium and USNC/CNC/URSI North American Radio Science Meeting: URSI, Digest*, p. 358, 2003.
- Y. Bai, Z. Dilli, N. Goldsman and G. Metze, Frequency-Dependent Modeling of On-Chip Inductors on Lossy Substrate, *International Semiconductor Device Research Symposium*, 2003, Accepted for publication.
- 6. X. Shao, N. Goldsman, O. M. Ramahi,and P. N. Guzdar, Modeling RF Effects in Integrated Circuits with a New 3D Alternating-Direction-Implicit Maxwell Equation Solver, *International Semiconductor Device Research Symposium*, 2003, Accepted for publication.

Future Work

- Use new device CAD tool to further asses oxide breakdown effects in new and existing technologies.
- Use new circuit distributed CAD tools to further investigate microwave induced switching performance of digital building blocks. Investigate entire microwave spectrum and a wide range of CMOS technologies.
- Apply interconnect CAD tool to further investigate coupling of external microwaves to chip.
- Perform measurements on test chips to further quantify EM IC coupling. Model experiments with newly developed CAD tools.
- Combine Device and EM CAD tools to develop comprehensive IC distributed simulator.