

Schottky Diode RF Detectors and RF Pulse Effects on CMOS Logic

Boise State University and University of Maryland

Presented by

R. Jacob (Jake) Baker

Boise State

Participants:

U. Maryland: Woochul Jeon, John Melngailis (with help from Andrei Stanishevsky, Nolan Ballew, and John Barry, and Michael Gaitan, NIST)

Boise State: Jake Baker, Bill Knowlton Students supported over the last year at Boise State: Curtis Cahoon, Kelly DeGregrio (both now with Micron), and Ben Rivera (now with Freedom IC)

Outline: (Schottky diodes)

-- diodes fabricated and tested (DC and RF)

-- diodes for high freq. operation, preliminary fab and test at DC, RF structures designed

-- integrated circuits designed with diodes connected to in-situ amplifiers

Chip Sumitted to MOSIS $2.2 \times 2.2 \text{ mm}$ AMI 1.5 μ process, SCNA λ = 0.8

Diodes did not work!

Cross section view

Cross section of Schottky diodes, fabricated with existing, crude mask and wafer

Measured I-V Characteristics 20x20um Schottky diodes.

Capacitance and Series resistance

• $f_c = 1/(2\pi RC)$

 \rightarrow Make R and C as small as possible to increase cutoff frequency (f_c)

$$Cj = A_{\sqrt{\frac{\epsilon q Ns}{2(V + Vd)}}}$$

- → A: contact area, Ns: doping concentration
 V: applied voltage, Vd: built-in voltage
- Series resistance = $R_j + R_n + R_{n+1}$
 - \Rightarrow R_n >> R_{n+} >> R_j

 \rightarrow Series resistance mainly determined by Rn(n layer resistance).

• Objective \rightarrow Reduce contact area(A) and resistance of R_n layer

K.M. Strohm, J. Buecher, & E. Kasper,

Daimler Benz, Research, Ulm

IEEE Trasn. MTT Vol.46, 669, (May, 1998)

Developing High Frequency Schottky Diode Detector

-- 93GHz detector (Daimler Benz) needs MBE

growth over n+, not compatible with CMOS

-- use n on n+ wafers to test diode fabrication and

RF pickup by various structures,

-- develop process for inserting n-on-n+ diodes in CMOS chips

Proposed structure

- Reduce series resistance => use n+ substrate
- Reduce contact capacitance => decrease contact area
- Additional Process: Si-MBE (n layer on n+)

Donor concentration (cm⁻³)

Depth (µm)

Test ability to make Schottky diode on n+ substrate

 To reduce series resistance n+ substrate with 0.3 μm n-epi layer is used

Schottky contact($50x50 \ \mu m$)

Measured result (0.1-1V)

I-V Characteristics(log scale)

→ IV curve (input voltage(0.1-1V), output current(1.5 µA – 60mA)
 → Output current is in log scale (exponential response)

Measured result (1-4V)

IV c haracteristics (1 - 4 V)

• Series resistance = $2V/430mA = 4.7 \Omega$

Starting wafer

 \rightarrow (n+ substrate, 0.3µm lightly doped n layer, 0.6µm Oxide by LPCVD)

Mask Ordered from Berkeley Univ.

STIVERSI74

18

Schottky diode with clock tree

What we expect to learn:

- -- frequency response of diodes tested by Cascade probes
- -- frequency response tested by incident RF
- -- RF pickup level of various structures on chip as a function of frequency

Ideal Diode Detector:

-- compatible with CMOS

-- high frequency

-- easy to fabricate

FIB Tungsten Vias Through FIB Deposited Oxide Plugs

500nm

- Design of Schottky diodes, first-chip
- Picture shown for one of the test sites on the chip.

 Had a spacing problem between the probe pads which affected the microwave measurements. Fixed the problem and refabricated.

- Several different types of test structures
- Measured the DC voltage out as a function of microwave power applied to the test structure.

• We also looked at the frequency behavior of the circuit.

• We are now integrating the detectors with amplifiers for non-invasive on-chip measurements. VDD

Basic concept

Amplifier schematic Bias circuit schematic

Reference

TE

• Layout views

Amplifier layout

Bias and reference layout

• Complete layout of noise detector circuit

• Complete test chip layout in 0.5 um CMOS

Comments

- The detector test chip will be out of the fab in July.
- Thorough characterization of these detector circuits should result in modules that can be placed into test structures (e.g. clock distribution trees) or any IC for non-invasive measurements.
- This will make way for experiments involving various types of interfering sources during the calendar year 2003.
- The characterizing experiments can be performed using UMCP's test facilities and should result in a clear direction for determining how to make circuits more immune to unwanted RF pulses.

RF Pulses and Basic CMOS logic

- We are also looking at the fundamentals of how RF pulses can disrupt basic CMOS logic (gates, latches, etc.)
- The idea is to inject interfering signals at various points and look at the circuits output (either in the time or frequency domains or using a digital latch to detect a glitch).
- The test chip with the probe point indications is shown on the following pages. This chip is also currently being fabricated.

Basic Logic Test Structures Chip

Pad Descriptions

Pad Number Pad Type	Input/Output		
1. GND	GND		
2. SIGNAL	VDD INVERTER 2X200		
3. GND	GND	31 GND	GND
4. SIGNAL	VDD INVERTER 2X20	22 SIGNAL	VDD NA ND2V20
5. GND	GND	32. SIGNAL	VDD NAND2A20
6. SIGNAL	VDD INVERTER 20X20	24 OUTDUT	MAND2X200
7. GND	GND	25. GND	GND
8 GND	THRU	35. GND	GND
9. GND	THRU	56. SIGNAL	VDD NAND2X200
10. GND	SHORT	37. GND	GND
11 INPUT	INVERTER 2X200	38. INPUT	B NAND2X200
12 OUTPUT	INVERTER 2V200	59. GND	SHOKI
12. OUTPUT	INVERTER 2X200	40. INPUT	A NAND2X20
13. INPUT	INVERTER 2X20	41. GND	GND
14. OUTPUT	INVERTER 2X20	42. SIGNAL	GND NAND2X20
15. INPUT	INVERTER 20X20	43. GND	GND
16. OUTPUT	INVERTER 20X20	44. OUTPUT	NAND2X20
17. SIGNAL	THRU	45. GND	GND
18. SIGNAL	THRU	46. SIGNAL	GND NAND2X200
19. SIGNAL	SHORT	47. GND	GND
20. GND	GND	48. INPUT	A NAND2X200
21. SIGNAL	GND INVERTER 2X200	49. SIGNAL	SHORT
22. GND	GND	50. INPUT	S SRLATCH2X200
23. SIGNAL	GND INVERTER 2X20	51. GND	GND
24. GND	GND	52. SIGNAL	VDD SRLATCH2X200
25. SIGNAL	GND INVERTER 20X20	53. GND	GND
26. GND	GND	54. OUTPUT	ON SRLATCH2X200
27. GND	THRU	55. INPUT	S SRLATCH20X20
28. GND	THRU	56 GND	GND
29. GND	SHORT	57. SIGNAL	VDD SRLATCH20X20
30. INPUT	B NAND2X20		

Pad Descriptions, cont'd

58. GND	GND
59. GND	SHORT
60. INPUT	R SRLATCH2X200
61. GND	GND
62. SIGNAL	GND SRLATCH2X200
63. GND	GND
64. OUTPUT	Q SRLATCH2X200
65. INPUT	R SRLATCH20X20
66. GND	GND
67. SIGNAL	GND SRLATCH20X20
68. GND	GND
69. OUTPUT	QN SRLATCH20X20
70. INPUT	CLK0 DFLIPFLOP2X20
71. GND	GND
72. SIGNAL	VDD DFLIPFLOP2X20
73. GND	GND
74. INPUT	CLK DFLIPFLOP2X20
75. INPUT	S SRLATCH2X20
76. GND	GND
77. SIGNAL	VDD SRLATCH2X20
78. GND	GND
79. OUTPUT	Q SRLATCH20X20
80. INPUT	VIN DFLIPFLOP2X20
81. GND	GND
82. SIGNAL	GND DFLIPFLOP2X20
83. GND	GND
84. OUTPUT	VOUT DFLIPFLOP2X20
85. INPUT	R SRLATCH2X20
86. GND	GND
87. SIGNAL	GND SRLATCH2X20
88. GND	GND
89. OUTPUT	QN SRLATCH2X20
90. OUTPUT	Q SRLATCH2X20

Noise-Shaping A/D Conversion for Measurements

- Built and tested a bandpass noise shaping modulator.
- Can be used for coherent sampling.
- Digital filtering can be used to restrict the frequency range of the noise.
- Experimental results are compared to simulation results.

Schematic of the Modulator

Simulation Results

Digital filter removes the modulation noise.

Time domain response

Frequency domain response

Experimental Results

Comments on Noise Shaping

- Robust technique with wide dynamic range possible.
- Will take up more chip area than the circuits using Schottky diodes and amplifiers.
- Requires a digital filter (even more area).
- Won't measure very high frequencies like the Schottky diode circuits.
- Challenging design, may not be portable from one process to another.

Conclusions for Noise Shaping

- Overall not an attractive solution when compared to the Schottky diode-based circuits.
- Will not pursue this area of research further at the present time.
- Shift resources to gate-oxide reliability studies.

Gate Oxide Reliability

- Ultrathin (t_{ox} < 5nm) Gate Oxide reliability of nMOSCAPs:
 - Accumulation –vs- Inversion: Dielectric breakdown occurs at lower voltages in accumulation
 - Stress Testing Devices in Accumulation:
 - Lifetime
 - Degradation Mechanisms
 - Device Behavior:
 - Pulse Voltage Stressing (PVS) better mimics device behavior than Constant Voltage Stressing (CVS)
- STUDY: Compare PVS and CVS

Motivation for the Study

- PVS (Pulse Voltage Stressing): No known studies yet performed for nMOS devices in accumulation
 - PVS –vs- CVS:
 - Lifetime:
 - PVS: Frequency -vs- time
 - Degradation Mechanisms
 - Breakdown Mechanisms
 - Other PVS Studies:
 - Duty cycle: A factor in digital and analog circuits? Yes.
 - e.g., charge pump (output)
 - Mixed signals: Do simultaneous multiple Frequencies and Voltage amplitude signals appear/exist in digital or analog circuits? Perhaps.
 - Simultaneous Multiple Frequencies -vs- time
 - Circuit level reliability: What is the effect of a degraded device on circuit output?

Accumulation-vs-Inversion

PVS, Sense Results and Breakdown Mechanisms

Summary – Directions for Measuring RF Noise On-Chip

- Over the last year we have designed, fabricated, and characterized Schottky diodes in CMOS (three CMOS test chips with various structures).
- Developing a method of fabricating very high-frequency Schottky diodes using FIB techniques.
- We currently have test chips with various Schottky diodes and amplifier "modules" in production.
- We anticipate full characterization of the modules during Fall 2002.
- This will provide a needed element for the design and implementation of experiments during 2003 and beyond.

What we're after by the end of the year

- Enough data to indicate the weaknesses and vulnerability points in modern CMOS integrated circuits.
- An idea for the direction of the research, do we concentrate on improving the design of the circuits or devices themselves or the protection on the I/O paths?
- Ideas for how we can develop a quantitative benchmark for measuring the improvement in the proposed designs.

End of Slide Show

Example of FIB Circuit Rewiring: Cut and Jumper

FIB-Milled Circuit Cross Section

