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Nonlinear stability limit in high b tokamaks
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~Received 9 June 1999; accepted 14 December 1999!

Linearly unstable highb tokamak equilibria are shown to be nonlinearly stabilized by an
axisymmetric flow containing both toroidal and poloidal components. As fingers of hot plasma
produced by pressure driven ballooning instabilities start to convect out towards the bounding wall,
an axisymmetric flow is self-consistently generated and opposes the growth of the fingers,
maintaining confinement. However, asb increases the growth rate of the fingers increases until
there is insufficient time for the developing axisymmetric flow to halt their rapid progress to the
wall, and confinement is lost. The ultimate stability of a tokamak plasma is determined by a
nonlinear stability limit inb. © 2000 American Institute of Physics.@S1070-664X~00!00304-9#
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I. INTRODUCTION

The most important limitation on the performance of t
kamaks as fusion reactors is the limitation on the plas
pressure imposed by disruptions. Attempts to increase
ratio b of the plasma pressure to the magnetic field press
beyond a limitbc are thwarted by an abrupt, catastroph
loss of confinement.1–3 To date, all attempts at an explan
tion of this stability limit in b have been based on linea
stability theory. However, linear stability calculations c
not account for the salient features of the disruptive loss
confinement. The inadequacy of linear stability theories
demonstrated by the observed time scale over which en
confinement is lost during disruptions. Thermal confinem
is rapidly destroyed on a very short time scale of the orde
100–400ms, and not on longer time scales—there are
major b disruptions that are less rapid.3 The existence of a
maximum thermal quench time is incompatible with any l
ear stability criterion since just above marginal linear sta
ity one would expect to see more slowly growing modes t
generate slower disruptions with quench times longer t
400 ms. But slower disruptions are not seen to occur. F
thermore, it is observed that tokamak discharges in the vi
ity of bc often experience minorb disruptions that exhibit
the same characteristics as majorb disruptions, but are les
violent so that the plasma can recover without termination
the discharge.3 Although the tokamak plasma is linearly un
stable, the instabilities often have little impact on the d
charge. These experimental observations demonstrate
the stability of tokamak plasmas is ultimately determined
nonlinear effects.

In this paper we present an investigation of the nonlin
stability of highb toroidal plasmas. Highb toroidal equilib-
ria are linearly unstable to ballooning modes that grow
the pressure gradient on the largeR side of the torus, where
R is the major radius of the torus. The three-dimensio
vortices generated by the linearly unstable modes act to
vect the hot central plasma out toward the wall at largeR in
hot plasma ‘‘fingers.’’4 Our investigation of the nonlinea
evolution of these modes demonstrates that:~1! There is a
nonlinear stability limit inb below which confinement is
1161070-664X/2000/7(4)/1163/6/$17.00
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maintained, even though the equilibrium is linearly unstab
~2! Linearly unstable equilibria at lowerb do not suffer a
disruptive loss of confinement because the relatively slo
growing linearly unstable modes are stabilized nonlinea
~3! The growing modes are stabilized by a self-consist
axisymmetric flow, independent of the toroidal angle, tha
generated nonlinearly. This self-generated flow opposes
growth of the hot plasma fingers toward the wall at largeR,
thereby maintaining confinement.~4! The self-generated axi
symmetric flow contains both poloidal and toroidal comp
nents. The poloidal component of the flow is not a simp
poloidal rotation, but instead consists of two vortices, o
located above the midplane of the torus and the other be
~5! As b increases the growth rate of the hot plasma fing
becomes so rapid that there is not sufficient time for
axisymmetric flow to halt their motion before they strike th
wall at largeR, and global confinement is lost.~6! Our simu-
lations provide a natural explanation of the time scale of
thermal quench duringb limit disruptions. There are not an
thermal quenches that are longer than 400ms because the
more slowly growing modes are stabilized nonlinearly.~7!
Our simulations also provide a natural explanation for
variety of disruptions of various intensity from minor to m
jor. The more slowly growing the modes, the less imp
they have on confinement before they are stabilized.

The rest of this paper is organized as follows. The eq
tions and the toroidal equilibrium are discussed in Sec.
The numerical results in Sec. III demonstrate that linea
unstable modes can be nonlinearly stabilized by a s
generated axisymmetric flow. The characteristics of this fl
are detailed. In Sec. IV we consider the effect of increas
b on nonlinear stability. We summarize and discuss our
sults in Sec. V.

II. EQUATIONS

Our simulations are based on the nonlinear resis
magnetohydrodynamic~MHD! equations for the magneti
field B, the mass velocityV, the temperatureT, and the mass
densityrm ,

]B/]t5¹3~V3B!1h¹2B, ~1!
3 © 2000 American Institute of Physics
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]U/]t1¹•~VU!5J3B2¹P1m¹2U, ~2!

]T/]t1V•¹T2¹ ik i¹ iT50, ~3!

]rm /]t1¹•U2D¹2rm50, ~4!

where the parallel gradient¹ i5b̂•¹ with b̂5B/uBu, the mo-
mentum densityU5rmV, the pressureP5rmT, and the cur-
rent J5¹3B, for a plasma with resistivityh, viscositym,
parallel thermal conductivityk i , and diffusion coefficientD.
Equations~1!–~4! are solved in toroidal geometry (R,f,z),
whereR is the major radial coordinate of the torus,f is the
toroidal angle, andz is the vertical distance along the axis
the torus, with a square conducting wall of half-widtha in
the poloidal plane. The equations are given in normaliz
units5 in which the timet is normalized to the Alfve´n time
tA[a/vA with vA the Alfvén velocity, and the resistivityh
5S21, where the Lundquist numberS[t r /tA is the ratio of
the resistive diffusion timet r to the Alfvén time. Let us
consider equilibrium in a torus with aspect ratioA[R0 /a
53, whereR0 is the major radius of the torus. An examp
of an axisymmetric equilibrium, independent of the toroid
anglef, satisfying the force balance conditionJ3B5¹P is
shown in Fig. 1. This figure is a plot of the pressureP and
the safety factorq as a function ofR through the midplane
z50. The ratio of the pressureP0 at the magnetic axis to th
square of the mean poloidal magnetic field is denoted
bpol ,

5 while b tor is defined as the ratio ofP0 to the square of
the toroidal fieldBf(R5R0). For the equilibrium in Fig. 1,
bpol50.3, b tor50.4%, and the central safety factorq051.1.
The equilibrium mass density is uniform in space. Equilib
with different b are obtained by changing the central pre
sure P0. We have tested the ideal stability of these hi
pressure equilibria with a code that utilizes the balloon
approximation to solve the one-dimensional linear ballo
ing mode equation. The ideal stability limit is found to be
bpol'1. With the inclusion of nonideal effects, the equilibr
are unstable at lowerbpol . In the nonlinear simulations, th

FIG. 1. Equilibrium. The pressureP ~solid line! and the safety factorq
~dashed line! are plotted vs the major radial coordinateR in the midplane
(z50), for an equilibrium withbpol50.3.
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normalized transport coefficients are given byh5m5D
5331024. The ion pressure is the dominant source of
stabilities in highb tokamaks since the bulk of the therm
energy resides in the ions. At the core of a large hot tokam
(R05260 cm, a580 cm, Bf540 kG, density n55
31013 cm23, central temperatureT510 keV!, the Alfvén
time tA'0.1ms and the ion–ion collision timet i i '20 ms
'23105tA . On time scales shorter thant i i , the ions are
collisionless and stream freely down magnetic field lin
With a time-dependent parallel thermal coefficientk i5v i

2t,
wherev i is the ion thermal velocity, the time scalet i for the
transport of energy a distances down a magnetic field line is
given by the free-streaming resultt i5s/v i .

III. STABILIZATION BY AN AXISYMMETRIC FLOW

The nonlinear temporal evolution of a three-dimensio
perturbation applied to thebpol50.3 equilibrium of Fig. 1 is
shown in Fig. 2. This figure is a plot of the pressure in t
poloidal plane (R,z) at f50, at four different times during
the evolution. The lightly shaded areas near the center are
regions of hotter, high pressure plasma while the colder,
pressure plasma is located in the darker areas. In orde
eliminate any possible influence of the hyperbolicX-points
of the poloidal magnetic field at the four corners of t
square, the plasma is surrounded by a wall located at the
surfacec50.1caxis, wherec5caxis at the magnetic axis and
c50 at the square boundary. The white area in Fig. 2 s
rounding the plasma column is outside this wall. The resu
of a simulation with the plasma bounded by the square w

FIG. 2. Nonlinear evolution. The temporal evolution of the pressure is p
ted in the poloidal plane (R,z) at f50 for a plasma withbpol50.3, at
t/tA5~a! 0, ~b! 600, ~c! 1100, and~d! 3000.
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are similar to those shown in Fig. 2. Att50 @Fig. 2~a!# the
perturbation is small but growing because the free ene
associated with the pressure gradient and the unfavor
magnetic curvature at largeR destabilizes ballooning modes
By t5600tA @Fig. 2~b!# the plasma enters a nonlinear pha
in which fingers of hot plasma are convecting out towa
the wall at largeR. But subsequently the growth of the fin
gers is blunted and the fingers are turned inwards toward
midplane (z50) of the torus@Fig. 2~c!#, away from the wall,
and global confinement is maintained. The energy in the
fingers is simultaneously spread along the magnetic fi
lines by parallel conduction, and the toroidal plasma reac
the stable quasi-equilibrium shown in Fig. 2~d!. The pressure
profile has been somewhat broadened as the low temper
edge plasma has been spread out into a halo around the
temperature core by the instabilities, but the energy in the
plasma remains confined away from the wall. Once
plasma settles into the quasiequilibrium shown in Fig. 2~d!,
this state persists virtually unchanged.

The progress of the hot fingers toward the wall at largR
is halted by an axisymmetric flow, independent of the tor
dal anglef, that is self-consistently generated as the fing
evolve nonlinearly. The structure of this axisymmetric flo
is shown in Fig. 3. Figure 3~a! is a vector plot of the poloida
component of the floŵVpol&f , where^•&f denotes an av-
erage overf, in the poloidal plane (R,z) at t51100tA . The
poloidal component of the axisymmetric flow consists of tw
vortices, one above the midplanez50 of the torus and one
below, that convect the growing hot fingers toward the m
plane and then inward towards smallerR, and prevent the
fingers from reaching the wall at largeR. Figure 3~b! is a plot
of the toroidal component of the floŵVf&f in the poloidal
plane at the same time. The lighter areas are the region
which the flow is in the positivef direction, while the flow
is in the negativef direction in the darker areas. The ax
symmetric toroidal flow is antisymmetric about the midpla
z50. Moving above the midplane away from the magne
axis, the toroidal flow first increases in magnitude in t
positive f direction, but then reverses direction inf. The
temporal dependence of the axisymmetric flow is shown
Fig. 4~a!, where the maximum value in the poloidal plane
both the poloidal and toroidal flow speed, normalized tovA ,
is plotted. As the fingers grow, the self-generated flow
creases in magnitude with time, reaching approximatel
31024vA (0.2% of the sound speedcs , sincecs /vA'0.1!
when t51100tA . After 1900tA , the magnitude of this flow
saturates at less than 0.5% ofcs as the plasma relaxes int
the quasiequilibrium shown in Fig. 2~d!. The results in Figs.
2–4~a! are virtually unchanged when the Reynolds stress¹
•(VU) is arbitrarily eliminated from the momentum Eq.~2!.
Thus, the axisymmetric flow is generated by the nonlin
pressure and magnetic forces, and not by the nonlinear R
nolds stress. The equilibrium pressure gradient at the m
plane on the largeR side of the magnetic axis produces
force on the plasma that is outward inR. In equilibrium, this
outward pressure force is balanced by an inward Lore
force caused by the compression of the poloidal magn
field against the wall on the outboard side of the torus. T
unstable ballooning modes preferentially transport energ
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the largeR direction thereby reducing the average press
gradient at largeR. Thus, the average outward pressure fo
is reduced in magnitude so that it is no longer large eno
to completely balance the inward Lorentz force. The resul
that there is now a small net inward force that generates
average axisymmetric flow as the compressed poloidal m
netic field relaxes slightly. In order to resolve the nonline
gradients in the pressure and flows on the numerical grid,
magnitude of the dissipation coefficientsh and m in the

FIG. 3. Self-consistent axisymmetric flow. The~a! poloidal and~b! toroidal
components of the axisymmetric floŵV&f at t51100tA are plotted in the
poloidal plane (R,z).

FIG. 4. Temporal variation of the axisymmetric flow. The temporal dep
dence of the maximum value of the poloidal flow~solid circles! and toroidal
flow ~open circles! whenh5m5331024 is plotted in~a!. The plot in~b! is
a comparison of the poloidal flow whenh5m5331024 ~closed circles!
with the poloidal flow whenh5m5231024 ~open circles!.
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simulation shown in Figs. 2–4~a! is much larger than the
dissipation at the center of a large, hot tokamak. Howev
the magnitude of the self-generated axisymmetric flow d
not decrease as the dissipation is reduced in magnitude.
ure 4~b! is comparison of the temporal evolution of the ax
symmetric poloidal flow for two different values of the di
sipation, h5m5331024 ~solid circles! and h5m52
31024 ~open circles!. When the dissipation is reduced
h5m5231024, the growth of the fingers is blunted by
self-generated flow in the same manner as shown in F
2–4~a!. In both cases there is a rapid rise in the axisymme
flow from t;1000tA to t;1500tA . The peak value of the
flow does not decrease as the dissipation decreases, bu
tually increases slightly as the damping effect of the visc
ity is reduced in magnitude.

IV. NONLINEAR STABILITY IN b

The results in Figs. 2–4 demonstrate that a linearly
stable bpol50.3 tokamak equilibrium is nonlinearly stab
lized by a self-consistently generated axisymmetric flow. W
now consider the nonlinear stability of tokamak equilib
with increasingb. Figure 4 contains a series of plots th
show the nonlinear states obtained for equilibria withbpol

from 0.1 to 1.
Like the bpol50.3 equilibrium, abpol50.1 equilibrium

is also nonlinearly stabilized by an axisymmetric flow@Fig.
5~a!#. But because the pressure gradient drive for the in
bilities is weaker whenbpol50.1, the hot fingers grow mor

FIG. 5. Pressure evolution with increasingb. The pressure is plotted in th
poloidal plane (R,z) for a tokamak plasma withbpol5~a! 0.1, ~b! 0.5, ~c!
0.7, and~d! 1.0.
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slowly and do not convect as far towards the wall at largeR
before their growth is blunted by the axisymmetric flow a
the system relaxes into a stable quasiequilibrium. The
central core of the plasma is unaffected. Figure 6~a! is a plot
of the temporal evolution of the axisymmetric poloidal flo
~crosses! during the nonlinear evolution of the perturbatio
whenbpol50.1. For the purpose of comparison, the axisy
metric poloidal flow for thebpol50.3 toroidal plasma is also
plotted ~circles!. The magnitude of the axisymmetric polo
dal flow generated whenbpol50.1 is only 131024vA , much
smaller than whenbpol50.3. However, the small fingers o
hot plasma grow so slowly that this small axisymmetric flo
can act over a relatively long time and is very effective
halting the growth of the fingers before they become large
the axisymmetric flow had not been effective at maintain
confinement, then the fingers would have grown larger a
there would have been a larger transport of energy tow
the wall at largeR. Paradoxically, this greater broadening
the pressure profile would have generated an even larger
symmetric flow. Thus, the very smallness of the axisymm
ric flow is indicative of how effective the flow is at preven
ing the transport of energy toward the wall at largeR,
thereby maintaining the toroidal force balance.

As bpol increases, the hot fingers grow more rapidly a
convect ever more closely to the wall at largeR before their
progress is stopped. Whenbpol50.5 @Fig. 5~b!#, the hot fin-

FIG. 6. Axisymmetric flow with increasingb. The temporal dependence o
the maximum value of the poloidal axisymmetric flow is plotted for~a!
bpol50.1 ~crosses! andbpol50.3 ~circles!, and~b! bpol51.
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gers almost reach the wall at largeR, and the magnitude o
the axisymmetric flow generated to finally stop them is m
than 50% larger than whenbpol50.3. In this case, the centra
pressure decreases by about 10% as the pressure pro
broadened. Asbpol increases further, the fingers grow s
rapidly that there is not sufficient time for the self-genera
flow to stop them from reaching the wall. Although the h
fingers are deflected by the flow away from the wall towa
the midplane whenbpol50.7 @Fig. 5~c!#, the deflection is too
small to prevent the fingers from barely striking the wall
about 600tA , and some of the energy in the plasma is lo

At larger bpol51 @Fig. 5~d!#, the self-generated axisym
metric flow is even less effective. The axisymmetric poloid
flow shown in Fig. 6~b! rises to nearly 131023vA in only
320tA , about twice as large as the maximum axisymme
poloidal flow generated whenbpol50.3. Although the axi-
symmetric flow is larger at higherb, the hot plasma fingers
are convecting outward even more rapidly and there is in
ficient time for the axisymmetric flow to halt the growth o
the fingers before they strike the wall, leading to a glo
loss of confinement4 in less than 320tA . With further in-
creases inbpol , the impact of the self-generated flow is ne
ligible and the hot fingers directly strike the wall ever mo
rapidly. The three-dimensional structure of the pressure d
ing the nonlinear growth of the fingers whenbpol51 is
shown in Fig. 7. This figure is a plot of a surface of const
pressure att5240tA . This surface is characterized by a s
ries of ridges and valleys that extend along the outside of
torus, where the local magnetic curvature is destabilizi
The fingers shown in Fig. 4~d! are the projection of thes
ridges and valleys onto the poloidal planef50.

V. SUMMARY

Our nonlinear toroidal MHD simulations demonstra
that the ultimate stability of tokamak plasmas is determin
by nonlinear effects rather than by linear stability criter
Linearly unstable equilibria at lowerb do not suffer a dis-
ruptive loss of confinement because the linearly unsta

FIG. 7. Three-dimensional structure. The figure shows a surface of con
pressure during the nonlinear evolution of thebpol51 equilibrium, at t
5240tA .
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modes are stabilized nonlinearly. As linearly unstable b
looning modes grow into the nonlinear phase, fingers of
plasma start to convect out to the wall at largeR. As the
fingers grow, a self-consistent axisymmetric flow is gen
ated nonlinearly, with both poloidal and toroidal comp
nents. This flow does not lie in a flux surface; the poloid
component is dominated by two vortices, one above the m
plane of the torus and the other below. At lowerb the fingers
grow more slowly and the axisymmetric flow becomes lar
enough to halt the progress of the hot fingers before t
reach the wall at largeR. Although some of the energy i
redistributed within the plasma, global confinement is ma
tained as the system relaxes into a stable quasiequilibr
containing flows. However, asb and the pressure gradien
increase, the hot fingers grow more rapidly toward the w
Although an axisymmetric flow is still generated, and is ev
larger in magnitude, whenb becomes too large the growth o
the fingers is so rapid that there is not sufficient time for
flow to grow large enough to halt the motion of the finge
before they strike the wall, and global confinement is lo
These simulations provide a natural explanation for the ra
loss of thermal confinement observed during disruptions o
time scale of the order of 100ms, and not on longer time
scales.3 In the simulations, global confinement is lost only
the fingers grow rapidly enough to reach the wall in appro
mately 1000tA ~100 ms in a large tokamak!. More slowly
growing fingers are stabilized nonlinearly and do not lead
a loss of confinement. The simulations also provide a nat
explanation for the variety of disruptions of varying inte
sity, from minor to major. Minorb disruptions in tokamaks
are observed to be a less severe and somewhat slower m
festation of the instability responsible for majorb
disruptions.3 Similarly, a small decrease inb in the simula-
tions results in a decrease in the rate at which the fing
grow, and the self-generated flow reduces the impact of
fingers on confinement. Since the magnitude of the s
generated stabilizing flow in the simulations is only a fe
tenths of one percent of the sound speed, externally impo
flows of this magnitude may have an impact on tokam
stability.

When a nonlinear stability threshold inb is exceeded in
our simulations, then there is a global loss of confinemen
the hot plasma fingers grow rapidly enough to reach the w
before the self-consistently generated axisymmetric flow
stop them. Our simulations predict that the rapid loss of
ergy confinement observed duringb limit disruptions is
caused by coherent vortex flows that convect hot plas
fingers to the wall.4 In contrast to the coherent fingers an
vortex flows in our theory, Parket al.6 claim that the loss of
confinement during disruptions is caused by the genera
of a stochastic magnetic field. Our view of the comparis
between our theory ofb limit disruptions and the theory o
Parket al. is given in Refs. 4 and 7, while Park’s view of th
comparison is given in Ref. 8. In the present paper we h
demonstrated, for the first time, that although a tokam
plasma is linearly unstable to ballooning modes, the plas
can still be nonlinearly stabilized by a self-generated axisy
metric flow, leading to a nonlinear stability limit inb.
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