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Linearly unstable highg tokamak equilibria are shown to be nonlinearly stabilized by an
axisymmetric flow containing both toroidal and poloidal components. As fingers of hot plasma
produced by pressure driven ballooning instabilities start to convect out towards the bounding wall,
an axisymmetric flow is self-consistently generated and opposes the growth of the fingers,
maintaining confinement. However, @sincreases the growth rate of the fingers increases until
there is insufficient time for the developing axisymmetric flow to halt their rapid progress to the
wall, and confinement is lost. The ultimate stability of a tokamak plasma is determined by a
nonlinear stability limit ing. © 2000 American Institute of Physids$$1070-664X00)00304-9

I. INTRODUCTION maintained, even though the equilibrium is linearly unstable.
(2) Linearly unstable equilibria at lowe8 do not suffer a
The most important limitation on the performance of to- disruptive loss of confinement because the relatively slowly
kamaks as fusion reactors is the limitation on the plasmagrowing linearly unstable modes are stabilized nonlinearly.
pressure imposed by disruptions. Attempts to increase th@) The growing modes are stabilized by a self-consistent
ratio 8 of the plasma pressure to the magnetic field pressuraxisymmetric flow, independent of the toroidal angle, that is
beyond a limit3. are thwarted by an abrupt, catastrophic generated nonlinearly. This self-generated flow opposes the
loss of confinement® To date, all attempts at an explana- growth of the hot plasma fingers toward the wall at laRje
tion of this stability limit in 8 have been based on linear thereby maintaining confinemeri4) The self-generated axi-
stability theory. However, linear stability calculations cansymmetric flow contains both poloidal and toroidal compo-
not account for the salient features of the disruptive loss ofents. The poloidal component of the flow is not a simple
confinement. The inadequacy of linear stability theories igoloidal rotation, but instead consists of two vortices, one
demonstrated by the observed time scale over which enerdgcated above the midplane of the torus and the other below.
confinement is lost during disruptions. Thermal confinement5) As B increases the growth rate of the hot plasma fingers
is rapidly destroyed on a very short time scale of the order obecomes so rapid that there is not sufficient time for the
100-400us, and not on longer time scales—there are naaxisymmetric flow to halt their motion before they strike the
major 3 disruptions that are less rapidlhe existence of a wall at largeR, and global confinement is log6) Our simu-
maximum thermal quench time is incompatible with any lin- lations provide a natural explanation of the time scale of the
ear stability criterion since just above marginal linear stabil-thermal quench during limit disruptions. There are not any
ity one would expect to see more slowly growing modes thathermal quenches that are longer than 409 because the
generate slower disruptions with quench times longer thamore slowly growing modes are stabilized nonlinearf).
400 us. But slower disruptions are not seen to occur. FurOur simulations also provide a natural explanation for the
thermore, it is observed that tokamak discharges in the vicinvariety of disruptions of various intensity from minor to ma-
ity of B, often experience minoB disruptions that exhibit jor. The more slowly growing the modes, the less impact
the same characteristics as mgguisruptions, but are less they have on confinement before they are stabilized.
violent so that the plasma can recover without termination of  The rest of this paper is organized as follows. The equa-
the dischargé.Although the tokamak plasma is linearly un- tions and the toroidal equilibrium are discussed in Sec. II.
stable, the instabilities often have little impact on the dis-The numerical results in Sec. lll demonstrate that linearly
charge. These experimental observations demonstrate thamstable modes can be nonlinearly stabilized by a self-
the stability of tokamak plasmas is ultimately determined bygenerated axisymmetric flow. The characteristics of this flow
nonlinear effects. are detailed. In Sec. IV we consider the effect of increasing
In this paper we present an investigation of the nonlineaB on nonlinear stability. We summarize and discuss our re-
stability of high 8 toroidal plasmas. Higl# toroidal equilib-  sults in Sec. V.
ria are linearly unstable to ballooning modes that grow on
the pressure gradient on the larigeside of the torus, where 1I. EQUATIONS
R is the major radius of the torus. The three-dimensional

. . Our simulations are based on the nonlinear resistive
vortices generated by the linearly unstable modes act to cor}ﬁa netohydrodynami¢MHD) equations for the magnetic
vect the hot central plasma out toward the wall at laRje 9 Y y q 9

hot plasma “fingers.* Our investigation of the nonlinear field B, the mass velocity, the temperaturg, and the mass

evolution of these modes demonstrates tliat:There is a density pr,
nonlinear stability limit in B below which confinement is dBlat=V X (VXB)+ 5V?B, D
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FIG. 1. Equilibrium. The pressurB (solid line) and the safety factoq
(dashed ling are plotted vs the major radial coordinden the midplane
(z=0), for an equilibrium withg,,=0.3. .
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FIG. 2. Nonlinear evolution. The temporal evolution of the pressure is plot-

(4) ted in the poloidal planeR,z) at #=0 for a plasma with3,,=0.3, at

dpmlt+V-U—DV?p=0,
R R t/74=(a) 0, (b) 600, (c) 1100, and(d) 3000.
where the parallel gradieft;=b- V with b=B/|B|, the mo-

mentum densityy=p,,,V, the pressur®=p,,T, and the cur-
rentJ=V X B, for a plasma with resistivityy, viscosity u, normalized transport coefficients are given by=u=D

parallel thermal conductivity, and diffusion coefficienD. =3x10" 4. The ion pressure is the dominant source of in-
Equations(1)—(4) are solved in toroidal geometnR(¢,z), stabilities in highg tokamaks since the bulk of the thermal
whereR is the major radial coordinate of the torug,is the  energy resides in the ions. At the core of a large hot tokamak
toroidal angle, and is the vertical distance along the axis of (R,=260 cm, a=80 cm, B,=40 kG, density n=5

the torus, with a square conducting wall of half-widthin X 10" cm™ 23, central temperaturd@ =10 keV), the Alfven

the poloidal plane. The equations are given in normalizedime 7,~0.1us and the ion—ion collision time;;~20 ms
units’ in which the timet is normalized to the Alfve time  ~2x10°7,. On time scales shorter thar , the ions are
Ta=alv, With v, the Alfven velocity, and the resistivityy  collisionless and stream freely down magnetic field lines.
=S"1, where the Lundquist numb&= 7,/ 7, is the ratio of ~ With a time-dependent parallel thermal coefficimwhuizt,

the resistive diffusion timer, to the Alfven time. Let us  wherev; is the ion thermal velocity, the time scatgfor the
consider equilibrium in a torus with aspect ralic=Rqy/a  transport of energy a distanselown a magnetic field line is
=3, whereR, is the major radius of the torus. An example given by the free-streaming resuit=s/v; .

of an axisymmetric equilibrium, independent of the toroidal

angle ¢, satisfying the force balance conditidix B=VP is Il STABILIZATION BY AN AXISYMMETRIC FLOW

shown in Fig. 1. This figure is a plot of the presstreand
the safety factoig as a function ofR through the midplane The nonlinear temporal evolution of a three-dimensional

z=0. The ratio of the pressui, at the magnetic axis to the perturbation applied to thg,,= 0.3 equilibrium of Fig. 1 is
square of the mean poloidal magnetic field is denoted byhown in Fig. 2. This figure is a plot of the pressure in the
ﬁpo,,swhile Bior IS defined as the ratio ¥ to the square of poloidal plane R,z) at ¢=0, at four different times during

the toroidal fieldB ;(R=Ry). For the equilibrium in Fig. 1, the evolution. The lightly shaded areas near the center are the
Bpoi=0.3, Bior=0.4%, and the central safety facigg=1.1.  regions of hotter, high pressure plasma while the colder, low
The equilibrium mass density is uniform in space. Equilibriapressure plasma is located in the darker areas. In order to
with different 8 are obtained by changing the central pres-eliminate any possible influence of the hyperbofgoints
sure Py. We have tested the ideal stability of these highof the poloidal magnetic field at the four corners of the
pressure equilibria with a code that utilizes the ballooningsquare, the plasma is surrounded by a wall located at the flux
approximation to solve the one-dimensional linear balloonsurfacey= 0.1, Wherey= i, at the magnetic axis and
ing mode equation. The ideal stability limit is found to be at =0 at the square boundary. The white area in Fig. 2 sur-
Bpor=1. With the inclusion of nonideal effects, the equilibria rounding the plasma column is outside this wall. The results
are unstable at loweg,. In the nonlinear simulations, the of a simulation with the plasma bounded by the square wall
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are similar to those shown in Fig. 2. A0 [Fig. 2(a)] the (a) (b)
perturbation is small but growing because the free energy ol 1
associated with the pressure gradient and the unfavorabl
magnetic curvature at large destabilizes ballooning modes. ]
By t=600r, [Fig. 2(b)] the plasma enters a nonlinear phaseZ 0 |
in which fingers of hot plasma are convecting out towards o
the wall at largeR. But subsequently the growth of the fin-
gers is blunted and the fingers are turned inwards toward the :
midplane ¢=0) of the torugFig. 2(c)], away from the wall, 2
and global confinement is maintained. The energy in the hot
fingers is simultaneously spread along the magnetic field

lines by parallel conduction, and the toroidal plasma reachesic. 3. Self-consistent axisymmetric flow. Tte poloidal and(b) toroidal
the stable quasi-equilibrium shown in Figd® The pressure components of the axisymmetric flofW),, att=1100r, are plotted in the
profile has been somewhat broadened as the low temperatut@loidal plane R.2).

edge plasma has been spread out into a halo around the high

temperature core by the instabilities, but the energy in the hoﬁ1 | R direction thereb ducing th
plasma remains confined away from the wall. Once th¢"€ largeR direction thereby reducing the average pressure

plasma settles into the quasiequilibrium shown in Fig)2 gradient at larg&k. Thus, the average outward pressure force

this state persists virtually unchanged is reduced in magnitude so that it is no longer large enough
The progress of the hot fingers toWard the wall at l&Rge to completely balance the inward Lorentz force. The result is

is halted by an axisymmetric flow, independent of the toroi-that there is now a small net inward force that generates the

dal angle¢, that is self-consistently generated as the fingerér’“/erage axisymmelric flow as the compressed poloidal mag-

evolve nonlinearly. The structure of this axisymmetric flow netic. field.relaxes slightly. In order to resolve th? nonli_near
is shown in Fig. 3. Figure(d) is a vector plot of the poloidal gradients in the pressure and flows on the numerical grid, the

component of the floWV o) 4, Where(- ), denotes an av- magnitude of the dissipation coefficients and u in the
erage ovewp, in the poloidal planeR,z) att=1100r,. The
poloidal component of the axisymmetric flow consists of two

vortices, one above the midplame=0 of the torus and one 0-000‘,(a)

below, that convect the growing hot fingers toward the mid- f

plane and then inward towards smallRr and prevent the 0.0004r

fingers from reaching the wall at large Figure 3b) is a plot }

of the toroidal component of the floW ) 4 in the poloidal <V> 00003

plane at the same time. The lighter areas are the regions il ¢,max .

which the flow is in the positivep direction, while the flow 0.0002-

is in the negativep direction in the darker areas. The axi- C

symmetric toroidal flow is antisymmetric about the midplane 0.0001}

z=0. Moving above the midplane away from the magnetic g

axis, the toroidal flow first increases in magnitude in the 0.000G

positive ¢ direction, but then reverses direction i The

temporal dependence of the axisymmetric flow is shown in t

Fig. 4a), where the maximum value in the poloidal plane of

both the poloidal and toroidal flow speed, normalizea £q 000062

is plotted. As the fingers grow, the self-generated flow in- [

creases in magnitude with time, reaching approximately 2 0.0005-

X 10 %v, (0.2% of the sound speet}, sincecs/v,~0.1) r

whent=1100r, . After 1900r,, the magnitude of this flow V. > 0'0004:‘ ]
saturates at less than 0.5% @f as the plasma relaxes into pol” ¢,max 000030

the quasiequilibrium shown in Fig(@. The results in Figs. i

2—4(a) are virtually unchanged when the Reynolds stréss 0.0002(

-(VU) is arbitrarily eliminated from the momentum E@). i

Thus, the axisymmetric flow is generated by the nonlinear 0.0001-

pressure and magnetic forces, and not by the nonlinear Rey 0. Lo ®® 0
nolds stress. The equilibrium pressure gradient at the mid- 1000 2000 3000
plane on the largdR side of the magnetic axis produces a t

force on the plasma that is outwardRn In equilibrium, this

outward pressure force is balanced by an inward LorentZ!G. 4. Temporal_ variation of the axisymmetric fIQW._The temporal'depen-
force caused by the compression of the poloidal magnetidence of the maximum value of the poloidal fl¢solid circles and toroidal

) ; . ﬁow (open circleswhen = u=3x10"*is plotted in(a). The plot in(b) is
field against the wall on the outboard side of the torus. Th& comparison of the poloidal flow whep=u=3x10"* (closed circles
unstable ballooning modes preferentially transport energy imith the poloidal flow whenp=x=2x10"* (open circlex
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FIG. 5. Pressure evolution with increasifgThe pressure is plotted in the 50 100 150 200 250 300 350
poloidal plane R,z) for a tokamak plasma witlB,q=(a) 0.1, (b) 0.5, (c) t
0.7, and(d) 1.0.
FIG. 6. Axisymmetric flow with increasing. The temporal dependence of
the maximum value of the poloidal axisymmetric flow is plotted far

simulation shown in Figs. 24d) is much larger than the #pe=0-1(CrossesandBy,=0.3 (circles, and(b) fpo=1.

dissipation at the center of a large, hot tokamak. However,
the magnitude of the self-generated axisymmetric flow does
not decrease as the dissipation is reduced in magnitude. Figlowly and do not convect as far towards the wall at ldRge
ure 4b) is comparison of the temporal evolution of the axi- before their growth is blunted by the axisymmetric flow and
symmetric poloidal flow for two different values of the dis- the system relaxes into a stable quasiequilibrium. The hot
sipation, 7=u=3%x10"* (solid circle3 and »=u=2  central core of the plasma is unaffected. Figuf@ & a plot
X 10" (open circles When the dissipation is reduced to of the temporal evolution of the axisymmetric poloidal flow
n=u=2%X10* the growth of the fingers is blunted by a (crossesduring the nonlinear evolution of the perturbation
self-generated flow in the same manner as shown in Figgvhen B,,=0.1. For the purpose of comparison, the axisym-
2—4a). In both cases there is a rapid rise in the axisymmetrignetric poloidal flow for theB,,,=0.3 toroidal plasma is also
flow from t~1000r, to t~1500r,. The peak value of the plotted (circles. The magnitude of the axisymmetric poloi-
flow does not decrease as the dissipation decreases, but at@l flow generated whefi,=0.1 is only X 10" %v 5, much
tually increases slightly as the damping effect of the viscossmaller than wherg,,=0.3. However, the small fingers of
ity is reduced in magnitude. hot plasma grow so slowly that this small axisymmetric flow
can act over a relatively long time and is very effective at
halting the growth of the fingers before they become large. If
the axisymmetric flow had not been effective at maintaining
The results in Figs. 2—4 demonstrate that a linearly unconfinement, then the fingers would have grown larger and
stable 8,,=0.3 tokamak equilibrium is nonlinearly stabi- there would have been a larger transport of energy toward
lized by a self-consistently generated axisymmetric flow. Wethe wall at largeR. Paradoxically, this greater broadening of
now consider the nonlinear stability of tokamak equilibriathe pressure profile would have generated an even larger axi-
with increasingB. Figure 4 contains a series of plots that symmetric flow. Thus, the very smallness of the axisymmet-
show the nonlinear states obtained for equilibria with,  ric flow is indicative of how effective the flow is at prevent-

IV. NONLINEAR STABILITY IN g8

from 0.1 to 1. ing the transport of energy toward the wall at large
Like the B,,=0.3 equilibrium, aB,,=0.1 equilibrium  thereby maintaining the toroidal force balance.
is also nonlinearly stabilized by an axisymmetric flprig. As B, increases, the hot fingers grow more rapidly and

5(a)]. But because the pressure gradient drive for the instaconvect ever more closely to the wall at larfgéoefore their
bilities is weaker wherB,,=0.1, the hot fingers grow more progress is stopped. Wheg),,=0.5 [Fig. 5b)], the hot fin-
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=240 modes are stabilized nonlinearly. As linearly unstable bal-
looning modes grow into the nonlinear phase, fingers of hot
plasma start to convect out to the wall at lafgeAs the
fingers grow, a self-consistent axisymmetric flow is gener-
ated nonlinearly, with both poloidal and toroidal compo-
nents. This flow does not lie in a flux surface; the poloidal
component is dominated by two vortices, one above the mid-
plane of the torus and the other below. At lowgthe fingers
grow more slowly and the axisymmetric flow becomes large
enough to halt the progress of the hot fingers before they
reach the wall at larg&®. Although some of the energy is
redistributed within the plasma, global confinement is main-
tained as the system relaxes into a stable quasiequilibrium
containing flows. However, ag and the pressure gradient
FIG. 7. Three-dimensional structure. The figure shows a surface of constafficrease, the hot fingers grow more rapidly toward the wall.
pressure during the nonlinear evolution of tig,=1 equilibrium, att  Although an axisymmetric flow is still generated, and is even
=2407a . larger in magnitude, whefi becomes too large the growth of
the fingers is so rapid that there is not sufficient time for the
flow to grow large enough to halt the motion of the fingers
gers almost reach the wall at lare and the magnitude of before they strike the wall, and global confinement is lost.
the axisymmetric flow generated to finally stop them is moreThese simulations provide a natural explanation for the rapid
than 50% larger than wheBy,,=0.3. In this case, the central |oss of thermal confinement observed during disruptions on a
pressure decreases by about 10% as the pressure profiletiige scale of the order of 10@s, and not on longer time
broadened. A8, increases further, the fingers grow so scales’ In the simulations, global confinement is lost only if
rapldly that there is not sufficient time for the self-generateqhe fingers grow rap|d|y enough to reach the wall in approxi-
flow to stop them from reaching the wall. Although the hot mately 10007, (100 us in a large tokamak More slowly
fingers are deflected by the flow away from the wall towardgrowing fingers are stabilized nonlinearly and do not lead to
the midplane wheiB = 0.7 [Fig. 5(c)], the deflection is too 3 |oss of confinement. The simulations also provide a natural
small to prevent the fingers from barely striking the wall in expjanation for the variety of disruptions of varying inten-
about 60@,, and some of the energy in the plasma is lost. sjty from minor to major. Minor3 disruptions in tokamaks
At larger Byo= 1 [Fig. Sd)], the self-generated axisym- 4re observed to be a less severe and somewhat slower mani-
metric flow is_ even less c_affective. The axisymmetric poloidalfestation of the instability responsible for majoB
flow shown in Fig. b) rises to nearly K_lo_st inonly gisruptions® Similarly, a small decrease i@ in the simula-
32074, about twice as large as the maximum axisymmetriGjons results in a decrease in the rate at which the fingers

poloidal flow generated whep,=0.3. Although the axi- 4.4\ and the self-generated flow reduces the impact of the
symmetric flow is larger at highgs, the hot plasma fingers finqers on confinement. Since the magnitude of the self-
are convecting outward even more rapidly and there is insuf

" : . X generated stabilizing flow in the simulations is only a few
ficient time for the axisymmetric flow to halt the growth of

tenths of one percent of the sound speed, externally imposed
lflows of this magnitude may have an impact on tokamak

loss of confinemefitin less than 326,. With further in- stability
creases ifBya, the impact of the self-generated flow is neg- When a nonlinear stability threshold phis exceeded in

“g'ble and the hot f|_ngers_d|rectly sirike the wall ever MOTe our simulations, then there is a global loss of confinement as
rapidly. The three-dimensional structure of the pressure dur,[-he hot plasma fingers arow rapidly enouah to reach the wall
ing the nonlinear growth of the fingers whe,,=1 is b gers g pidly 9

shown in Fig. 7. This figure is a plot of a surface of constantbefore the self-consistently generated axisymmetric flow can

pressure at=240r, . This surface is characterized by a se- stop them. Our simulations predict that the rapid loss of en-

ries of ridges and valleys that extend along the outside of the'dY confinement observed during limit disruptions is

torus, where the local magnetic curvature is destabilizingCaused by coherent vortex flows that convect hot plasma

The fingers shown in Fig.(d) are the projection of these fmgtersﬂt 0 th? walf. tlk? contr;\stkio fgelcph%e?tﬂ:mgl]ers afn d
ridges and valleys onto the poloidal plage=0. vortextiows In our theory, Frarst al.”claim that the 10ss o

confinement during disruptions is caused by the generation
of a stochastic magnetic field. Our view of the comparison
between our theory gB limit disruptions and the theory of
Parket al.is given in Refs. 4 and 7, while Park’s view of the

Our nonlinear toroidal MHD simulations demonstrate comparison is given in Ref. 8. In the present paper we have
that the ultimate stability of tokamak plasmas is determinediemonstrated, for the first time, that although a tokamak
by nonlinear effects rather than by linear stability criteria.plasma is linearly unstable to ballooning modes, the plasma
Linearly unstable equilibria at lowes do not suffer a dis- can still be nonlinearly stabilized by a self-generated axisym-
ruptive loss of confinement because the linearly unstablenetric flow, leading to a nonlinear stability limit iA.

V. SUMMARY
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