PHYSICAL REVIEW E VOLUME 62, NUMBER 6 DECEMBER 2000

Target waves in the complex Ginzburg-Landau equation
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We introduce a spatially localized inhomogeneity into the two-dimensional complex Ginzburg-Landau equa-
tion. We observe that this can produce two types of target wave patterns: stationary and breathing. In both
cases, far from the target center, the field variables correspond to an outward propagating periodic traveling
wave. In the breathing case, however, the region in the vicinity of the target center experiences a periodic
temporal modulation at a frequency, in addition to that of the wave frequency of the faraway outward waves.
Thus at a fixed point near the target, the breathing case yields a quasiperiodic time variation of the field. We
investigate the transition between stationary and breathing targets, and note the existence of hysteresis. We also
discuss the competition between the two types of target waves and spiral waves.

PACS numbd(s): 82.40.Ck, 47.32.Cc, 47.54r

[. INTRODUCTION tion, we introduce a suitable localized inhomogeneity. We
find two different types of target wave solutions. The first is
Numerous systems have been studied that are capable afstationary target wave where the field variables vary peri-
spontaneously producing spatiotemporal patterns. In experdically at the frequency of the emitted outward propagating
ments, two of the most common patterns seen are spirdvaves. The second is a breathing target where, in addition to
waves and target waves. Spiral waves are spirals that steadilye frequency of the outward propagating waves, there is an
rotate in time, while target waves consist of concentric cir-additional superimposed temporal modulation at another fre-
cular waves that radiate radially outward from a source. Spiguency. We investigate the transition between these two tar-
ral waves appear in chemical reaction-diffusion systems suc@i€t wave types, and note the existence of hysteresis. We also
as those involving the Belousov-Zhabotinsky reactjdh  discuss the pattern competition between the two types of
and catalytic reactions on surfacg]. In biology, slime target waves and spiral waves.
mold colonies ofDictyosteliumalso produce spiral waves  The homogeneous complex Ginzburg-Landau equation
[3,4]. Spiral waves of the electric signal in the heart occur at
the onset of ventricular fibrillatio5]. Spiral waves also IA
occur in planar dc driven semiconductor-gas discharge sys- E=,uA—(1+ia)|A|2A+(1+i,8)V2A, 1)
tems[6]. Many of these same systems also exhibit target
waves. For example, the Belousov-Zhabotinsky reaction sup-
ports target wavels7—9], as do colonies oDictyostelium{4].  with u (complex, « (rea), andg (rea) constants, describes
In these systems the existence of target waves is ¢glieh  extended media in which the homogeneous state is oscilla-
not always$ attributed to the presence of local inhomogene-tory and near a Hopf bifurcatiofil3]. The real part of
ities, for example a grain of dust or other impurfi§,10].  the parameter measures the deviation from the bifurcation
For the Belousov-Zhabotinsky reaction, the number of targepoint. The real part ofu gives the exponential growth rate
wave centers decreases when the chemical solution is rusf homogeneous perturbations from tiRe=0 state, and
through finer filterg8]. In an experiment by Petrogt al.,  the imaginary part ofu is a frequency shift. Typically
target waves are produced in the light-sensitive Belousovu is scaled to unity by the following transformations
Zhabotinsky reaction by illuminating a subregion of the sys-A— JRe(u)Ae'™®! r—r/\Re(u), andt—t/\Re(u). A
tem with a light sourcgl1]. Theoretically, Hagan and others steadily rotating spiral solution to E¢l) with =1 has the
stated that target wave solutions are stabilized when a locageneral form15]
ized inhomogeneity is presefit2]. In these works, target
waves were studied in reaction-diffusion equations. Many
researchers studied spiral waves in oscillatory media by
means of the complex Ginzburg-Landau equati@GLE),
which is a generic equation describing spatially extended’he quantityo is a positive or negative integer, and is called
systems in the vicinity of a Hopf bifurcatiofl3]. Previous the topological charge of the spiral. There is a® phase
research produced target solutions due to boundary effecthange ofA for a counterclockwise path around the spiral
[14]. In order to produce target waves in a CGLE descrip-center { =0). Stable spiral solutions exist for appropriate
andB ando= =1 corresponding to a single-armed spiral. In
order that the solution remain continuous and finite a0,
* Author to whom correspondence should be addressed. Electronit is required thatA(r=0t)=0. For smallr the real func-

A(r,t)y=F(r)expli[co+ ¢(r)— wt]}. 2

address: guzdar@ipr.umd.edu tions F(r)=|A| and ¢(r) behave asF(r)~r and
TAlso at the Department of Physics and Department of Electricad(r)/dr~r. For larger the spiral wave asymptotes to a
Engineering, University of Maryland. plane wave with wave numbek independent ofr,
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FIG. 1. The magnitudeA(r)| and phasep(r) of a solution 0 10 z 20 30 \/ t +3Fc/4
to the homogeneous CGLEEQ. (1)] with =1, «=0.34, and o

B=—1.45 in the quasifrozen parameter regime. After a transient _:‘ OO

time the solution has settled down to a very slowly evolving state 0 035 07 1.05 10 r 20 30
where the vortices and domain walls remain essentially stationary.

FIG. 3. (a) The magnitudeA(r,t)| is colorcoded as a function
k=dy/dr|,_... Substituting a constant amplitude plane of time and radial distance for the breathing target wave solution.

wave solution, A~ exp(kr—iwt), into Eq. (1), with u=1,  The periodicity of the breathing target is easily visible. This figure

yields the dispersion relation is obtained using the one-dimensional code with uniform initial
conditions evolved for 1000 time unité) Radial profile for|A| at
w=a+(B—a)k? (3) times t,, t,+7/4, t,+/2, and t,+37/4, wheret,=1.2 and
T=2.8.

and the boundary conditions that, as>o, F(r)— 1—k?

anddy(r)/dr—k. transient, the large domains become almost stationary in
In (a,B) space several different regions of solutions 0ft|me, i.e., both the domain walls and the locations of their

Eq. (1) exist. One such region is the quasifrozen regimespiral center evolve very slowly17].

where spiral solutions are staljl&6]. In this regime spirals

form from perturbations oA=0, and evolve to a quasifro- Il. TARGET WAVES

zen state in which many spirals form, each within there own

domain[see Fig. 1 which shows a quasifrozen solution ob- _AS we shall see, target wave patterns f_or th_e complex

tained at late time from a two-dimension@D) numerical  ©/nZburg-Landau equation result from localized inhomoge-

solution of Eq.(1) with periodic boundary conditiofisA neltles..We represent a Iocallged |nhomog_ene|ty in thg com-

spiral’s domain is the region in space occupied by a spiral’®/€X Ginzburg-Landau equation by making vary with

waves. Spiral domains are separated by narrow domaiﬁpac§[18]. We mtroducg inhomogeneity in both_the real gnd

walls, easily seen in the plot d\| of Fig. 1. The spiral imaginary parts ofx. This corresponds to a_spatlally varying

centers are seen as the dark spots in|&eplot or as the equnentlal growth'rate and frequency_ shift, respectively. In

center of spiral waves in the phase plot of Fig. 1. The interiorpart'CUIar* we consider the complex Ginzburg-Landau equa-

of each domain is well approximated by E@). After a  UON
. . A
(a) IA(r)| ] () o(r) ] (c) Radial Profile — = u(r)A—(1+i a)|A|2A+ (1+ipB)V2A, (4)
50 < N |, at
2
r
Yo ;L(r)=l+(v+i5)exp{—<r—) , (5)
[0}
-50 </ 0.8
50 0 50 0 25 50 75 whereu(r) is axially symmetric, andv, B, v, 8, andr, are
X L real constants. Because of the large parameter space we re-
B strict our attention to hows affects the system behavior.
0 04 08 12 _g 0 T

Two of our main findings are that in the quasifrozen region

FIG. 2. Stationary target wave far=0.34, 8= —1.45, p=1, of («,B) space tvv_o_ different types of target waves are seen,
5=0.82, andr,=4. The system starts with random initial condi- _and that th_e transition between the two types of target waves
tions, and a stationary target dominates after a transient tiae. IS hysteretic. . _ _

The magnitudéA(r)| does not go to zero at the center as it does for ~ Target waves do not have a phase singularity at their cen-
a spiral wave, but increases at the origin due to the larger value d€r, as do spiral waves. A target wave can be thought of as
Re(w) atr=0. (b) Phasep(r). (c) Radial profile obtained from the having a topological charge=0; i.e., no § dependence.

1D radial equatiodEq. (6)]. This profile is stationary in time. One of the two types of target wave solutions that we find
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FIG. 6. Time evolution of both the magnitud®mp) and phase
FIG. 4. Target wave frequenay as a function of the param- (bot.ton) of Afor 6=0.5 shpwing spiral wave dominatjon over the
eter & from solution of the 1D CGLEHEQ. (6)]. The spiral wave Stationary target wave. This corresponds to region | in Fig. 4.
frequencyws is also plotted whereos=0.08145. For§<0.3 the
system undergoes bulk oscillation at the frequency0.34. For  asymptotic value of/1—k?, wherek is the wave number of
0.3<6<0.8, the solution goes to a stationary target wave WhOSQhe outward propagating target wave. For |arg¢]e equa-
frequency is appa_rently linearly related & There is an overlap tjon becomes a homogeneous CGLE, and the target wave
region of hysteresis for 0:85<0.97. For6>0.97 the system goes  go|ytion appoaches a plane wave solution with a dispersion
to the breathing target wave solution. When 2D numerical S,O,“_Jt'onsrelation given by Eq(3). The breathing target waves have
of the CGLE[Egs. (4) and (5)] are evolved from random inifial ., 54nitdes that oscillate sinusoidally in time in the region of
conditions, there are five different regions of behavior observedthe inhomogeneity. Figure(® shows|A| as a function of
Region | produces spiral waves. Region Il produces a stationar%mdt for the same parameter values @f 8, v, andr, as
target wave. Region Il produces either spiral waves or a stationarYn Fig. 2, but now withs increased t05=é I,:igure O$b)

target wave depending on the value®&nd the initial conditions. . . . .
Region IV produces spiral waves. Region V produces a breathin&hOWS th? radial proflle_ df| at several dlffer_ent times. We
target wave. Characterize the breathlng target by measuring the frequency
Q=2m/7 and amplitudeM, of the oscillation ofA| at the

o _ _ ) __ origin.
has|A| constant in time; in particular, this target solution is | order to understand the relationship between the sta-
of the form A=F(r)exiy(r)—iwrt] (where the subscript tionary and breathing targets, we numerically determine the
T is to distinguish target wavesWe call this solution a frequencywy of the outward propagating target waves as the
stationary target wavethough waves do propagate outward parameters is varied. Since the target wave solution has no

Figure 2 shows a numerical stationary target solution at thg) yependence, we can obtain for the 2D system by solv-
parameter valuea=0.34, 3=—1.45,rv=1.0,6=0.82,and  jng the 1D radial CGLE:

ro=4.0. For these parameters ROE2 at the origin
(r=0), compared with its faraway value of Re(—1 as

_ H 7r2/r§ _ H
r—o. Far away from the origin|A| approaches its IA=[1+(vrid)e Te]A=(1+ia)

_ # 194
: : X|APA+(1+iB)| —+ = | A. (6)
ot (a) ar ror
We use a split-step method, discretizing both space and time,
Q 1 I and apply Neumann boundary conditions @0 and
I =rmax=100. The large asymptotic wave numbekis de-
ot ] termined by a linear fit of the phase Afas a function of.

The frequencywr is then given by the dispersion relation of
Eq. (3). Initially we start with uniform initial conditions,
0.04 , . , . . . |A(r,t=0)|= const and the phasg(r,t=0)=0, and evolve
) the solution until the pattern is established. We then \éry
(b) in small stepsA 6, keeping the other parameters fixed. &s
0.02} is varied the final solution for the previousis used as the
M initial condition for 5+ A 8. In this way we attempt to follow
o a particular branch of the solutiofi.e., stationary targets
ot or breathing targeisor as long as possible. We do this cal-
culation for both increasing and decreasifg The results
0 05 1 15 2 25 3 are shown in Fig. 4. Fo#<0.3 the system undergoes a bulk
5 oscillation, where the magnitude is constant in time and
FIG. 5. (a) Frequency of the breathing target wave oscillation the phase far from the inhomogeneity is constant in space,
Q. (b) Amplitude of the breathing target wave oscillation measureddut varying in time with a frequency of. That is,
at the originM,, . There is a finite jump in both the frequency and A=|A| exp(—iat), corresponding t&=0 in Eq.(2). Station-
amplitude of the breathing oscillation. ary target waves exist in the region of €:3<0.98, and
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FIG. 7. Time evolution of both the magnitudesp) and phase

(bottom) of A for §=0.7, where the stationary target dominates ~ FIG. 9. Time evolution of both the magnitudtop) and phase
over spirals. This corresponds to region Il in Fig. 4. (bottom of A for §=3, where the breathing target dominates. This

corresponds to region V in Fig. 4.

breathing target waves occur fér>0.8. Hysteresis between
the stationary and breathing target waves is shown in Fig. With it being either a Hopf bifurcatioriwhich would have

by the overlap region 085<0.98. - " . : .
As 6 is increased we observe that the stationary targe?/l"_o at the critical) or a saddle connection bifurcation

branch{computed from the 1D CGLE, Ed6)] terminates which would havef) =0 at the critical) [20).
at 6=0.98. We interpret this as being due to a loss of stabil-
ity of the radiated outward propagating waves. In parti- IIl. PATTERN COMPETITION

cular, for oure and B values, anabsolute instabilityof Several researchers reported on the competition between
the plane wave$19] occurs foro<—0.39, or equivalently  gpatial pattern§l0,18,21,22 In our system there is compe-
|k|=0.639 from the dispersion relatidiq. (3)]. We thus  ition between target and spiral waves. To study pattern com-
expect that, aer approaches this range, the stationary targehetition we perform 2D numerical solutions of the CGLE
branch becomes unstable, and our solution of By.will  \yith periodic boundary conditions and with a single inhomo-
jump to the breathing target branch. That stability of thegeneity of the form of Eq(5) placed in the middle of the
outward propagating waves is the relevant mechanism igjmyation domain. For these numerical computatiogss
supportled by our 1D radial solution; fﬁmear, but less than  gmgl compared to the periodicity lengti{r,/L=0.0318).
0.98 (with Neumann boundary conditions @ I = 100). The dominant pattern is predicted to be the pattern whose
These solutions show a spatially oscillatory behavior propagomain walls move outward, increasing the domain size at
gating inward fromr,,,, and decaying as it propagates to- the expense of the adjacent competing domains. Requiring
wardr=0. As & draws nearer to 0.98 these oscillations be-that the phase of the solution be continuous across domain
come larger, and reach in to smallevalues, approaching poundaries provides an equation for the velocity of the do-
r=0 at5=0.98. main walls[21], and this equation shows that, for the case
As § is decreased we observe that the bregthing targelhen B<«, as we have, the pattern with the lowest fre-
branch [computed from the 1D CGLES6)] terminates at  quency dominatek23]. Figure 4 shows the frequency of tar-
6=0.8. T_o gain insight into .the nature of this termination, get wavesw versusé obtained from the 1D radial CGLE,
refer to Figs. §a) and 3b), which show the frequencf and  [Eq. (6)], along with the spiral frequencyws (horizontal
oscillation amplitudeM,, of [A| atr=0 as a function o6.  |ine). Our prediction is that, if the system has a target fre-
As & approaches the critical valu&=0.8 from above, we quencyw+ higher than the spiral frequenays, then spiral
note that neithef) or M, approach zero. This is apparently waves will dominate; otherwise a target wave will dominate.
consistent with the bifurcation that produces breathing tarTg test this we perform two-dimensional numerical solutions
of Egs.(4) and (5) with periodic boundary condition@s in

gets being a saddle-node bifurcation, but is inconsistent

t=100 t =200 t =300 t =400 Refs.[16—18,21), and start with random initial conditions
50 A - . . 1 (A at each spatial point is randomly chosen from within the
N E o 1 LTS . . i unit circle in the complex planeThere are different behav-
s’ 5 . o« | . -./§05 iors observed in five distinct regions of the paramefer
—50 oS » gl : : 0 Region | has§<0.59, and spiral waves are the dominant

pattern, sincevs<wt. Figure 6 shows the time evolution for
50 (AYAS) a system withs= 0.5 where there is competition between the
y 0 t Q-??j 0 spiral waves ;=0.08145) and the stationary target waves
@ 4 (w1=0.1574). In region Il, 0.59 §<0.8, the stationary tar-
=30 - - get wave dominates. An example is shown in Fig. 7, where
=50 0 50 -50 0 50 -50 0 50 -50 0 50 6=0.7. Region Il is the overlap region with 6:85<0.97.
X X X X In this hysteresis region, we observe that spiral waves or a
FIG. 8. Time evolution of both the magnitudtop) and phase Stationary target wave can dominate. To which pattern the
(bottom of A for §=1.5, where spirals dominate over the breathing System goes is dependent on the initial conditions. The basin
target. This corresponds to region IV in Fig. 4. of attraction for the stationary target wave seems to become
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smaller asé is increased. That is, if we start with initial 2D evolution from random initial conditions yields a breath-
conditions close to a stationary target wave, then the statioring target wave; see Fig. 9, wheée= 3.

ary target becomes the dominant pattern of the system since
it has the lowest frequency. However, when we start with
random initial conditions, we only see the stationary target
wave solution whens is slightly larger than 0.8for ex- By introducing a localized inhomogeneity into the com-
ample, see Fig. 2, which evolved from random initial condi-plex Ginzburg-Landau equation, we have been able to pro-
tions); otherwise the system goes to spiral waves. This senduce two different kinds of target waves: a stationary target
sitive dependence on the initial conditions probably resultsvave, wherdA| remains constant in time; and a breathing
from the stationary target wave solution being near to thearget wave, whergA| in the central region of the target
absolute instability. In region IV, where 0.8975<2.43, o  oscillates periodically in time. Hysteresis is found to exist
is less thanw for the breathing target, and we obtain quasi-between these two solutions as the paramé&tsivaried. The
frozen spiral patterns as in region |. Figure 8 shows the spiraheoretical prediction that the lower frequency pattern domi-
formation whené= 1.5. Finally, in region V, with>2.43,  nates(for < «) describes well the competition between tar-
w1 for the breathing target solution is less thag, and our  gets and spirals in our 2D numerical simulations.

IV. CONCLUSION
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