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Target waves in the complex Ginzburg-Landau equation

Matthew Hendrey, Keeyeol Nam, Parvez Guzdar,* and Edward Ott†

University of Maryland, Institute for Plasma Research, College Park, Maryland 20742
~Received 28 March 2000!

We introduce a spatially localized inhomogeneity into the two-dimensional complex Ginzburg-Landau equa-
tion. We observe that this can produce two types of target wave patterns: stationary and breathing. In both
cases, far from the target center, the field variables correspond to an outward propagating periodic traveling
wave. In the breathing case, however, the region in the vicinity of the target center experiences a periodic
temporal modulation at a frequency, in addition to that of the wave frequency of the faraway outward waves.
Thus at a fixed point near the target, the breathing case yields a quasiperiodic time variation of the field. We
investigate the transition between stationary and breathing targets, and note the existence of hysteresis. We also
discuss the competition between the two types of target waves and spiral waves.

PACS number~s!: 82.40.Ck, 47.32.Cc, 47.54.1r
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I. INTRODUCTION

Numerous systems have been studied that are capab
spontaneously producing spatiotemporal patterns. In exp
ments, two of the most common patterns seen are sp
waves and target waves. Spiral waves are spirals that ste
rotate in time, while target waves consist of concentric c
cular waves that radiate radially outward from a source. S
ral waves appear in chemical reaction-diffusion systems s
as those involving the Belousov-Zhabotinsky reaction@1#
and catalytic reactions on surfaces@2#. In biology, slime
mold colonies ofDictyosteliumalso produce spiral wave
@3,4#. Spiral waves of the electric signal in the heart occur
the onset of ventricular fibrillation@5#. Spiral waves also
occur in planar dc driven semiconductor-gas discharge
tems @6#. Many of these same systems also exhibit tar
waves. For example, the Belousov-Zhabotinsky reaction s
ports target waves@7–9#, as do colonies ofDictyostelium@4#.
In these systems the existence of target waves is often~but
not always! attributed to the presence of local inhomogen
ities, for example a grain of dust or other impurity@8,10#.
For the Belousov-Zhabotinsky reaction, the number of tar
wave centers decreases when the chemical solution is
through finer filters@8#. In an experiment by Petrovet al.,
target waves are produced in the light-sensitive Belous
Zhabotinsky reaction by illuminating a subregion of the s
tem with a light source@11#. Theoretically, Hagan and other
stated that target wave solutions are stabilized when a lo
ized inhomogeneity is present@12#. In these works, targe
waves were studied in reaction-diffusion equations. Ma
researchers studied spiral waves in oscillatory media
means of the complex Ginzburg-Landau equation~CGLE!,
which is a generic equation describing spatially extend
systems in the vicinity of a Hopf bifurcation@13#. Previous
research produced target solutions due to boundary eff
@14#. In order to produce target waves in a CGLE descr
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tion, we introduce a suitable localized inhomogeneity. W
find two different types of target wave solutions. The first
a stationary target wave where the field variables vary p
odically at the frequency of the emitted outward propagat
waves. The second is a breathing target where, in additio
the frequency of the outward propagating waves, there is
additional superimposed temporal modulation at another
quency. We investigate the transition between these two
get wave types, and note the existence of hysteresis. We
discuss the pattern competition between the two types
target waves and spiral waves.

The homogeneous complex Ginzburg-Landau equatio

]A

]t
5mA2~11 ia!uAu2A1~11 ib!¹2A, ~1!

with m ~complex!, a ~real!, andb ~real! constants, describe
extended media in which the homogeneous state is osc
tory and near a Hopf bifurcation@13#. The real part of
the parameterm measures the deviation from the bifurcatio
point. The real part ofm gives the exponential growth rat
of homogeneous perturbations from theA50 state, and
the imaginary part ofm is a frequency shift. Typically
m is scaled to unity by the following transformation
A→ARe(m)AeiIm(m)t, r→r /ARe(m), and t→t/ARe(m). A
steadily rotating spiral solution to Eq.~1! with m51 has the
general form@15#

A~r ,t !5F~r !exp$ i @su1c~r !2vt#%. ~2!

The quantitys is a positive or negative integer, and is calle
the topological charge of the spiral. There is a 2ps phase
change ofA for a counterclockwise path around the spir
center (r 50). Stable spiral solutions exist for appropriatea
andb ands561 corresponding to a single-armed spiral.
order that the solution remain continuous and finite atr 50,
it is required thatA(r50,t)50. For smallr the real func-
tions F(r )[uAu and c(r ) behave as F(r );r and
dc(r )/dr;r . For larger the spiral wave asymptotes to
plane wave with wave numberk independent of r,
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k5dc/drur→` . Substituting a constant amplitude plan
wave solution,A; exp(ikr2ivt), into Eq. ~1!, with m51,
yields the dispersion relation

v5a1~b2a!k2, ~3!

and the boundary conditions that, asr→`, F(r )→A12k2

anddc(r )/dr→k.
In (a,b) space several different regions of solutions

Eq. ~1! exist. One such region is the quasifrozen regi
where spiral solutions are stable@16#. In this regime spirals
form from perturbations ofA50, and evolve to a quasifro
zen state in which many spirals form, each within there o
domain@see Fig. 1 which shows a quasifrozen solution o
tained at late time from a two-dimensional~2D! numerical
solution of Eq.~1! with periodic boundary conditions#. A
spiral’s domain is the region in space occupied by a spir
waves. Spiral domains are separated by narrow dom
walls, easily seen in the plot ofuAu of Fig. 1. The spiral
centers are seen as the dark spots in theuAu plot or as the
center of spiral waves in the phase plot of Fig. 1. The inte
of each domain is well approximated by Eq.~2!. After a

FIG. 2. Stationary target wave fora50.34, b521.45, n51,
d50.82, andr o54. The system starts with random initial cond
tions, and a stationary target dominates after a transient time~a!
The magnitudeuA(r )u does not go to zero at the center as it does
a spiral wave, but increases at the origin due to the larger valu
Re(m) at r 50. ~b! Phasef(r ). ~c! Radial profile obtained from the
1D radial equation@Eq. ~6!#. This profile is stationary in time.

FIG. 1. The magnitudeuA(r )u and phasef(r ) of a solution
to the homogeneous CGLE@Eq. ~1!# with m51, a50.34, and
b521.45 in the quasifrozen parameter regime. After a trans
time the solution has settled down to a very slowly evolving st
where the vortices and domain walls remain essentially station
f
e

n
-

’s
in

r

transient, the large domains become almost stationary
time; i.e., both the domain walls and the locations of th
spiral center evolve very slowly@17#.

II. TARGET WAVES

As we shall see, target wave patterns for the comp
Ginzburg-Landau equation result from localized inhomog
neities. We represent a localized inhomogeneity in the co
plex Ginzburg-Landau equation by makingm vary with
space@18#. We introduce inhomogeneity in both the real a
imaginary parts ofm. This corresponds to a spatially varyin
exponential growth rate and frequency shift, respectively
particular, we consider the complex Ginzburg-Landau eq
tion

]A

]t
5m~r !A2~11 ia!uAu2A1~11 ib!¹2A, ~4!

m~r !511~n1 id!expF2S r

r o
D 2G , ~5!

wherem(r ) is axially symmetric, anda, b, n, d, andr o are
real constants. Because of the large parameter space w
strict our attention to howd affects the system behavio
Two of our main findings are that in the quasifrozen regi
of (a,b) space two different types of target waves are se
and that the transition between the two types of target wa
is hysteretic.

Target waves do not have a phase singularity at their c
ter, as do spiral waves. A target wave can be thought o
having a topological charges50; i.e., no u dependence.
One of the two types of target wave solutions that we fi

r
of

FIG. 3. ~a! The magnitudeuA(r ,t)u is colorcoded as a function
of time and radial distance for the breathing target wave solut
The periodicity of the breathing target is easily visible. This figu
is obtained using the one-dimensional code with uniform init
conditions evolved for 1000 time units.~b! Radial profile foruAu at
times to , to1t/4, to1t/2, and to13t/4, where to51.2 and
t.2.8.
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hasuAu constant in time; in particular, this target solution
of the formA5FT(r )exp@icT(r)2ivTt# ~where the subscrip
T is to distinguish target waves!. We call this solution a
stationary target wave~though waves do propagate outward!.
Figure 2 shows a numerical stationary target solution at
parameter valuesa50.34, b521.45, n51.0, d50.82, and
r o54.0. For these parameters Re(m)52 at the origin
(r 50), compared with its faraway value of Re(m)→1 as
r→`. Far away from the origin uAu approaches its

FIG. 4. Target wave frequencyvT as a function of the param
eter d from solution of the 1D CGLE@Eq. ~6!#. The spiral wave
frequencyvs is also plotted wherevs50.081 45. Ford,0.3 the
system undergoes bulk oscillation at the frequencya50.34. For
0.3,d,0.8, the solution goes to a stationary target wave wh
frequency is apparently linearly related tod. There is an overlap
region of hysteresis for 0.8,d,0.97. Ford.0.97 the system goe
to the breathing target wave solution. When 2D numerical soluti
of the CGLE @Eqs. ~4! and ~5!# are evolved from random initia
conditions, there are five different regions of behavior observ
Region I produces spiral waves. Region II produces a station
target wave. Region III produces either spiral waves or a station
target wave depending on the value ofd and the initial conditions.
Region IV produces spiral waves. Region V produces a breath
target wave.

FIG. 5. ~a! Frequency of the breathing target wave oscillati
V. ~b! Amplitude of the breathing target wave oscillation measu
at the originMo . There is a finite jump in both the frequency an
amplitude of the breathing oscillation.
e

asymptotic value ofA12k2, wherek is the wave number of
the outward propagating target wave. For larger the equa-
tion becomes a homogeneous CGLE, and the target w
solution appoaches a plane wave solution with a dispers
relation given by Eq.~3!. The breathing target waves hav
magnitudes that oscillate sinusoidally in time in the region
the inhomogeneity. Figure 3~a! showsuAu as a function ofr
and t for the same parameter values ofa, b, n, and r o as
in Fig. 2, but now withd increased tod53. Figure 3~b!
shows the radial profile ofuAu at several different times. We
characterize the breathing target by measuring the freque
V52p/t and amplitudeMo of the oscillation ofuAu at the
origin.

In order to understand the relationship between the
tionary and breathing targets, we numerically determine
frequencyvT of the outward propagating target waves as
parameterd is varied. Since the target wave solution has
u dependence, we can obtainvT for the 2D system by solv-
ing the 1D radial CGLE:

] tA5@11~n1 id!e2r 2/r o
2
#A2~11 ia!

3uAu2A1~11 ib!S ]2

]r 2
1

1

r

]

]r D A. ~6!

We use a split-step method, discretizing both space and t
and apply Neumann boundary conditions atr 50 and
r 5r max5100. The larger asymptotic wave numberk is de-
termined by a linear fit of the phase ofA as a function ofr.
The frequencyvT is then given by the dispersion relation o
Eq. ~3!. Initially we start with uniform initial conditions,
uA(r ,t50)u5 const and the phasef(r ,t50)50, and evolve
the solution until the pattern is established. We then vard
in small stepsDd, keeping the other parameters fixed. Asd
is varied the final solution for the previousd is used as the
initial condition ford1Dd. In this way we attempt to follow
a particular branch of the solution~i.e., stationary targets
or breathing targets! for as long as possible. We do this ca
culation for both increasing and decreasingd. The results
are shown in Fig. 4. Ford,0.3 the system undergoes a bu
oscillation, where the magnitude is constant in time a
the phase far from the inhomogeneity is constant in spa
but varying in time with a frequency ofa. That is,
A5uAu exp(2iat), corresponding tok50 in Eq.~2!. Station-
ary target waves exist in the region of 0.3,d,0.98, and

e

s

d.
ry
ry

g

d

FIG. 6. Time evolution of both the magnitude~top! and phase
~bottom! of A for d50.5 showing spiral wave domination over th
stationary target wave. This corresponds to region I in Fig. 4.



n
g.

g

bi
rti

ge

he

pa
o-
e

rg

n

ly
ta

ent

n

een
-
m-
E
o-

ose
at

ring
ain

do-
se
e-
r-
,

re-

te.
ns

s
he
-

nt
r
he
es

ere

r a
the
asin
me

es

ng

is

7630 PRE 62HENDREY, NAM, GUZDAR, AND OTT
breathing target waves occur ford.0.8. Hysteresis betwee
the stationary and breathing target waves is shown in Fi
by the overlap region 0.8,d,0.98.

As d is increased we observe that the stationary tar
branch@computed from the 1D CGLE, Eq.~6!# terminates
at d.0.98. We interpret this as being due to a loss of sta
ity of the radiated outward propagating waves. In pa
cular, for our a and b values, anabsolute instabilityof
the plane waves@19# occurs forv,20.39, or equivalently
uku50.639 from the dispersion relation@Eq. ~3!#. We thus
expect that, asvT approaches this range, the stationary tar
branch becomes unstable, and our solution of Eq.~6! will
jump to the breathing target branch. That stability of t
outward propagating waves is the relevant mechanism
supported by our 1D radial solutions ford near, but less than
0.98 ~with Neumann boundary conditions atr 5r max5100).
These solutions show a spatially oscillatory behavior pro
gating inward fromr max, and decaying as it propagates t
ward r 50. As d draws nearer to 0.98 these oscillations b
come larger, and reach in to smallerr values, approaching
r 50 at d.0.98.

As d is decreased we observe that the breathing ta
branch @computed from the 1D CGLE~6!# terminates at
d.0.8. To gain insight into the nature of this terminatio
refer to Figs. 5~a! and 5~b!, which show the frequencyV and
oscillation amplitudeMo of uAu at r 50 as a function ofd.
As d approaches the critical valued.0.8 from above, we
note that neitherV or Mo approach zero. This is apparent
consistent with the bifurcation that produces breathing

FIG. 7. Time evolution of both the magnitude~top! and phase
~bottom! of A for d50.7, where the stationary target dominat
over spirals. This corresponds to region II in Fig. 4.

FIG. 8. Time evolution of both the magnitude~top! and phase
~bottom! of A for d51.5, where spirals dominate over the breathi
target. This corresponds to region IV in Fig. 4.
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gets being a saddle-node bifurcation, but is inconsist
with it being either a Hopf bifurcation~which would have
Mo50 at the criticald) or a saddle connection bifurcatio
~which would haveV50 at the criticald) @20#.

III. PATTERN COMPETITION

Several researchers reported on the competition betw
spatial patterns@10,18,21,22#. In our system there is compe
tition between target and spiral waves. To study pattern co
petition we perform 2D numerical solutions of the CGL
with periodic boundary conditions and with a single inhom
geneity of the form of Eq.~5! placed in the middle of the
simulation domain. For these numerical computationsr o is
small compared to the periodicity lengthL(r o /L50.0318).

The dominant pattern is predicted to be the pattern wh
domain walls move outward, increasing the domain size
the expense of the adjacent competing domains. Requi
that the phase of the solution be continuous across dom
boundaries provides an equation for the velocity of the
main walls @21#, and this equation shows that, for the ca
when b,a, as we have, the pattern with the lowest fr
quency dominates@23#. Figure 4 shows the frequency of ta
get wavesvT versusd obtained from the 1D radial CGLE
@Eq. ~6!#, along with the spiral frequencyvs ~horizontal
line!. Our prediction is that, if the system has a target f
quencyvT higher than the spiral frequencyvs , then spiral
waves will dominate; otherwise a target wave will domina
To test this we perform two-dimensional numerical solutio
of Eqs.~4! and ~5! with periodic boundary conditions~as in
Refs. @16–18,21#!, and start with random initial condition
(A at each spatial point is randomly chosen from within t
unit circle in the complex plane!. There are different behav
iors observed in five distinct regions of the parameterd.
Region I hasd,0.59, and spiral waves are the domina
pattern, sincevs,vT . Figure 6 shows the time evolution fo
a system withd50.5 where there is competition between t
spiral waves (vs50.081 45) and the stationary target wav
(vT50.1574). In region II, 0.59,d,0.8, the stationary tar-
get wave dominates. An example is shown in Fig. 7, wh
d50.7. Region III is the overlap region with 0.8,d,0.97.
In this hysteresis region, we observe that spiral waves o
stationary target wave can dominate. To which pattern
system goes is dependent on the initial conditions. The b
of attraction for the stationary target wave seems to beco

FIG. 9. Time evolution of both the magnitude~top! and phase
~bottom! of A for d53, where the breathing target dominates. Th
corresponds to region V in Fig. 4.
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smaller asd is increased. That is, if we start with initia
conditions close to a stationary target wave, then the stat
ary target becomes the dominant pattern of the system s
it has the lowest frequency. However, when we start w
random initial conditions, we only see the stationary tar
wave solution whend is slightly larger than 0.8~for ex-
ample, see Fig. 2, which evolved from random initial con
tions!; otherwise the system goes to spiral waves. This s
sitive dependence on the initial conditions probably res
from the stationary target wave solution being near to
absolute instability. In region IV, where 0.97,d,2.43, vs
is less thanvT for the breathing target, and we obtain qua
frozen spiral patterns as in region I. Figure 8 shows the sp
formation whend51.5. Finally, in region V, withd.2.43,
vT for the breathing target solution is less thanvs , and our
r-
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2D evolution from random initial conditions yields a breat
ing target wave; see Fig. 9, whered53.

IV. CONCLUSION

By introducing a localized inhomogeneity into the com
plex Ginzburg-Landau equation, we have been able to p
duce two different kinds of target waves: a stationary tar
wave, whereuAu remains constant in time; and a breathi
target wave, whereuAu in the central region of the targe
oscillates periodically in time. Hysteresis is found to ex
between these two solutions as the parameterd is varied. The
theoretical prediction that the lower frequency pattern do
nates~for b,a) describes well the competition between ta
gets and spirals in our 2D numerical simulations.
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