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Spiral wave dynamics in oscillatory inhomogeneous media
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The effect of a long length scale static inhomogeneity on spiral wave dynamics is studied in the two-
dimensional complex Ginzburg-Landau equation. We find that the inhomogeneity leads to the formation of a
dominant spiral domain that suppresses other spiral domains, and that the spiral vortices slowly drift in the
presence of an inhomogeneity with a velocity that is proportional to the local parameter gradients. We derive
an expression for the spiral vortex drift velocity and present examples of both fixed point and limit cycle
attractors of the spiral vortices.

PACS number~s!: 82.40.Ck, 47.32.Cc, 47.54.1r
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I. INTRODUCTION

In many situations it has been observed that spiral w
patterns play a dominant role in system dynamics. Exam
of spiral waves can be found in areas of biology, chemis
and physics. Spiral waves of the electrical signal in the he
occur in cardiac arrythmias@1,2#. Chemical reaction-
diffusion systems, such as the Belousov-Zhabotinsky re
tion, exhibit spiral waves@3#. Spiral waves also appear i
slime mold colonies ofDictyostelium@4,5# and planar dc
driven semiconductor-gas discharge systems@6#. Our work
investigates the effects of a spatial inhomogeneity of the s
porting medium on spiral waves. Most physical systems
have an inhomogeneity. For example, spiral waves in car
arrythmias encounter inhomogeneities inherent in the car
tissue due to cell variations. An inhomogeneity in a chemi
reaction-diffusion system can arise from a temperature
dient or inhomogeneity of the gel or porous medium
which the experiments are often performed. References@7,8#
studied the light-sensitive Belousov-Zhabotinsky react
and varied the chemical reaction rate using its sensitivity
light intensity. We suggest that some of the results of
paper might be conveniently tested by arranging the li
intensity to vary spatially across the entire system. Anot
test of our results could use the method described in@9#,
which uses an inkjet printer to apply a chemical catalyst
the Belousov-Zhabotinsky reaction, to create a spati
varying catalyst. InDictyosteliumexperiments, Ref.@5# re-
ports an excitation inhomogeneity due to the sorting
prestalk and prespore cells.

In the past much work has been done to investigate in
mogeneities in spiral wave systems covering analytical,
perimental, and numerical studies. Analytic work has look
at the effects of parameter gradients on spirals, includ
drift of spiral centers~vortices! @10,11#. Inhomogeneities
have also been studied in biological@5,12# and chemical
@7,9,13,14# experiments. Numerical studies of inhomogen
ities cover drift of spiral centers due to parameter gradie
@15–17# and localized inhomogeneities@18–20#.

In this paper we report on spiral waves in oscillatory m
dia under the influence of a time independent, slowly vary
spatial inhomogeneity. After spirals first form, the inhom
geneity causes spirals that are favorably located to wi
their domains at the expense of less favorably located spi
PRE 611063-651X/2000/61~5!/4943~11!/$15.00
e
es
,
rt

c-

p-
n
c

ac
l

a-

n
o
r
t
r

n
ly

f

o-
x-
d
g

-
ts

-
g

n
ls.

The spiral vortices also slowly drift due to the inhomogen
ity and results for the velocity of the spiral vortices are giv
in terms of the gradients of the inhomogeneity.

A very general model exhibiting spiral wave solutions
the two-dimensional complex Ginzburg-Landau equat
~CGLE!,

] tA5mA2~11 ia!uAu2A1~11 ib!¹2A, ~1!

where A(x,y,t) is complex. This equation describes e
tended media in which the homogeneous state is oscilla
and in the vicinity of a Hopf bifurcation@21# ~though its
qualitative behavior often seems to reproduce behavior
real systems that are not near a Hopf bifurcation!. For a
homogeneous system the parametersa and b are real con-
stants. Furthermore, the imaginary part ofm5g1 iV can be
eliminated by the replacement,A→Aexp(iVt), while g can
be scaled to unity by the replacementsx→x/Ag, t→t/g,
A→AgA. Thus in the case of a homogeneous medium
suffices to considerm51 in Eq. ~1!. A steadily rotating spi-
ral wave solution to Eq.~1! with m51 has the general form
@22#

A~r ,u,t !5F~r !exp$ i @su2vot1c~r !#%. ~2!

The topological charges561 results in a 2ps phase
change ofA for a counterclockwise path around the vort
center (r 50). In order thatA be continuous and finite a
such a phase singularity atr 50, we must have thatA(r
50,u,t)50. The real functionsF(r )[uAu and c(r ) have
the asymptotic behavior asr tends to zero ofF;r and
dc/dr;r . For larger, the spiral wave asymptotes to a plan
wave of wave numberko . Substituting a nonlinear constan
amplitude plane wave solution,A;exp(ikor2ivot), into Eq.
~1! yields the dispersion relationvo5a1(b2a)ko

2 and the
boundary condition forF(r ) for large r. Thus, asr goes to
infinity, dc/dr→ko andF→A12ko

2.
In an appreciable range of (a,b) parameter space, calle

the quasifrozen parameter regime, spiral waves are foun
be stable solutions and naturally form from perturbations
A50 @23#. In this regimeA evolves toward a quasifroze
state in which many spiral waves form, each with its ow
domain, whereA is approximately described by Eq.~2!. A
spiral’s domain is simply the region of space that its wav
4943 ©2000 The American Physical Society
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4944 PRE 61HENDREY, OTT, AND ANTONSEN
occupy. Spiral domains are separated by narrow dom
walls, and after a transient the positions of the domain w
and spiral vortices evolve very slowly@24#. Figures 1~a! and
1~b! show the phase and magnitude ofA, respectively, for
the homogeneous case (m51) after evolving from random
initial conditions (A at each grid point is randomly chosen
the unit circle in the complex plane!. In Fig. 1 many spirals
have formed, each with its own domain. In Fig. 1~a! the
spiral vortices are the center of the spiral waves. For F
1~b!, spiral vortices can be seen as the dark spots, co
sponding touAu50, and the domain walls are the ridges
lighter shade, corresponding to largeruAu. Each spiral has
formed with the same frequencyvo . Away from the vortices
and wallsuAu is approximately constant,uAu.A12ko

2.
In other (a,b) parameter regimes, turbulent solutions a

possible@23,25#. Turbulent solutions are characterized by t
continual creation and annihilation of spiral vortices. As
result, no spiral waves fully develop. The core accelerat
regime is found for systems with large values ofubu and is
characterized by an instability of a spiral wave solution
acceleration of the vortex core leading to disordered~turbu-
lent! solutions. For large values ofa the system is in a tur-
bulent regime whose onset is caused by absolute instab
of the larger plane waves emanating from the spirals.

We now inquire about the effects of an inhomogene
that occurs over a large length scale. The expansion yield
the CGLE for a homogeneous medium presumes a situa
where the growth rate of the instability is small~i.e., just past
a Hopf bifurcation!, and this small growth is balanced in th
equation by weak~hence lowest order! nonlinearity given by
the uAu2A term and by weak spatial coupling given by th
¹2A term. A small amount of inhomogeneity causes t
small parameter measuring the deviation from the Hopf
furcation to vary significantly in space. Hence the lowe
order effect of the inhomogeneity on Eq.~1! is that the local
frequency and growth rate of excitation depend on spa
Thus, we set

m~x!5g~x!1 iV~x!, ~3!

whereg(x) andV(x) are slowly varying real functions rep
resenting the growth rate and frequency shift, respectiv
To lowest ordera andb are constant.

FIG. 1. The phase~a! and magnitude~b! of A at time t
513 000 for the homogeneous case witha50.34 andb521.45
starting from random initial conditions in the unit circle in the com
plex plane. The system has evolved to a quasifrozen state wher
vortices@black spots in~b!# and domain walls@white ridges in~b!#
evolve very slowly.
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The remaining sections of the paper discuss the effect
the inhomogeneity of Eq.~3! in the quasifrozen paramete
regime. Section II describes the case in whichg(x).0 ev-
erywhere, and we discuss the formation of a dominant sp
domain and provide results for the drift velocity of spir
vortices due to the inhomogeneity. In Sec. III we provi
qualitative results for the case in which the sign ofg(x) is
different in different regions of space.

II. QUASIFROZEN REGIME; gÌ0

We begin our investigation of an inhomogeneity by stud
ing the CGLE in the quasifrozen parameter regime w
g(x).0 everywhere. We observe that a slow, spatial va
tion of m(x) has two profound effects on the system. T
first and perhaps the more striking effect of the inhomoge
ity is the formation of a dominant spiral domain. A domina
spiral domain is a domain that increases its size~at the ex-
pense of other domains! until it fills the entire system. We
show that this is due to an inhomogeneity-induced freque
difference between spirals which results in motion of t
domain walls. The second effect of the inhomogeneity is
drift of the spiral centers. The velocity of the drift is linear
related to the gradients ofm(x) and occurs on a longer tim
scale than the domain wall motion and the formation of
dominant spiral domain.

We choose the parameter set from the quasifrozen reg
of a50.34, b521.45 and study the effect of an inhomog
neity of the following form@26#:

g~x!511c1 sinS y

40D sinS x

40D ,

~4!

V~x!5c2 sinS y

40D cos2S x

80D1vo@g~x!21#

with c150.3 andc250.05. This choice of (a,b) gives a
spiral wave frequencyvo50.081 45 for the homogeneou
system. We choose this form of the inhomogeneity in or
to satisfy three conditions. The first is periodicity, so th
periodic boundary conditions can be used in the numer
solution of Eq.~1!. The second condition is that the inhom
geneity should correspond to sufficiently slow, spatial var
tion in order that perturbation theory can be applied. T
third condition is that the maxima and minima ofg(x) and
V(x) do not coincide. This provides a more general form
the inhomogeneity.

A. Dominant spiral formation

We begin this section by showing the formation of t
dominant spiral for the inhomogeneity of Eq.~4!. The system
is solved on the domain@240p,40p#3@240p,40p#,
which is one wavelength of the inhomogeneity andg(x)
51 andV(x)50 on the boundary. As with Fig. 1, the initia
condition for each (x,y) is randomly chosen from points in
the unit circle of the complex plane. The inhomogeneity
present from the beginning. Figure 2 shows the time evo
tion of uA(x,t)u normalized byAg(x) and illustrates the for-
mation of a dominant spiral~labeledD in Fig. 2!. The nor-
malization uA(x,t)u/Ag(x) is an extension of the

the
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PRE 61 4945SPIRAL WAVE DYNAMICS IN OSCILLATORY . . .
homogeneous case (g5const) in whichuA(x,t)u/Ag from
the spiral wave solution far from the vortex is a consta
~depending ona andb), independent ofg.

As in the homogeneous case, the inhomogeneous
initially forms many spiral vortices@see Fig. 2~a!#. The in-
homogeneityg(x) does influence the initial distribution o
spiral domains since some regions have a faster growth
than others, but the system still initially generates many s
ral domains. The fact that many domains can form is a re
of all spirals having exponential growth. For example, co
sider the spirals labeledD andL in Fig. 2. For the dominan
spiral D to grow and dominate the system before the les
spiral L can grow would require that spiralD grows and
propagates its waves to the location of spiralL before spiral
L has the time to grow. This, however, does not occur si
the waves ofD propagate toL in a time greater than tha
necessary to establishL ~this might not be the case if we ha
one region of space with a much larger initial amplitude th
the rest of space!.

Whereas the homogeneous case creates spirals all wit
same frequencyvo5vo(a,b), the inhomogeneity cause
frequency differences between spirals at different locatio
Assuming thatg(x) andV(x) vary slowly in space, substi
tuting the transformation

A~x,t !5Ag~x!Â~ x̂!expS 2 i @vog~x!2V~x!#
t̂

g~x!
D ,

~5!

wherex̂5Ag(x)x and t̂5g(x)t into Eq. ~1!, and neglecting
terms involving¹g(x), we conclude that local spirals exis
and are given by the homogeneous equation with the solu

FIG. 2. Time evolution ofuA(x,t)u/Ag(x) for the inhomogene-
ity given by Eq. ~4!. The system is started from random initi
conditions chosen in the unit circle of the complex plane. The
homogeneity is present from the beginning. These time snaps s
both the dominant spiral domain formation~labeledD) at the ex-
pense of the lesser spiral domains~one of which is labeledL) and
the subsequent drift of vortexD.
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Ā( x̂, t̂ )5Â( x̂)exp(2ivot̂). Thus it is expected that the fre
quency associated with a spiral vortex atx is well approxi-
mated by

v~x!5vog~x!2V~x! ~6!

when the inhomogeneity length scale is much greater t
the vortex diameter. As shown below, this frequency diff
ence between spirals at different locations, Eq.~6!, results in
the motion of the domain walls observed in Fig. 2. We no
that an inhomogeneity is only one of several ways in wh
spirals can develop with different frequencies. Arans
et al., considering the homogeneous CGLE, investigate
stability of a symmetric two-spiral state against asymme
perturbations@27#. They find that the situation is unstable
that a slight perturbation from symmetry causes a small
quency difference between the spirals, leading one of th
to eventually dominate. Namet al. introduce a chiral sym-
metry breaking term, which results in spirals with freque
cies dependent on their topological charge@28#.

To investigate the motion of the domain walls, we co
sider the vortices to be approximately stationary in space.
shown in the next subsection, there is an inhomogene
induced vortex velocity which is of orderu“g/gu. When the
domain size is much larger thanu“g/gu21, the domain wall
velocity will turn out to be much faster than the vortex v
locity, and our assumption of stationary vortices is a go
approximation. We begin with the condition that the phase
A must match across a domain wall@24,28#. For a homoge-
neous system, the phase of the interior of any particular
main is described by an Archimedean spiral@24#, f i5s iu i
1kir i2v i t1Ci , whereu i and r i are the polar coordinate
measured from the center of thei th spiral;s i , ki , v i , and
Ci are the topological charge, radial wave number, angu
frequency, and phase constant, respectively, of thei th spiral.
For a slowly varying inhomogeneity, the phase ofA can be
found by a WKB approach since the wavelength of the
homogeneity is much greater than the wavelength of the
ral wave. Locally, we can assume plane wave solutions
the form ei [k(x)•x2vt] and, plugging into Eq.~1!, obtain a
local dispersion relation

v5ag~x!2V~x!1~b2a!k2. ~7!

This local dispersion relation leads to the ray equations

dx

dt
5“kv52~b2a!k, ~8!

dk

dt
52“v5“@V~x!2ag~x!#. ~9!

Since the phase ofA is not defined at the vortex, the initia
conditions for Eqs.~8! and~9! must be taken at a distanceRo
from the vortex centerxv . The initial condition forx(t50)
is thenxv1Ro . To find the initial condition fork(t50), we
set the local dispersion relation, Eq.~7!, evaluated atxv
1Ro equal to the asymptotic frequency for a vortex locat
at xv , Eq. ~6!,

ag~xv1Ro!2V~xv1Ro!1~b2a!k25vog~xv!2V~xv!.
~10!

-
ow
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This is valid as long asRo is much greater than the core size of the vortex. We also know thatk(t50)5kr(t50)r̂
1(s/Ro) û. This result, combined with Eq.~10!, gives the initial condition forkr(t50) as

kr~ t50!56Avog~xv!2V~xv!1V~xv1Ro!2ag~xv1Ro!

b2a
2S s

Ro
D 2

, ~11!
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where the sign ofkr is chosen so that the group velocity@Eq.
~8!# is radially outward, i.e., the vortex is a source of wav
The phase of thei th spiral is given by

f i5E
G i

k i~r i !•dr i2v i t1Ci , ~12!

where the pathG i over which the integration is performed
determined by the solution of the ray equations, Eqs.~8! and
~9!, with the initial conditions ofx(t50)5xv1Ro and k(t
50)5kr(t50)r̂1(s/Ro) û, wherekr(t50) is given by Eq.
~11!.

For two spirals~labeledi 51 and i 52) that share a do
main wall, the phase matching condition gives at the posit
r on the domain wall,

S1~r !2v1t1C15S2~r !2v2t1C2 ,

where Si(r )5*G i
k i(r i)•dr i . We define the equiphase lin

function f (r )5S1(r )2S2(r ) @28#. The normal velocity of
the domain wall is then@29#

v5
v12v2

u“ f u
“ f

u“ f u
, ~13!

whose magnitude can be written as

v5
v12v2

k1,'1k2,'
, ~14!

wherek1,' andk2,' are the wave-number vector componen
normal to the domain wall evaluated at the domain wall, a
the reference positive direction points from region 1 to
gion 2. The wave-number componentsk1,' andk2,' can have
either a positive or negative sign depending on the direc
of k1,2 that is chosen to satisfy an outward group veloci
Eq. ~8!. For our systemb,a, making the wave-numbe
componentsk1,' ,k2,',0. From Eq.~14!, we see that ifv2
,v1 thenv,0 and the domain wall will move away from
spiral vortex 2 and toward vortex 1. Ifv1,v2 then v.0
and the domain wall will move away from spiral vortex
Thus the domain walls of the spiral vortex with the lowe
frequency move outward.~For b.a the situation is re-
versed.!

Hence, as time proceeds, the domain of the spiral vo
with the lowest frequency gets bigger, and one expects
eventually this domain will become dominant@30#. For the
particular system of Eq.~4! the frequency of a spiral locate
at x is

v~x!5vo2c2sinS y

40D cos2S x

80D . ~15!
.

n

d
-

n
,

t

x
at

The lowest frequency spiral, and thus the predicted domin
spiral, will be the spiral that is closest to the minimum of E
~15!, (0,20p). Indeed, looking at Fig. 2~b!, we see that the
dominant spiral~labeledD in Fig. 2! is the spiral closest to
the point (0,20p). Once the domain wall has been push
close to the lesser spiral@labeledL in Fig. 2~b!#, there is a
strong interaction between the lesser spiral vortex and
domain wall @15#. We then observe that the domain wa
sweeps away spiralL ’s vortex at the speed of the doma
wall, which now becomes

v5
vL2vD

kD,'
, ~16!

where theL and D subscripts denote quantities character
ing lesser and dominant spirals. Equation~16! results from a
similar argument to the derivation of Eq.~14! except that
now we take theL vortex to move with the same speed as t
domain wall. We observe a shift invL as a result of the
interaction with the wall. As time proceeds further,L is
swept into a domain wall and occupies a negligible dom
area. Furthermore, vortices of opposite charge embedde
the domain walls merge and annihilate one another@Figs.
2~b! and 2~c!#. Thus, after some time all the lesser spirals g
swept away and the dominant spiral domain occupies ne
all the area@Fig. 2~c!#.

The difference in frequency of spirals, Eq.~6!, results in
the motion of the domain walls that leads to the formation
a dominant spiral domain. Two different regimes of motio
similar to those described in Ref.@15# for excitable media,
are observed. Initially, when both spiral vortices are far fro
the domain wall, each spiral vortex is unaffected by the ot
and the domain wall moves with a velocity given by E
~13!. Once the domain wall comes close enough, within o
wavelength, to the lesser spiral, there is a very strong in
action between the domain wall and the lesser spiral vor
causing the lesser spiral to be swept away at the speed o
domain wall.

B. Drift of spiral vortices

Another motion of the spiral vortices, independent fro
the short-ranged interaction with a domain wall, also occu
This motion is the drift of spiral vortices due to the inhom
geneity. For the case of a long inhomogeneity length sc
the drift of vortices due to the inhomogeneity is slow com
pared to the domain wall motion and the motion of the les
spiral vortices due to domain wall interactions discussed
the previous subsection. In that subsection the slow drif
vortices due to the inhomogeneity was neglected. The s
inhomogeneity-induced spiral motion can be seen by co
paring Fig. 2~b! to Fig. 2~d! and observing the dominan
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PRE 61 4947SPIRAL WAVE DYNAMICS IN OSCILLATORY . . .
spiral’s drift to the left. In the case of an inhomogeneity w
a scale length much greater than 1, the drift velocity will
linearly related to the gradient ofm(x)5g(x)1 iV(x).
Since, in experiments, the frequencyv(x) of a spiral is more
accessible to measurement than the frequency shiftV(x), we
recast the inhomogeneity into an inhomogeneity of
growth rateg(x) of homogeneous perturbations fromA50
and an inhomogeneity of the frequencyv(x), Eq. ~6!;

m~x!5g~x!~11 ivo!2 iv~x!.

„Another strong reason for preferring use of“v, rather than
“V, in our formulation is that it simplifies the analysis@e.g.,
see Eq.~24!#.… The drift velocity of a spiral vortex depend
only on the local properties@i.e.,“g(x) and“v(x)] of the
inhomogeneity@10#. A general form of the drift velocity of a
spiral vortex located atxo which is linear in the gradients o
the inhomogeneity is

v~xo!52mgi
“g~xo!

g~xo!
1smg'ẑ3

“g~xo!

g~xo!

2mvi
“v~xo!

g~xo!
1smv'ẑ3

“v~xo!

g~xo!
, ~17!

where s is the topological charge of the vortex. As wi
become evident from the subsequent analysis, by writingv in
this form @in particular, by our division of the right side b
g(xo) in Eq. ~17!#, the m coefficients are independent ofs
and of the functionsg(x) and v(x), and they depend only
on a andb.

1. Determining the m’s due to gradient of growth rate

We now solve for the velocity coefficients correspondi
to the gradient of the growth rateg(x), i.e., mgi andmg' .
Therefore for this section“v(x)50 for all x. We assume
that a transformation exists between the inhomogeneous
ral wave solution and the homogeneous solution. We sh
that this transformation occurs only for a specific value
the velocity of the spiral vortex.

We begin by using the assumption of a slow spatial va
tion of the inhomogeneitym(x) and Taylor expand about th
spiral vortex locationxo ,

m~x!.@g~xo!1x1•“g~xo!#@11 ivo#2 iv~xo!,

wherex15x2xo . For simplicity, we setg(xo)51 @31#, giv-
ing the inhomogeneity

m~x!.@11x1•“g~xo!#@11 ivo#2 iv~xo!. ~18!

We substitute Eq.~18! into the original equation~1! and
apply a similar transformation as in Eq.~5!,

A~x1 ,t !5AG~x2!A2~x2!exp@2 iv~xo!t2#, ~19!

x25x12vt,

t25t,

where G(x2)511x2•eg and eg5“g(xo). This transforms
the system into a comoving frame wherev is the velocity of
e

pi-
w
f

-

the spiral vortex in the original system. By assuming thatuegu
and uvu are ofO(e) and neglecting terms ofO(e2), Eq. ~1!
becomes

2 ivoA22v•“2A25A22~11 ia!uA2u2A2

1G23/2~x2!~11 ib!¹2
2@AG~x2!A2#,

~20!

where the expansions forG(x2) out to O(e) were used. We
see that Eq.~20! is almost in the form of the homogeneou
system except for the v•“2A2 and G23/2(x2)(1
1 ib)¹2

2@AG(x2)A2# terms. In order to reduceG23/2(1
1 ib)¹2

2@AGA2# to a term of the form (11 ib)¹2
2A2 as in

the original CGLE, we make the following nonlinear coord
nate transformation:

x35x21~x2
22y2

2!egx/41x2y2egy/2,

y35y21~y2
22x2

2!egy/41x2y2egx/2,

t35t2 ,

A2~x2!5A3~x3!exp@ ike•x3#,

whereukeu is of orderO(e). This coordinate transformation
gives

2 ivoA32v•“3A35A32~11 ia!uA3u2A3

1~11 ib!@¹3
2A31~2ike1eg!•“3A3#.

This equation reduces to the same form as the homogen
system if the“3A3 terms cancel. Thus the drift velocityv is

2v5~11 ib!@2ike1eg#,

which upon solving gives

ke52beg/2,

v52~11b2!eg . ~21!

Transforming back to the original coordinate frame and
lowing g(xo) to be any positive value gives the velocity of
spiral vortex atxo as

v~xo!52~11b2!
“g~xo!

g~xo!
. ~22!

Comparing Eq.~22! to Eq. ~17! we see that

mgi511b2, ~23!

mg'50. ~24!

By applying a set of transformations on the inhomog
neous system, we have found the drift velocity of spiral v
tices due to an inhomogeneity in the growth rate, Eq.~22!.
Spiral vortices move parallel to the gradient of the grow
rate when there is no gradient in the frequency.
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4948 PRE 61HENDREY, OTT, AND ANTONSEN
2. Determining the m’s due to gradient of frequency

Having solved for the velocity coefficientsmgi andmg'

in the preceding section, we now solve for the coefficie
due to the gradient of the frequency,mvi andmv' . We use
a numerical technique to find these coefficients. We also g
a similarity transformation@22# that relates the values o
mvi(a,b) andmv'(a,b) at a given (a,b) to their values on
a one-parameter family of (a,b) values. Thus if themv’s
are known~or computed! along a line in (a,b) space, then
the transformation gives themv’s for an area in (a,b) space.

The numerical procedure used to calculate the drift vel
ity coefficients is similar to that outlined in@25#. We derive a
set of perturbation equations and integrate them out to la
r. We match this solution to the asymptotic solution for lar
r to obtain a set of matching constants~denoted asC(a) and
C(b) below!. The requirement that the perturbation rema
bounded determines the velocity of the spiral vortices
terms of these matching constants.

We begin by assuming that the solution to the CGLE w
the inhomogeneity is a perturbation of the homogene
CGLE solution~2!. Without loss of generality we also set th
inhomogeneity to be linear in thex direction only, i.e.,m
511ex wheree5e r1 i e i is complex. Transforming to the
comoving frame, we begin with the equation,

] tA2v•“A5~11ex!A2~11 ia!uAu2A1~11 ib!¹2A.
~25!

We insert the ansatz

A~r ,u,t !5@a~r !~11Lxr cosu1Lyr sinu!

1u~r ,u!#exp$ i @su2vot1F~r ,u!#%

into Eq. ~25!, where F(r ,u)5fx(r )cosu1fy(r)sinu and
Lx ,Ly ,fx ,fy are real. For simplicity we also sets51. We
assume that

v,F,Lx ,Ly ,u

all are of orderO(e). Collecting terms ofO(e0) gives

@~11 ivo!2~11 ia!uau21~11 ib!¹2#a exp@ i ~u2vot !#

50.

This is the unperturbed equation with solutiona(r )exp@i(u
2vot)#. Collecting terms ofO(e) gives

2~ ivo11!u1~11 ia!~2uau2u1a2ū!

2~11 ib!S ¹2u1
2i

r 2

]u

]u
2

u

r 2D
5H aer 22~11 ia!uau2aLr 1S a82

a

r D n1~11 ib!

3Ff8S 2ia81 i
a

r D1 iaf92
3ia

r 2
f

1S 2a82
2a

r DLG J exp~ iu!

2
1H aer 22~11 ia!
s

e

-

e

s
n

s

3uau2aL̄r 1S a81
a

r D n̄1~11 ib!

3F f̄8S 2ia81 i
a

r D1 iaf̄91
ia

r 2
f̄

1S 2a81
2a

r D L̄G J exp~2 iu!

2
, ~26!

where L5Lx2 iLy , f(r )5fx(r )2 ify(r ), and n5vx
2 ivy . The prime denotes differentiation with respect to t
argument and the bar denotes the complex conjugate. S
the only angular dependence in Eq.~26! is exp(iu) and
exp(2iu), we now let

u~r ,u!5uo~r !1u1~r !exp~ iu!1u2~r !exp~2 iu!.

We also substitutefx(r )5r 2gx/2 and fy5r 2gy/2 where
gx ,gy are real constants into Eq.~26! and collect terms of
the same angular dependence. We express the resulting e
tions in terms of the following operators@32#, whose coeffi-
cients depend onr and the zeroth order solutiona(r ):

l 252~11 ib!¹ r
22~ ivo11!12~11 ia!uau2,

l o5 l 21~11 ib!/r 2,

l 15 l 214~11 ib!/r 2,

g5~11 ia!a2.

This gives the following equations:

l ouo1gūo50, ~27!

l 1u11gū25
1

2 H nS a82
a

r D1~11 ib!F ia

2
g12S a82

a

r DLG
1@ae22~11 ia!uau2aL

1~11 ib!2ia8g#r J , ~28!

l̄ 2ū21ḡu15
1

2 H nS ā81
ā

r
D 1~12 ib!

3F25i ā

2
g12S ā81

ā

r
DLG

1@ āē22~12 ia!uāu2āL

2~12 ib!2i ā8g#r J , ~29!

where we have taken the conjugate of the exp(2iu) compo-
nent to obtain Eq.~29!. For larger, a(r )→A12ko

2eikor . In
order that the source terms in Eqs.~28! and ~29! that vary
like r should vanish for larger, we letLy5gy50 and
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L5Lx5
be r2e i

2~b2a!~12ko
2!

,

g5gx5
e i2ae r

2~b2a!ko
.

We now look at the behavior of Eqs.~28! and ~29! near
the origin in order to determine the initial conditions need
to integrate them. The radial dependence of the unpertu
solution a(r )5F(r )eic(r ) near the origin varies likea(r )
;r . Substituting this behavior fora(r ) into Eqs.~28! and
~29! and keeping only order unity terms gives

¹ r
2u12

4

r 2
u150, ~30!

¹ r
2ū252F8~0!S n

12 ib
12L D , ~31!

where F8(0) is the derivative ofF(r ) from the homoge-
neous solution~2! evaluated atr 50. The integration of Eqs
~30! and ~31! under the conditions thatu1(0)50 and
ū2(0)50 ~the field A must vanish at the vortex! gives the
following solutions for smallr:

u1~r !.hr2,

ū2~r !.2r 2F8~0!S n

12 ib
12L D ,

with h an arbitrary constant.
To find the asymptotic solution of the perturbation equ

tions, we look at their behavior for larger, which is de-
scribed by taking the asymptotic limit of Eqs.~28! and~29!,
i.e., ¹ r

2→] r
2 , a(r )→A12ko

2eikor , and the 1/r 2 in l 1 can be

dropped. We letu15q1exp@r(l1iko)# and ū25q̄2exp@r(l
2iko)# and obtain the characteristic equation@32#

l$l3~11b2!12l@2ko
2~11b2!2~11ab!~12ko

2!#

14ko~b2a!~12ko
2!%50. ~32!

The cubic polynomial inside the curly brackets has eit
three real roots or one real and two complex conjugate ro
In both situations, two of the roots will have positive re
parts and the other root will have a negative real part.
refer to the case for which two of the roots are comp
conjugate pairs as the oscillatory range@25# and restrict our-
selves to this case. In this regime the asymptotic solutio

u15C(a) exp@~la1 iko!r #1C(b) exp@~lb1 iko!r #,
~33!

whereC(a) andC(b) are constants andla5l̄b with Re(la)
.0.

In order that the perturbation remains bounded we req
thatC(a)505C(b). Since Eqs.~28! and~29! are linear ine r ,
e i , andn, the full asymptotic solution ofu1 ~i.e., C(a) and
C(b)) is given by a linear superposition of solutions for t
four cases
d
ed

-

r
ts.
l
e
x

is

re

e r51,e i50,n50,h50,

e r50,e i51,n50,h50,

e r50,e i50,n51,h50,

e r50,e i50,n50,h51,

where the last case is for the homogeneous equations~right
hand side equals zero!. For each of these cases, consta
Cj

(a) and Cj
(b) are found by integrating Eqs.~28! and ~29!

outward from the spiral defect and fitting to the asympto
solution ~33!, where j 5r ,i ,n,h, corresponding to the first
second, third, and fourth of the situations listed above.
order that the perturbationu remains bounded it is necessa
that

FC(a)

C(b)G5e rFCr
(a)

Cr
(b)G1e iFCi

(a)

Ci
(b)G1nFCn

(a)

Cn
(b)G1hFCh

(a)

Ch
(b)G50.

This gives two equations with two unknowns,n andh. We
can then solve forn5vx2 ivy to find the velocity in terms of
the gradients of the inhomogeneity,e r ande i , and thus find
the m coefficients.

For the specific example shown in Fig. 2 (a50.34,b
521.45), mvi51.212 andmv'520.550. The results for
the velocity coefficientsmvi andmv' for b521 versusa
are shown in Fig. 3~a!. This procedure also finds the velocit
coefficientsmgi and mg' and shows good agreement wi
Eqs.~23! and~24!, @see Fig. 3~b!#. Having now found all the
velocity coefficients, the velocity of a spiral vortex located
x is

v~x!52~11b2!
“g~x!

g~x!
2mvi

“v~x!

g~x!
1smv'ẑ3

“v~x!

g~x!
.

~34!

The numerical computation ofmvi(a,b) andmv'(a,b)
of Fig. 3~a! gives these coefficients forb521 and 0.8>a
>20.05. It is of interest to consider other (a,b) values.
Fortunately, an analytic transformation, previously used@22#
for the standard CGLE~without inhomogeneity!, can be
adapted for this purpose. In particular, given knowledge
mvi andmv' for a particular set of (a,b) parameter values
it is possible to extend this knowledge to knowledge ofmvi
andmv' at all points on a curve in (a,b) parameter space

FIG. 3. ~a! Velocity coefficientsmv' andmvi plotted versusa
with b521. ~b! Velocity coefficientsmgi andmg' plotted versus
b with a50.43. Shows both the numerically computed values (
and theoretical predictions~solid line! from Eqs.~23! and ~24!.
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4950 PRE 61HENDREY, OTT, AND ANTONSEN
@where the curve passes through the original (a,b) values#.
Thus the information in Fig. 3~a!, which givesmvi andmv'

along a line (b521) in (a,b) space, can be extended
cover a two-dimensional region of (a,b) space. The trans
formation accomplishing this is derived in the Append
where we find that

mvi~a8,b8!5xmvi~a,b!1
D~11b2!x

11voD
, ~35!

mv'~a8,b8!5xmv'~a,b!, ~36!

D5
a2a8

11a8a
5

b2b8

11b8b
, ~37!

whereD is a free parameter,x5(11voD)2/(11bD)2, and
vo5vo(a,b) is the homogeneous frequency. As an e
ample, we transform the coefficients fora50.34, b
521.45 (vo50.081 45, mvi51.212, andmv'520.550)
to the point a850.5586,b8521 @corresponding to Fig.
3~a!#. We find that mvi(a8,b8)50.383 andmv'(a8,b8)
512.434, which agree well with the measured values fr
Fig. 3~a! of mvi50.393 andmv'512.425.

3. Comparison of theory and numerics

Having found the velocity of a vortex in an inhomogen
ity, we are now ready to compare our results with numeri
simulations of the full equation, Eqs.~1! and ~3!. For this
purpose, it is useful to view the equation of motion for
vortex located atx as a dynamical system,dx/dt5v(x),
wherev(x) is given by Eq.~34!. This system will, in general
have attractors~i.e., long time asymptotic motions!. Accord-
ing to the Poincare´-Bendixson theorem, the only finite attra
tors to be expected for motion in the plane (R2) either are
periodic or else involve fixed points@33#. @Our numerical
simulations use doubly periodic boundary conditions a
thus topologically correspond to motion on a tw
dimensional toroidal surface (T2).] In the following we
compare our theory for the inhomogeneity-induced vor
motion, Eq.~34!, to numerical simulations with two differen
forms of the inhomogeneity. For both cases we use the
rameters a50.34 and b521.45, which give vo
50.081 45,mvi51.212, andmv'520.550. The first form is
given by Eq.~4! and has already been extensively discuss
This form yields a fixed point attractor. The second form
the inhomogeneity~introduced below! yields periodic mo-
tion ~also called a limit cycle attractor!. Nishiyama@5# re-
ports both fixed point and limit cycle attractors for spir
vortices inDictyosteliumexperiments.

Case 1: Fixed point attractor for Eq. (34). The numerical
simulation of the fixed point attractor that results from t
inhomogeneity given by Eq.~4! is shown in Fig. 2. Here the
system has essentially reached a fixed point attractor at
t513 000 @Fig. 2~d!#. To compare our numerical and the
retical results, we track the vortex location of the domina
spiral from time 650 to time 13 000 and compare that to
integration of Eq.~34! with the initial condition of the spiral
vortex location at time 650 from the numerics. These res
are summarized in Fig. 4~a!; the solid line is for the theory
@Eq. ~34!# and the open circles are for the numerical da
,

-

l

d

x

a-

d.
r

e

t
e

ts

.

Figure 4~a! also shows the vortex location for a syste
started with different initial conditions; the dashed line is f
the theory and the crosses are for the numerical data.
velocities in thex direction are shown as functions ofx in
Fig. 4~b! for both initial conditions and good agreement b
tween theory and numerics can be seen.

Case 2: Limit cycle attractor for Eq. (34). As a simple
case where it is easy to understand the possibility that
attractor for vortex motion can be a limit cycle, we let th
growth rate be a function of the frequency,g(v)
5G„v(x)…. Substituting the growth rate into the velocit
~34! gives

v~x!5Q~v!“v~x!1smv'ẑ3
“v~x!

G„v~x!…
,

where Q(v)5@2(11b2)G82mvi#/G(v) with the prime
denoting differentiation with respect to its argument. Th
dv/dt5v•“v5Q(v)u“vu2. This shows that, ifQ(v) has
a zero,Q(vc)50, with Q8(vc),0, then initial conditions
near the curvev(x)5vc will be attracted to the curve. The
curve can then act as a limit cycle attractor. As an exam
we use our previous inhomogeneity forv, v(x)5vo
2c2sin(y/40)cos2(x/80); and

g~x!5K2xv~x!1r@v~x!#2,

whereK is a constant that is set such thatg.0 everywhere,
x5(mvi1kvc)/(11b2), and r5k/@2(11b2)#. For nu-
merical comparison we setK51.1, k52000,vc50.03, and
c250.1. The results are summarized in Fig. 5, which sho
the phase ofA at four different times. In this case a sing
spiral does not dominate the system as in the fixed p

FIG. 4. ~a! Vortex trajectory of the dominant spiral to a fixe
point. Two different runs are shown. The (*) mark the initial loc
tion of the dominant spiral vortex for each run. The lines are fro
the theory, Eq.~34!, and the open circles~s! and crosses~1! are
data from numerical simulations.~b! Velocity in thex direction~in
units of 1023) plotted as a function ofx.
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attractor, Fig. 2~d!. In Fig. 5, before one spiral can domina
over the other, both spirals are attracted to the limit cy
(v5vc contour, solid line in Fig. 5! where both spirals have
the same frequency. While the existence of limit cycles d
not depend on our choiceg(x)5G(v), the situation where
two defects on the limit cycle always have the same f
quency is a special consequence ofg5G(v).

III. QUASIFROZEN REGIME; gË0 SUBREGIONS

Since the growth rate is allowed to vary spatially, t
possibility exists that the growth rate will actually becom
negative in some subregion of the system. This correspo
to having a region where small amplitude waves are ex
nentially decaying. In fact, such a situation is generica
expected for an inhomogeneous system as an instability
rameter is increased from a stable situation. In this sec
we briefly study the qualitative effects of such a negat
growth rate region.

To study this phenomenon, we again consider the in
mogeneity given by Eq.~4!, but now we lowerg by an
overall constant factor ofG,

g~x!512G1c1 sinS y

40D sinS x

40D . ~38!

v(x) is still given by Eq.~15!. From Eq.~34! we note that
the vortex velocity diverges asg goes to zero. Thus the
perturbation expansion used to obtain Eq.~34! breaks down
in the region of smallg.0. This indicates the possibility o
new physical effects. To investigate this, we setG50.9, c1
50.3, c250.05, andvo50.081 45, so that a relatively larg
region of space has a negative growth rate. The effects of
inhomogeneity are shown in Fig. 6 where inside the wh

FIG. 5. The phase ofA at four different times for the inhomo
geneity that produces a limit cycle attractor~solid, black line!. The
color scale ranges from2p to p ~gray to white!. The two spirals
are moving clockwise along the attractor and the period of the li
cycle is approximately 8200 time units. The noticeable wavelen
variation results from the relatively large variation in the grow
rate ~0.8–8.1! chosen for computation convenience.~a! Time
5 5000.~b! Time 5 7000.~c! Time 5 9000.~d! Time 5 11 000.
e

s

-

ds
-

a-
n

e

-

is
e

circles the growth rate is negative. Looking at the lower rig
negativeg region in Figs. 6~b! and 6~c!, we see the ejection
of vortices out of the negativeg region and into the positive
g region~third quadrant!. This results in an increase of vor
tices@compare Figs. 6~a! and 6~d!#. As time proceeds further
some of these vortices may recombine and annihilate
another. This cycle of ejection and annihilation of vortic
leads to a turbulentlike situation where there are no fu
developed spiral waves. A similar picture also occurs fo
system that has only a small region of space with a nega
growth region (G50.71).

Curiously, only the third quadrant of our system exhibit
this turbulentlike phenomenon, whereas the first quadran
mained essentially free of vortices. This phenomenon se
linked with the inhomogeneity of the frequency~38! @v is
larger for y,0 ~third quadrant! than for y.0 ~first quad-
rant!#. When we removed the inhomogeneity of the fr
quency by settingc250, the system no longer exhibited th
behavior and the system settled down to having no vorti
or spiral waves in either the first or third quadrant.

IV. CONCLUSION

In this paper, we have studied the role of a slowly varyi
inhomogeneity on the dynamics of spiral waves in the tw
dimensional complex Ginzburg-Landau equation. In t
quasifrozen parameter regime of the CGLE, the inhomo
neity causes frequency differences between spirals at di
ent locations. As a consequence of this frequency differen
favorably located spirals can grow and dominate the syst
The inhomogeneity also results in the motion of the sp
vortices. We have derived an expression for the veloc
which is related to the gradients of the inhomogeneity, E
~34!, and see good agreement with numerical simulatio
We also have studied situations in which there are region
negative growth rate, and observed continual creation
annihilation of vortices when an inhomogeneity in the fr
quency is present.

it
h

FIG. 6. The normalized magnitudeuAu/Augu at four different
times for the inhomogeneity~38!. The white circles are theg50
contours andg,0 inside them. The color scale is 0–1.2~black–
white!. The time sequence shows the ejection of vortices out of
negative growth region.~a! Time 5 2875.~b! Time 5 2937.5.~c!
Time 5 3000.~d! Time 5 3062.5.
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APPENDIX

In this Appendix we derive the similarity transformatio
relating mv' and mvi evaluated at (a,b) to mv' and mvi
evaluated at (a8,b8). We introduce a free parameter an
then find a set of transformations back to the original syst
We can then compare the spiral vortex drift velocity in t
original system with that of the system with the free para
eter to determine the relation between the drift velocity
efficients in the two systems.

Since we are interested only in the velocity due to
gradient ofv(x), we start with the inhomogeneity ofm(x)
511 ivo2 iv(x) (vo is the homogeneous frequency! and
Taylor expand about the spiral vortex locationxo ,

m~x!.11 ivo2 iv~xo!2 ix1•“v~xo!, ~A1!

wherex15x2xo . We insert this into the CGLE and appl
the following transformation:

A~x1 ,t !5A2~x2!exp@2 iv~xo!t2#,

x25x12vt,

t25t,

which transforms the system to the comoving frame withv
the velocity of the spiral vortex in the original system. W
assume thatuevu5u“v(xo)u anduvu are ofO(e). Neglecting
terms ofO(e2), the CGLE becomes

2 ivoA22v•“2A25~12 ix2•ev!A22~11 ia!uA2u2A2

1~11 ib!¹2
2A2 . ~A2!

We also make the transformation of A2(x2)
→A2(x2)exp@ike•x2# whereukeu is of O(e). This transforms
Eq. ~A2! into

2 ivoA22@v12i ~11 ib!ke#•“2A2

5~12 ix2•ev!A22~11 ia!uA2u2A21~11 ib!¹2
2A2 .

We now introduce the free, real parameterD by adding
iDA2 to both sides and dividing by 11 iDA2. This leads to
the equation

2 i S vo2D

11 iD DA22S v12ike~11 ib!

11 iD D •“2A2

5S 12 ix2•
ev

11 iD DA22S 11 ia

11 iD D uA2u2A2

1S 11 ib

11 iD D ¹2
2A2 . ~A3!
e
d

.

-
-

e

In order that the imaginary part of the“2A2 term vanish we
set 2ke5vD/(11bD). We make another set of transform
tions,

x35A11voD

11bD
x2 ,

A3~x3!5A 11aD

11voD
A2~x2!,

and define the following quantities:

vo85
vo2D

11voD
,

v85
11D2

A11voD~11bD!3/2
v,

ev8 5
A11bD

~11voD!3/2
ev ,

eg852Dev8 ,

b85
b2D

11bD
,

a85
a2D

11aD
.

Using the transformation and the definitions given abo
Eq. ~A3! becomes

2 ivo8A32v8•“3A35@11~eg82 iev8 !•x3#A3

2~11 ia8!uA3u2A31~11 ib8!¹3
2A3 .

~A4!

We examine this inhomogeneity more closely. In the p
vious calculation of the velocity coefficients due to a gra
ent in the growth rateg ~see Sec. II B 1!, we found that an
inhomogeneity of the formm511(11 ivo)eg•x results in a
vortex motion parallel to the gradient ofg. Using this result
we then let

eg82 iev8 5eg8~11 ivo8!2 i ~ev8 1vo8eg8 !,

where we know that the first term of the right hand si
gives a velocityv852(11b82)eg8 from Eq. ~21!. Therefore
we set

v95v81~11b82!eg8

ev9 5~12vo8D!ev8 ,

so that Eq.~A4! becomes



d

a

h

-
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2 ivo8A32v9•“3A35~12 iev9 •x3!A32~11 ia8!uA3u2A3

1~11 ib8!¹3
2A3 , ~A5!

which is of the same form as Eq.~A2!. The general velocities
for Eqs.~A2! and ~A5! are

v52mvi~a,b!ev1smv'~a,b!ẑ3ev, ~A6!

v952mvi~a8,b8!ev9 1smv'~a8,b8!ẑ3ev9 , ~A7!

respectively. Now applying the definitions for the prime
system and substituting Eq.~A6! into Eq. ~A7!, we find
that

mvi~a8,b8!5xmvi~a,b!1
D~11b2!x

11voD
, ~A8!
.

.

.

e

,

mv'~a8,b8!5xmv'~a,b!, ~A9!

D5
a2a8

11a8a
5

b2b8

11b8b
, ~A10!

where D is the free parameter,x5(11voD)2/(11bD)2,
and vo5vo(a,b) is the homogeneous frequency. Given
value of (a,b), the second equality of Eq.~A10! gives the
equation of a hyperbola in (a8,b8) space that passes throug
the point (a,b). If we knowmvi andmv' at the single point
(a,b) in parameter space, then Eqs.~A8!–~A10! tell us the
values of themv’s at all points on the hyperbola. For ex
ample, using knowledge of themv coefficients along the line
b521, we can use the transformation of Eqs.~A8!–~A10!
to extend this to knowledge ofmv’s at any point in param-
eter space.
t.
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