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Spiral wave dynamics in oscillatory inhomogeneous media
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The effect of a long length scale static inhomogeneity on spiral wave dynamics is studied in the two-
dimensional complex Ginzburg-Landau equation. We find that the inhomogeneity leads to the formation of a
dominant spiral domain that suppresses other spiral domains, and that the spiral vortices slowly drift in the
presence of an inhomogeneity with a velocity that is proportional to the local parameter gradients. We derive
an expression for the spiral vortex drift velocity and present examples of both fixed point and limit cycle
attractors of the spiral vortices.

PACS numbes): 82.40.Ck, 47.32.Cc, 47.54r

[. INTRODUCTION The spiral vortices also slowly drift due to the inhomogene-
ity and results for the velocity of the spiral vortices are given
In many situations it has been observed that spiral wavén terms of the gradients of the inhomogeneity.
patterns play a dominant role in system dynamics. Examples A very general model exhibiting spiral wave solutions is
of spiral waves can be found in areas of biology, chemistrythe two-dimensional complex Ginzburg-Landau equation
and physics. Spiral waves of the electrical signal in the heaCGLE),
occur in cardiac arrythmiag1,2]. Chemical reaction-
diffusion systems, such as the Belousov-Zhabotinsky reac-
tion, exhibit spiral waveg3]. Spiral waves also appear in

A= pnA—(1+ia)|AI2PA+(1+iB)V?A, (1)

where A(x,y,t) is complex. This equation describes ex-

slime mold colonies obictyostelium|4,5] and planar dc tended media in which the homogeneous state is oscillatory
driven semiconductor-gas discharge syst¢6is Our work and in the vicinity of a Hopf bifurcatiori21] (though its

investigates the effects of a spatial inhomogeneity of the sup= = .~ . ; )
porting medium on spiral waves. Most physical systems car(ilu""“tat've behavior often seems to reprqduce pehawor of
have an inhomogeneity. For example, spiral waves in cardia}%%ﬂqjy:;zgsstga;t::ﬁ t?g naerZ:nZte'_: gﬁ; blf;:ga?teljngoﬁ_
arrythmias encounter inhomogeneities inherent in the cardia; 9 us sy P B

tissue due to cell variations. An inhomogeneity in a chemicaPta"ts: Furthermore, the imaginary pargo# y+i{) can be

reaction-diffusion system can arise from a temperature graghmmated by the replacement— Aexp({lt), while y can

dient or inhomogeneity of the gel or porous medium inP€ scaled to unity by the replacements: x/\7, t=tly,
which the experiments are often performed. Referefieg@  A— VYA. Thus in the case of a homogeneous medium it
studied the light-sensitive Belousov-Zhabotinsky reactiorsuffices to consider.=1 in Eq.(1). A steadily rotating spi-
and varied the chemical reaction rate using its sensitivity tg@l wave solution to Eq(1) with »=1 has the general form
light intensity. We suggest that some of the results of out22]
paper might be conveniently tested by arranging the light
intensity to vary spatially across the entire system. Another

test of our results could use the method describef9 . .
¢in The topological charger==*1 results in a Zro phase

which uses an inkjet printer to apply a chemical catalyst in h A f terclockwi th d th ;
the Belousov-Zhabotinsky reaction, to create a spatiallf ange OfA for a counterclockwise path aroun € vortex

varying catalyst. InDictyosteliumexperiments, Ref[5] re- center (=0). In order thatA be continuous and finite at

ports an excitation inhomogeneity due to the sorting ofSUCh @ phase singularity at=0, we must have thai(r
prestalk and prespore cells. =0,0,t)=0. The real functions=(r)=|A| and ¢(r) have

In the past much work has been done to investigate inhot'€ asymptotic behavior as tends to zero off~r and

mogeneities in spiral wave systems covering analytical, exd¥/dr~r. For larger, the spiral wave asymptotes to a plane
perimental, and numerical studies. Analytic work has lookedVave of wave numbek, . Substituting a nonlinear constant
at the effects of parameter gradients on spirals, includingmPlitude plane wave solutio~expky ~iawf), into Eq.
drift of spiral centers(vortices [10,11. Inhomogeneities (1 Yields the dispersion relation,= a+ (8~ a)k; and the
have also been studied in biologicgs,12) and chemical boundary condition foF(r) for larger. Thus, asr goes to
[7,9,13,14 experiments. Numerical studies of inhomogene-infinity, d¢/dr—k, and F—n/l—kg.
ities cover drift of spiral centers due to parameter gradients In an appreciable range otx(3) parameter space, called
[15-17 and localized inhomogeneiti¢4$8—20. the quasifrozen parameter regime, spiral waves are found to
In this paper we report on spiral waves in oscillatory me-be stable solutions and naturally form from perturbations of
dia under the influence of a time independent, slowly varyingA=0 [23]. In this regimeA evolves toward a quasifrozen
spatial inhomogeneity. After spirals first form, the inhomo- state in which many spiral waves form, each with its own
geneity causes spirals that are favorably located to widedomain, whereA is approximately described by E(). A
their domains at the expense of less favorably located spiralspiral’s domain is simply the region of space that its waves

A(r,0,t)=F(r)expi[c0— w t+ ¥(r)]}. 2
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(a) Phase (b) Magnitude The remaining sections of the paper discuss the effects of
0 | —S the inhomogeneity of Eq(3) in the quasifrozen parameter
L regime. Section Il describes the case in whiglx)>0 ev-
Y 0 . 6 X erywhere, and we discuss the formation of a dominant spiral
4 domain and provide results for the drift velocity of spiral
IX vortices due to the inhomogeneity. In Sec. Il we provide
-100f = -* = qualitative results for the case in which the signygk) is
~100 0 100 ~100 0 100 different in different regions of space.
X X
| [ :
- 0 T 0 036 073 L1 Il. QUASIFROZEN REGIME; >0

We begin our investigation of an inhomogeneity by study-
ing the CGLE in the quasifrozen parameter regime with
v(x)>0 everywhere. We observe that a slow, spatial varia-
tign of u(x) has two profound effects on the system. The
%rst and perhaps the more striking effect of the inhomogene-
ity is the formation of a dominant spiral domain. A dominant
spiral domain is a domain that increases its gatethe ex-

occupy. Spiral domains are separated by narrow domaiR€NSe Of other domainsintil it fills the entire system. We
walls, and after a transient the positions of the domain wall$NOW that this is due to an inhomogeneity-induced frequency

and spiral vortices evolve very slow[g4]. Figures 1a) and difference between spirals which results in motion of the
1(b) show the phase and magnitude Af respectively, for domain walls. The second effect of the inhomogeneity is the
the homogeneous casg£1) after evolving from random drift of the spiral centers. The velocity of the drift is linearly
initial conditions (A at each grid point is randomly chosen in "élated to the gradients gi(x) and occurs on a longer time
the unit circle in the complex plaheln Fig. 1 many spirals scale than the domain wall motion and the formation of the

have formed, each with its own domain. In Figallthe dominar;]t spiralhdomain. Comth . .
spiral vortices are the center of the spiral waves. For Fig. , V& choose the parameter set from the quasifrozen regime

1(b), spiral vortices can be seen as the dark spots, corrél @=0.34, 8= —1.45 and stut_:iy the effect of an inhomoge-
sponding to]A|=0, and the domain walls are the ridges of neity of the following form[26]:
lighter shade, corresponding to largéY|. Each spiral has

FIG. 1. The phasga and magnitude(b) of A at time t
=13000 for the homogeneous case with-0.34 andB=—1.45
starting from random initial conditions in the unit circle in the com-
plex plane. The system has evolved to a quasifrozen state where t
vortices[black spots inb)] and domain wallgwhite ridges in(b)]
evolve very slowly.

) : X
formed with the same frequenay, . Away from the vortices y(X)=1+c; sin( l) sin( _) ’
and walls|A| is approximately constanta|= \/1— k2. 40 40
In other (o, B) parameter regimes, turbulent solutions are (4)
possiblg 23,25. Turbulent solutions are characterized by the i Y X n B
continual creation and annihilation of spiral vortices. As a Q09 =cesin 40 cos 80 @ol Y ~1]

result, no spiral waves fully develop. The core acceleration
regime is found for systems with large values|gf and is ~ with ¢;=0.3 andc,=0.05. This choice of ¢,3) gives a
characterized by an instability of a spiral wave solution tospiral wave frequencyw,=0.08145 for the homogeneous
acceleration of the vortex core leading to disordeftedbu-  system. We choose this form of the inhomogeneity in order
lent) solutions. For large values ef the system is in a tur- to satisfy three conditions. The first is periodicity, so that
bulent regime whose onset is caused by absolute instabilitperiodic boundary conditions can be used in the numerical
of the larger plane waves emanating from the spirals. solution of Eq.(1). The second condition is that the inhomo-
We now inquire about the effects of an inhomogeneitygeneity should correspond to sufficiently slow, spatial varia-
that occurs over a large length scale. The expansion yieldingon in order that perturbation theory can be applied. The
the CGLE for a homogeneous medium presumes a situatiotiird condition is that the maxima and minima ¢fx) and
where the growth rate of the instability is smale., just past ) (x) do not coincide. This provides a more general form for
a Hopf bifurcation, and this small growth is balanced in the the inhomogeneity.
equation by weakhence lowest ordénonlinearity given by
the |A|?A term and by weak spatial coupling given by the A. Dominant spiral formation
V2A term. A small amount of inhomogeneity causes the i i i , i
small parameter measuring the deviation from the Hopf bi- W€ begin this section by showing the formation of the
furcation to vary significantly in space. Hence the lowestdominant spiral for the inhomogenesity of B). The system
order effect of the inhomogeneity on Ed) is that the local 'S Solved on the domain —40m,40m]x[ —40m,40m],

frequency and growth rate of excitation depend on spaceVhich is one wavelength of the inhomogeneity aptk)
Thus, we set =1 and(x) =0 on the boundary. As with Fig. 1, the initial

condition for each X,y) is randomly chosen from points in
w(X)=y(X)+iQ(x), (3)  the unit circle of the complex plane. The inhomogeneity is
present from the beginning. Figure 2 shows the time evolu-
where y(x) andQ(x) are slowly varying real functions rep- tion of |A(x,t)| normalized byyy(x) and illustrates the for-
resenting the growth rate and frequency shift, respectivelymation of a dominant spirdlabeledD in Fig. 2). The nor-
To lowest ordera and 8 are constant. malization |A(x,t)|/Yy(x) is an extension of the
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(@) T“‘fe=65?. (b) Time = 1300 A(x,1) =A(X)exp(—iw,l). Thus it is expected that the fre-
10w NE | ®D 1 quency associated with a spiral vortexxais well approxi-
sop S s00 ] mated by
Lrov . A - | 5 ol OLA
> | A (%)= 0oy (X) — Q(X) ()
el SN T s ——— < _ _ _
-1005 * DS 00k i when the m_homogene|ty length scale Is much greater than
_1(‘)0 (') 1(')0 _1‘(')0 (') 1(‘)0 the vortex dlamet.er. As sr_]own below,_thls frequency Q|ﬁer—
= % ence between spirals at different locations, &), results in
(c) Time = 1950 (d) Time = 13000 the motion of the domain walls observed in Fig. 2. We note
100} | : | 100f : n that an inhomogeneity is only one of several ways in which
' D ®D spirals can develop with different frequencies. Aranson
50f 1 s0f ] pira P q
v ok l 5 ol | et al:,_con3|der|ng the. homogeneous CGLEZ investigate the
( stability of a symmetric two-spiral state against asymmetric
el ————— sl — 1 perturbationg27]. They find that the situation is unstable in
—~100F 4 _100F § that a slight perturbation from symmetry causes a small fre-
Z100 0 100  -100 0 100 quency difference between the spirals, leading one of them
X X to eventually dominate. Narat al. introduce a chiral sym-

_::‘ metry breaking term, which results in spirals with frequen-

0 015 03 045 06 075 09 105 cies dgpendgnt on their tqpological cha[@é].
To investigate the motion of the domain walls, we con-

FIG. 2. Time evolution of A(x,t)|/\/¥(x) for the inhomogene-  sider the vortices to be approximately stationary in space. As
ity given by Eq.(4). The system is started from random initial shown in the next subsection, there is an inhomogeneity-
conditions chosen in the unit circle of the complex plane. The in-induced vortex velocity which is of ordéW y/y|. When the
homogeneity is present from the beginning. These time snaps shogomain size is much larger thaW y/y| =1 the domain wall
both the dominant spiral domain formatigiabeledD) at the ex- velocity will turn out to be much faster than the vortex ve-
pense of the lesser spiral domaiime of which is labeled) and  |ocity, and our assumption of stationary vortices is a good
the subsequent drift of vorteR. approximation. We begin with the condition that the phase of

A must match across a domain wg24,28. For a homoge-

homogeneous casey€ const) in which|A(x,t)|/\y from  neous system, the phase of the interior of any particular do-
the spiral wave solution far from the vortex is a constantmain is described by an Archimedean spir2d], ¢;=o;6;
(depending or and 8), independent ofy. +kiri—wit+C;, whered; andr; are the polar coordinates

As in the homogeneous case, the inhomogeneous casgeasured from the center of thth spiral; o;, ki, w;, and
initially forms many spiral vortice$see Fig. 2a)]. The in-  C; are the topological charge, radial wave number, angular
homogeneityy(x) does influence the initial distribution of frequency, and phase constant, respectively, oftthepiral.
spiral domains since some regions have a faster growth rator a slowly varying innomogeneity, the phasefotan be
than others, but the system still initially generates many spifound by a WKB approach since the wavelength of the in-
ral domains. The fact that many domains can form is a resuliomogeneity is much greater than the wavelength of the spi-
of all spirals having exponential growth. For example, con-ral wave. Locally, we can assume plane wave solutions of
sider the spirals labeled andL in Fig. 2. For the dominant the form e/l *~«U and, plugging into Eq(1), obtain a
spiral D to grow and dominate the system before the lesselocal dispersion relation
spiral L can grow would require that spird grows and
propagates its waves to the location of splrddefore spiral w=ay(X)=Q(X)+(B-a)k’, )
L has the time to grow. This, however, does not occur since . . . . .
the waves ofD propagate td_ in a time greater than that This local dispersion relation leads to the ray equations
necessary to establi¢h(this might not be the case if we had dx
one region of space with a much larger initial amplitude than — =V, w=2(B—-a)k, (8)
the rest of spage dt

Whereas the homogeneous case creates spirals all with the dk
same frequ_encyuoz wo(a,B), the_ inhomogeneity causes = —Vo=V[Q(X)—ay(x)]. 9)
frequency differences between spirals at different locations. d
Assuming thaty(x) andQ(x) vary slowly in space, substi-

tuting the transformation Since the phase & is not defined at the vortex, the initial

conditions for Eqs(8) and(9) must be taken at a distanBg
i from the vortex centex, . The initial condition forx(t=0)
—, is thenx,+ R, . To find the initial condition fok(t=0), we
7(X) 5) set the local dispersion relation, E¢7), evaluated atx,
+R, equal to the asymptotic frequency for a vortex located
atx,, Eq.(6),

A(x,t)= w(xﬂ\(i)exp( —i[woy(X)—Q(X)]

wherex=\/y(x)x andt = y(x)t into Eq.(1), and neglecting
terms involvingV y(x), we conclude that local spirals exists ay(x,+R,)—Q(X,+R,) +(8— a)k?®= wyy(X,) — Q(X,).
and are given by the homogeneous equation with the solution (10
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This is valid as long afR, is much greater than the core size of the vortex. We also knowKﬁa@O)zkr(t:O)F
+(0/R,) 8. This result, combined with Eq10), gives the initial condition fok,(t=0) as

\/woy<xv>—n(xv>+9<xv+Ro>—ay<xv+Ro> (o)z
k(t=0)==* _ ,

B—a R,

(11)

where the sign ok, is chosen so that the group velodifyg.  The lowest frequency spiral, and thus the predicted dominant
(8)] is radially outward, i.e., the vortex is a source of waves.spiral, will be the spiral that is closest to the minimum of Eq.

The phase of théth spiral is given by (15), (0,207). Indeed, looking at Fig. ®), we see that the
dominant spirallabeledD in Fig. 2) is the spiral closest to

: e dr— o _ the point (0,26r). Once the domain wall has been pushed
i frikl(rl) dri—oit+ G, (12) close to the lesser spirfllabeledL in Fig. 2(b)], there is a

strong interaction between the lesser spiral vortex and the
where the pathl’; over which the integration is performed is domain wall[15]. We then observe that the domain wall
determined by the solution of the ray equations, E§sand  sweeps away spirdl’s vortex at the speed of the domain
(9), with the initial conditions ofx(t=0)=x,+R, andk(t  wall, which now becomes
=0)=k,(t=0)r + (a/R,) 8, wherek, (t=0) is given by Eq.
(1. _ W~ wp 16
For two spirals(labeledi=1 andi=2) that share a do- v kp, ' (16
main wall, the phase matching condition gives at the position
r on the domain wall, where theL and D subscripts denote quantities characteriz-
ing lesser and dominant spirals. Equat{d6) results from a
Si(r) = w1t +C1=S5(r) — ot + Cy, similar argument to the derivation of E€l4) except that

B ' : . now we take thé vortex to move with the same speed as the
where S(r)=[rki(ri)-dr;. We define the equiphase line - \vall we observe a shift im_ as a result of the

function f(r)=S,(r) —Sy(r) [28]. The normal velocity of jnteraction with the wall. As time proceeds furthdr, is

the domain wall is theh29] swept into a domain wall and occupies a negligible domain
area. Furthermore, vortices of opposite charge embedded in

= m& (13) the domain walls merge and annihilate one anofltégs.
Vi [V’ 2(b) and 2c)]. Thus, after some time all the lesser spirals get
. . swept away and the dominant spiral domain occupies nearly
whose magnitude can be written as all the aredFig. 2(c)].
0 — o The difference in frequency of spirals, E®), results in
v= #, (14) the motion of the domain walls that leads to the formation of
SHEL N a dominant spiral domain. Two different regimes of motion,

similar to those described in Rfl5] for excitable media,

re observed. Initially, when both spiral vortices are far from
he domain wall, each spiral vortex is unaffected by the other
and the domain wall moves with a velocity given by Eg.
13). Once the domain wall comes close enough, within one
avelength, to the lesser spiral, there is a very strong inter-
ction between the domain wall and the lesser spiral vortex,
causing the lesser spiral to be swept away at the speed of the
domain wall.

wherek, , andk,, are the wave-number vector components
normal to the domain wall evaluated at the domain wall, an
the reference positive direction points from region 1 to re-
gion 2. The wave-number componekts andk,, can have
either a positive or negative sign depending on the directio
of kq , that is chosen to satisfy an outward group velocity,a
Eq. (8). For our systemB<a, making the wave-number
components; , ,k,; <0. From Eq.(14), we see that ifw,
<w; thenv<0 and the domain wall will move away from
spiral vortex 2 and toward vortex 1. th;<w, thenv>0 ) ] )
and the domain wall will move away from spiral vortex 1. B. Drift of spiral vortices
Thus the domain walls of the spiral vortex with the lowest  Another motion of the spiral vortices, independent from
frequency move outward(For >« the situation is re- the short-ranged interaction with a domain wall, also occurs.
versed This motion is the drift of spiral vortices due to the inhomo-
Hence, as time proceeds, the domain of the spiral vorteyeneity. For the case of a long inhomogeneity length scale,
with the lowest frequency gets bigger, and one expects thahe drift of vortices due to the inhomogeneity is slow com-
eventually this domain will become domindr@0]. For the  pared to the domain wall motion and the motion of the lesser
particular system of Eq4) the frequency of a spiral located spiral vortices due to domain wall interactions discussed in
atx is the previous subsection. In that subsection the slow drift of
y y vortices due to the inhomogeneity was neglected. The slow
; inhomogeneity-induced spiral motion can be seen by com-
w(X)—wo—CZSIn( H)) C052(8_0) (15) paring I%ig. Zg) to Fig. 2(%) and observing the domi¥1ant
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spiral’s drift to the left. In the case of an inhomogeneity with the spiral vortex in the original system. By assuming tbdt

a scale length much greater than 1, the drift velocity will beand|v| are ofO(€) and neglecting terms d(€?), Eq. (1)
linearly related to the gradient ofc(x)= y(x)+iQ(X). becomes
Since, in experiments, the frequenoyx) of a spiral is more

accessible to measurement than the frequency Qlfi), we — WAy —V- VA=A, — (1+ia)|A,)%A,

recast the inhomogeneity into an inhomogeneity of the Cap ) 5

growth ratey(x) of homogeneous perturbations frofs=0 +FI774(X%) (L+i B) Vo[ VI (X2) Azl

and an inhomogeneity of the frequeneyx), Eqg. (6); (20)
p(X)=y(X)(1+iw,) —iw(X). where the expansions fdt(x,) out to O(e) were used. We

(Another strong reason for preferring useVod, rather than see that EG(20) is almost in the form of the homogeneous

) o S : system except for thev-V,A, and T 32(x,)(1
V, in our formulation is that it simplifies the analy$es.g., ; 2 e iy
see Eq.24)].) The drift velocity of a spiral vortex depends +iB) Vol VI (x)Az] terms. In order to reducd™ (1

. 2 . 2 .
only on the local propertieki.e., V y(x) andVw(x)] of the  +1B)V2[\TA,] to a term of the form (%iB)V5A, as in
inhomogeneitf10]. A general form of the drift velocity of a  the original CGLE, we make the following nonlinear coordi-
spiral vortex located at, which is linear in the gradients of Nate fransformation:

the inhomogeneity is 2 2
X3=Xo+ (X3 Y3)€,x/4+ Xy 2€,,/2,

- M+ AXM 2_ 2
V(Xo)=—my (<o) om,, z 70%0) Y3=Y2t (Yo—X5)€,,/4+Xoy,€,,/2,
Va(x,) ~_ Vo(xy) ty3=t
-m ————+om,_ zX \ 1 s
ol kg T B oy (4D

) ) ) Ax(X) =As(xz)exd ik, X3],
where o is the topological charge of the vortex. As will
become evident from the subsequent analysis, by writimg  where|k_| is of orderO(€). This coordinate transformation
this form [in particular, by our division of the right side by gives
v(X,) In EqQ. (17)], the m coefficients are independent of
and of the functionsy(x) and w(x), and they depend only —iwy,Az—V-V3Az=Az—(1+ia)|Az%A,
on « andp. . 2 .
+(1+iB)[V3As+(2ik.te,)) V3A;z].
1. Determining the m’s due to gradient of growth rate _ )
This equation reduces to the same form as the homogeneous

We now solve for the velocity coefficients correspondinggy gt if thev ;A4 terms cancel. Thus the drift velocityis
to the gradient of the growth ratg(x), i.e.,m, andm,, .

Therefore for this sectioVw(x)=0 for all x. We assume —v=(1+iB)[2ik.+e,],
that a transformation exists between the inhomogeneous spi- i
ral wave solution and the homogeneous solution. We showhich upon solving gives

that this transformation occurs only for a specific value of

the velocity of the spiral vortex. k.=—pBe,2,
We begin by using the assumption of a slow spatial varia-
tion of the inhomogeneity(x) and Taylor expand about the v=— (1+,82)e7. (22)

spiral vortex locatiorx,,
, , Transforming back to the original coordinate frame and al-
H(X)=[Y(Xo) +X1- Vy(Xo) [[ 1+ wo] =i w(Xo), lowing y(x,) to be any positive value gives the velocity of a

wherex; =X—X, . For simplicity, we sety(x,) =1 [31], giv- spiral vortex ai, as

ing the inhomogeneity , V(%)
: : V(%) =—(1+ %) : (22)
w(X)=[1+x1-Vy(x) [1+iwe]—iw(Xy). (18 ¥(Xo)
We substitute Eq(18) into the original equatior{l) and  Comparing Eq(22) to Eq.(17) we see that
apply a similar transformation as in Ep),
my = 1+:821 (23
A(X1,1) = VT (X2) Ax(Xo)exfd —iw(Xo)t5], (19
m,, =0. (24)

X2:X1_Vt,
By applying a set of transformations on the inhomoge-
to,=t, neous system, we have found the drift velocity of spiral vor-
tices due to an inhomogeneity in the growth rate, £9).
whereI'(x;) =1+Xx,-€, and e,=Vy(X,). This transforms Spiral vortices move parallel to the gradient of the growth
the system into a comoving frame wherés the velocity of  rate when there is no gradient in the frequency.
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2. Determining the m’s due to gradient of frequency

— a\—
2 rg ;

Having solved for the velocity coefficienta,; andm,,, X|al*aAr+|a’+ r vh(1+iB)
in the preceding section, we now solve for the coefficients
due to the gradient of the frequenay,, andm,,, . We use — e, Ay — ia—
a numerical technique to find these coefficients. We also give x| ¢'| 2ia iy +iag +r_2¢
a similarity transformatior{22] that relates the values of
m,(a,B) andm,, («,B) at a given g, ) to their values on ,2a)—||exp(—i0)
a one-parameter family ofa(,8) values. Thus if them,’s Hat A (26)
are known(or computedl along a line in @,B) space, then

the transformation gives thm,,’s for an area in &, 8) space. ) )

The numerical procedure used to calculate the drift veloc¥Vnere A=Ax—=iAy, @(r)=¢,(r)~idy(r), and v=v,
ity coefficients is similar to that outlined fi25]. We derivea Uy The prime denotes differentiation with respect to the
set of perturbation equations and integrate them out to largBf9ument and the bar denotes the complex conjugate. Since
r. We match this solution to the asymptotic solution for largetN® Only angular dependence in EQ6) is exp(6) and
r to obtain a set of matching constaritienoted aC® and ~ eXP(-16), we now let
C® below). The requirement that the perturbation remains _ ,
bounded determines the velocity of the spiral vortices in ~ UY(F,8)=Uo(r)+u,(r)exp(i#) +u_(r)exp—io).
terms of these matching constants. ] ) )

We begin by assuming that the solution to the CGLE withWe also substitutep,(r)=r-y,/2 and ¢,=r"y,/2 where
the inhomogeneity is a perturbation of the homogeneoudx:?¥y are real constants into E26) and collect terms of
CGLE solution(2). Without loss of generality we also set the the same angular dependence. We express the resulting equa-
inhomogeneity to be linear in the direction only, i.e.,n  tions in terms of the following operatof82], V\_/hose coeffi-
=1+ ex wheree=¢,+i¢ is complex. Transforming to the Cients depend onand the zeroth order solutica(r):

comoving frame, we begin with the equation,
|_=—(1+iB)V?—(iw,+1)+2(1+ia)|al?,
HA—V-VA=(1+ex)A—(1+ia)|A?A+(1+iB)V3A.
(25) lo=1_+(1+iB)/r2,
We insert the ansatz
|, =1_+4(1+iB)/r?,
A(r,0,t)=[a(r)(1+ Ar cosf+ Ayr sing)

+u(r,0) Jexpli[ c0— wt+D(r,0)]} g=(1+ia)a’.

into Eq. (25), where ®(r,0) = ¢,(r)cosé+¢y(r)sing and  This gives the following equations:
Ay, Ay, dy, ¢y, are real. For simplicity we also set=1. We

assume that loUo+QU,=0, (27)
v,®, A, Ay U .
— 1 , a ) ia . a
all are of orderO(e). Collecting terms ofO(€°) gives |+“++g“:§(” a'—r|+(1+ip)| 5 r+2|a _F)A}
[(1+iwe)—(1+ia)|al?+(1+iB)V]aexdi(0— wyt)] +[ae—2(1+ia)|al?aA
=0.
+(1+ip)2ia’ y]ry, (28

This is the unperturbed equation with solutiatr)exdi(6
—wt)]. Collecting terms 0f0(e€) gives

_ —— — 1] [ .a _
—(iwo+1)u+(1+ia)(2|al?u+a?u) |—U—+9U+=§[V a +9+(1—Iﬁ)
2i du u .
_ i 20 =77 7 —5ia — a
(1+Iﬁ)(V ut % e r2> X|——r+2|a +9A}
a +[ae—2(1-ia)|al?aA
={aer—2(1+ia)|a|2aAr+ a'— —|v+(1+iB) [ae-2(1=ia)la|
—(1-ip)2ia’y]r |, 29
a3 ( ﬁ)lﬂ} (29
X| @' 2|a’+|F tiag'——¢
' where we have taken the conjugate of the expl compo-
2a exp(i 6) nent to obtain Eq(29). For larger, a(r)—n/l—koze'kor. In
+|2a’'— — /A 5 Tlaer—2(1+ia) order that the source terms in Ed28) and (29) that vary
like r should vanish for large, we letA,=y,=0 and
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€ — @€ 0 02 04 0.6 0.8
')/: 'y :—_
2(B—a)ke 3t m (b)
. 2 o
We now look at the behavior of Eq&8) and (29) near mvl m
the origin in order to determine the initial conditions needed 0f - S
to integrate them. The radial dependence of the unperturbed -1.6 -14 -12 -1_-08 -06 -04
solution a(r)=F(r)e near the origin varies like(r)
~r. Substituting this behavior foa(r) into Egs.(28) and FIG. 3. (a) Velocity coefficientsm,, andm,, plotted versusy
(29 and keeping only order unity terms gives with = —1. (b) Velocity coefficientsm,; andm,, plotted versus

B with a=0.43. Shows both the numerically computed values (*)

4 and theoretical predictionsolid line) from Egs.(23) and(24).
Viu, — —u,=0, (30)
r €=1,6=0,=0h=0,
VZu_=—F'(0) 1_Vi’8+2./\), (3D) &=0€=1r=0n=0,
€=0,=0,,=1h=0,
where F’(0) is the derivative ofF(r) from the homoge-
neous solutiorf2) evaluated at =0. The integration of Egs. €=0,=0p=0h=1,

(300 and (31) under the conditions thati,(0)=0 and

u_(0)=0 (the field A must vanish at the vortexgives the
following solutions for smalt:

where the last case is for the homogeneous equatiigist
hand side equals zeroFor each of these cases, constants
C{® and C{" are found by integrating Eq$28) and (29)
u,(r)=hr?, outward from the spiral defect and fitting to the asymptotic
solution (33), wherej=r,i,v,h, corresponding to the first,

_ v second, third, and fourth of the situations listed above. In
u-(r)= —TZF’(O)( - +2A), order that the perturbatiomremains bounded it is necessary
that
with h an arbitrary constant. _ c@ cl@ c(@ c(@ c@
To find the asymptotic solution of the perturbation equa- el " A+el LAl+ul 2 l+hn h -0
tions, we look at their behavior for large which is de- c® c®| T c® c

scribed by taking the asymptotic limit of EqR8) and(29),

i.e., V2 a2, a(r)—1—k2e*o" and the 772 in | , can be This gives two equations with two unknowns,andh. We

dropped. We leti, =q, exr(\+ik)] andu_=q_exgdr(\ can then solve for=v,—iv, to find the velocity in terms of
: + YU+ 0 - Y-

—ik,)] and obtain the characteristic equati@®e] mg r%riggefgge?ﬂsthe inhomogeneiey, ande;, and thus find

NN3(1+ B2)+ 2N 2K2(1+ B2)— (1+ 1—K2 For the specific example shown in Fig. 2€0.34,8
(L6 [2ko(1+7) ~(1+ap) o =—1.45), m,=1.212 andm,, =20.550. The results for
+4ko(B—a)(1—k2)}=0. (32)  the velocity coefficientsn,, andm,,; for g=—1 versusa

are shown in Fig. @). This procedure also finds the velocity
The cubic polynomial inside the curly brackets has eithercoefficientsm,; andm,, and shows good agreement with
three real roots or one real and two complex conjugate rootsqs.(23) and(24), [see Fig. 8)]. Having now found all the
In both situations, two of the roots will have positive real velocity coefficients, the velocity of a spiral vortex located at
parts and the other root will have a negative real part. Wex is
refer to the case for which two of the roots are complex

conjugate pairs as the oscillatory rari@&] and restrict our- o 2 VY0 Vo(x) ~_Vao(x)
selves to this case. In this regime the asymptotic solution V() =~ (1+5%) y(X) Mo ¥(X) +tom, zx y(xz -)
34
u, =C@®exd (A, +iky)r]+C® exd (A, +iko)r],
(33 The numerical computation ah,,(a,8) andm,,, («,3)

o of Fig. 3(@) gives these coefficients fg8=—1 and 0.8«
whereC® andC® are constants ansl,=\, with Re(\,)  =—0.05. It is of interest to consider other () values.

>0. Fortunately, an analytic transformation, previously ug&g]
In order that the perturbation remains bounded we requiréor the standard CGLEwithout inhomogeneity can be
thatC®=0=C®. Since Eqs(28) and(29) are linear ine,,  adapted for this purpose. In particular, given knowledge of

€, andv, the full asymptotic solution ofi, (i.e., C®® and m,, andm,,, for a particular set of ¢, 3) parameter values,
c®) is given by a linear superposition of solutions for theit is possible to extend this knowledge to knowledgegf
four cases andm,,, at all points on a curve ind,B) parameter space
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[where the curve passes through the originalg) valued. 85 @
Thus the information in Fig. @), which givesm,, andm,,; 20 %
along a line B=-1) in (a,B) space, can be extended to +
cover a two-dimensional region ok(B) space. The trans- y LS
formation accomplishing this is derived in the Appendix, 70 o
where we find that 65 Ry
. A(1+B)x 60 Tk
My (@, )= XMy (@ )+ =775, (39 S0 4 30 20 -10 0
mwl(ariﬂr):meL(aiﬁ)v (36) 5
! ! 0
aza' _ p-p
A= —= —, 37 -5
l1+a'a 1+B8'B vy
-10
whereA is a free parametey = (1+ w,A)%/(1+ BA)?, and 15
wo=wy(a,B) is the homogeneous frequency. As an ex- .
ample, we transform the coefficients fo=0.34, B —20 e
=-1.45 (w0=O.08145, me:l.ZlZ, andmm:20.550) _56 _46 _36 _2.0 —lb 0
to the point a’=0.55868'=—1 [corresponding to Fig. X

:i(a)]' We find thatm,,(a’,8’)=0.383 andm,, (a',B") FIG. 4. (a) Vortex trajectory of the dominant spiral to a fixed
=12.434, which agree well with the measured values fromboint. Two different runs are shown. The (*) mark the initial loca-

Fig. 3(@) of me:O-393 andm,,, =12.425. tion of the dominant spiral vortex for each run. The lines are from
) _ the theory, Eq(34), and the open circle€D) and crosses$+) are
3. Comparison of theory and numerics data from numerical simulation&b) Velocity in thex direction (in

Having found the velocity of a vortex in an inhomogene- units of 10°%) plotted as a function of.

ity, we are now ready to compare our results with numerical

simulations of the full equation, Eqél) and (3). For this ~ Figure 4a) also shows the vortex location for a system
purpose, it is useful to view the equation of motion for a Started with different initial conditions; the dashed line is for

vortex located atx as a dynamical systemix/dt=v(x), the theory and the crosses are for the numerical data. The

wherev(x) is given by Eq(34). This system will, in general, vglocities in thex ldi'rgction are shown as functions gfin
have attractoré.e., long time asymptotic motionsAccord- Fig. 4(b) for both initial cc_)ndltlons and good agreement be-
ing to the Poincar@endixson theorem, the only finite attrac- Ween theory and numerics can be seen. _
tors to be expected for motion in the plan@?} either are Case 2: Limit cycle attractor for Eq. (34AAs a simple
periodic or else involve fixed pointg33]. [Our numerical C@S€ where it is easy to understand .thge possibility that the
simulations use doubly periodic boundary conditions andittractor for vortex motion can be a limit cycle, we let the
thus topologically correspond to motion on a two- 9rowth rate Dbe a function of the frequencyy(w)
dimensional toroidal surfaceT¢).] In the following we = G(@(X)). Substituting the growth rate into the velocity
compare our theory for the inhomogeneity-induced vortex34 gives
motion, Eq.(34), to numerical simulations with two different
forms of the inhomogeneity. For both cases we use the pa-
rameters «=0.34 and B=-1.45, which give o,
=0.08145m,,=1.212, andn,, =20.550. The first form is
given by Eq.(4) and has already been extensively discussedwhere Q(w)=[—(1+ %G’ —m,,]/G(w) with the prime
This form yields a fixed point attractor. The second form fordenoting differentiation with respect to its argument. Thus
the inhomogeneityintroduced below yields periodic mo- dw/dt=v-Vw=Q(w)|Vw|?. This shows that, iQ(w) has
tion (also called a limit cycle attractprNishiyama[5] re- a zero,Q(w.)=0, with Q'(w.) <0, then initial conditions
ports both fixed point and limit cycle attractors for spiral near the curves(x)=w, will be attracted to the curve. The
vortices inDictyosteliumexperiments. curve can then act as a limit cycle attractor. As an example
Case 1: Fixed point attractor for Eq. (34The numerical we use our previous inhomogeneity fav, w(X)=w,
simulation of the fixed point attractor that results from the — c,sin(y/40)co£(x/80); and
inhomogeneity given by Ed4) is shown in Fig. 2. Here the
system has essentially reached a fixed point attractor at time y(X)=K— xo(x)+ plw(x)]?,
t=13000[Fig. 2(d)]. To compare our numerical and theo-
retical results, we track the vortex location of the dominantwhereK is a constant that is set such that 0 everywhere,
spiral from time 650 to time 13 000 and compare that to they=(m,,+ kw)l(1+B%), and p=«/[2(1+ B?)]. For nu-
integration of Eq{(34) with the initial condition of the spiral merical comparison we s&t=1.1, x=2000, v.=0.03, and
vortex location at time 650 from the numerics. These result€,=0.1. The results are summarized in Fig. 5, which shows
are summarized in Fig.(d); the solid line is for the theory the phase ofA at four different times. In this case a single
[Eq. (34)] and the open circles are for the numerical dataspiral does not dominate the system as in the fixed point

Vw(x)

V(X):Q(w)vw(X)'FO'mwlZXm,
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(a) t=5000 (b) t =7000
100
yo
-100 ==
-100 0 100 -100 0 100
X X

(c) t=9000 (d) t=11000

~100 »
-100 0 100  -100 O 100

X X

-100 )(;) 100 -100 100

[al=}

FIG. 6. The normalized magnitudé\|/+[y| at four different
. . ) times for the inhomogeneity38). The white circles are the=0

FIG. 5. The phase oh at four different times for the inhomo- 0115 andy<0 inside them. The color scale is 0 (t#fack—
geneity that produces a limit cycle attractsplid, black ling. The \yhite) The time sequence shows the ejection of vortices out of the

color scale ranges from 7 to 7r (gray to white. The two spirals negative growth regior(a) Time = 2875.(b) Time = 2937.5.(c)
are moving clockwise along the attractor and the period of the limit; o — 3000.(d) Time = 3062.5.

cycle is approximately 8200 time units. The noticeable wavelength

variation results from the relatively large variation in the growth cjrcles the growth rate is negative. Looking at the lower right

rate (0.8—8.1). chosen for computation conveniencéa) Time negativey region in Figs. 6b) and &c), we see the ejection

= 5000.(b) Time = 7000.(c) Time = 9000.(d) Time = 11000. ¢ yortices out of the negative region and into the positive
v region (third quadrant This results in an increase of vor-

attractor, Fig. &d). In Fig. 5, before one spiral can dominate tices[compare Figs. @) and &d)]. As time proceeds further,

over the other, both spirals are attracted to the limit Cyclego e of these vortices may recombine and annihilate one
(@= o contour, solid line in Fig. bwhere both spirals have  5nqiher. This cycle of ejection and annihilation of vortices
the same frequency. While the existence of limit cycles doegy 545 1o 4 turbulentlike situation where there are no fully

not depend on our choicg(x) =G(w), the situation where  yeyeloped spiral waves. A similar picture also occurs for a
two defects on the limit cycle always have the same freéxy siem that has only a small region of space with a negative

guency is a special consequenceysf G(w). growth region ['=0.71).
Curiously, only the third quadrant of our system exhibited
lll. QUASIFROZEN REGIME; y<0 SUBREGIONS this turbulentlike phenomenon, whereas the first quadrant re-

Since the growth rate is allowed to vary spatially, themalned essentially free of vortices. This phenomenon seems

possibility exists that the growth rate will actually become“nked with the inhomogeneity of the frequency8) [ is

A : . arger fory<O0 (third quadrant than fory>0 (first quad-
negative in some subregion of the system. This corresponc]r%nﬁ]_ When we removed the inhomogeneity of the fre-

to having a region where small amplitude waves are expo- L L .
nentially decaying. In fact, such a situation is genericallyquenCy by setting, =0, the system no longer exhibited this

expected for an inhomogeneous system as an instability pg_ehaylolr and th? sy_frt]emtﬁet;_ledt dom‘ éo ha\élng tno vortices
rameter is increased from a stable situation. In this sectioff’ >Pra Waves in eitherthe first or third quadrant.
we briefly study the qualitative effects of such a negative
growth rate region.

To study this phenomenon, we again consider the inho- |n this paper, we have studied the role of a slowly varying
mogeneity given by Eq(4), but now we lowery by an  jnhomogeneity on the dynamics of spiral waves in the two-

IV. CONCLUSION

overall constant factor df, dimensional complex Ginzburg-Landau equation. In the
quasifrozen parameter regime of the CGLE, the inhomoge-
Y X neity causes frequency differences between spirals at differ-
X)=1—T"+cqsin —|sin —]|. 38 . ; .
7 1 (40) (40) (38) ent locations. As a consequence of this frequency difference,

favorably located spirals can grow and dominate the system.
w(X) is still given by Eq.(15). From Eq.(34) we note that The inhomogeneity also results in the motion of the spiral
the vortex velocity diverges ag goes to zero. Thus the vortices. We have derived an expression for the velocity
perturbation expansion used to obtain E24) breaks down which is related to the gradients of the inhomogeneity, Eq.
in the region of smally>0. This indicates the possibility of (34), and see good agreement with numerical simulations.
new physical effects. To investigate this, we Fet0.9,c;  We also have studied situations in which there are regions of
=0.3, ¢,=0.05, andw,= 0.081 45, so that a relatively large negative growth rate, and observed continual creation and
region of space has a negative growth rate. The effects of thignnihilation of vortices when an inhomogeneity in the fre-
inhomogeneity are shown in Fig. 6 where inside the whitequency is present.
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APPENDIX

In this Appendix we derive the similarity transformation 1+ aA
relatingm,,, andm,, evaluated at,) to m,, andm, As(Xa) =\ mAz(Xz)v
evaluated at ¢',8'). We introduce a free parameter and
then find a set of transformations back to the original systemand define the following quantities:

We can then compare the spiral vortex drift velocity in the

original system with that of the system with the free param- . we— A

eter to determine the relation between the drift velocity co- Yo T oA’
efficients in the two systems. ©

Since we are interested only in the velocity due to the
gradient ofw(x), we start with the inhomogeneity @f(x) r_

1+A?

Vl
=1l+iw,—iw(X) (0, is the homogeneous frequencynd V1+w,A(1+ BA)3?
Taylor expand about the spiral vortex locatigg,

Vv1+B8A
X)=1+iw,—iw(Xy)—iXy- Vo(X,), Al g =—"—""228,,
wherex; =Xx—X,. We insert this into the CGLE and apply . .
the following transformation: e,=—Ae,,
A(X1,t) = Ag(Xp)exH i w(Xo)to], g PA
1+BA°
Xo=X1—Vt,
- a—A
t=t, T ItaA

which transforms the system to the comoving frame with Using the transformation and the definitions given above,

the velocity of the spiral vortex in the original system. We Eq. (A3) becomes

assume thate,| =|V w(x,)| and|v| are ofO(€). Neglecting
2

terms ofO(e”), the CGLE becomes —iw(’)A3—v’~V3A3=[1+(e’y—ie;,)~x3]A3

—iwoAz—V~V2A2=(1—iX2-ew)A2—(l+ia)|A2|2/-\2 _(1+|CY,)|A3|2A3+(1+|B,)V§A3

+(1+iB)V3A,. (A2) (A4)

We also make the transformation ofAy(X5)

. Ay(x)exik,- x,] where|k| is of O(€). This transforms We examine this inhomogeneity more closely. In the pre-

Eq. (A2) into vious calculation of the velocity coefficients due to a gradi-
' ent in the growth ratey (see Sec. II B}, we found that an
— A= [V+2i(1+i B)K.]- VA, inhomogeneity of the fornw=1+(1+iwy)e, x results in a

vortex motion parallel to the gradient gf Using this result
=(1—ixp-€,)A— (1+ia)|A?A+ (1+iB)V3A,.  we then let

We now introduce the free, real parameterby adding e —ie =e(l+iw))—i(e +wle)
iAA, to both sides and dividing by #iAA,. This leads to v ° @

the equation ! _ .
where we know that the first term of the right hand side

[ wg—A V+2ik (1+i8) A gives a velocity’ = — (1+ 8’?)e], from Eq.(21). Therefore
"\ 1+ia )72 11iA 22 we set
e 1+ia " ’ 12\ o/
=l1—ix,. —2 — 2 V'=v'+(1+B'%)e
(1 Xo: T | A2 | Tiya | 1Ae A 7
L+ig| & =(1-wlA)e,,
x| Vi (A3)
: so that Eq.(A4) becomes
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_iwéA3_V”'V3A3:(1_iéi)'X3)A3_(1+ia,)|A3|2A3

+(1+iB')V2A;, (A5)
which is of the same form as EGA2). The general velocities
for Eqs.(A2) and (A5) are

v=—m,(a,B)e,+om,, (a,B)zXe,, (AB)

V'=—m,(a’,B)E,+aom,, (' ,B)zXE,, (A7)
respectively. Now applying the definitions for the primed
system and substituting EqA6) into Eq. (A7), we find

that

A(1+Bx

1+ woA (A8)

me(a’,,B')=)(me(a,B)+
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me(a,lB,):meL(arﬂ)! (Ag)
an T _B7P (A10)

C1tad'a 1+8'B’

where A is the free parameteny=(1+ w,A)%/(1+ BA)?,
and w,= wy(a,B) is the homogeneous frequency. Given a
value of («,8), the second equality of EGA10) gives the
equation of a hyperbola im(',8") space that passes through
the point @, ). If we knowm,, andm,,, at the single point
(a,B) in parameter space, then E¢88)—(A10) tell us the
values of them,’s at all points on the hyperbola. For ex-
ample, using knowledge of thm,, coefficients along the line
B=—1, we can use the transformation of E¢&8)—(A10)

to extend this to knowledge ah,’s at any point in param-
eter space.
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