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A Ponderomotive Guiding Center Particle-in-Cell
Code for Efficient Modeling of Laser–Plasma

Interactions
Daniel F. Gordon, W. B. Mori, and Thomas M. Antonsen, Jr., Member, IEEE

Abstract—A novel particle simulation code is described that
self-consistently models certain classes of laser–plasma inter-
actions without resolving the optical cycles of the laser. This is
accomplished by separating the electromagnetic field into a laser
component and a wake component. Although the wake component
is treated as in a fully explicit particle-in-cell (PIC) code, the laser
component is treated in the high-frequency limit, which allows
the optical cycles to be averaged out. This leads to enormous
reductions in computer time when the laser frequency is much
greater than all other frequencies of interest.

This work is an extension of the work of Mora and Antonsen, Jr.
[1], [2], who derived the time-averaged equations coupling the laser
with the particles and developed a code to solve these equations in
the quasi-static limit. The code presented here is distinguished by
the fact that it is useful when the plasma length is much less than
the laser pulse length. Also, it is already parallelized and should be
straightforward to extend to three dimensions.

Index Terms—Particle code, plasma simulation.

I. INTRODUCTION

T HE physics of nonlinear laser–plasma interactions is di-
rectly relevant to a number of applications, including laser

fusion [3]–[5], plasma based accelerators [6], and advanced ra-
diation sources [7], [8]. The complexity of these systems has led
many researchers to make heavy use of computer modeling to
predict their behavior. The most accurate of such models is prob-
ably the particle-in-cell, or “PIC” code. A PIC code self-consis-
tently calculates the motions of a large number of charged par-
ticles and the fields they produce. The drawback of such a code
is that it requires enormous computing resources to run. This
problem becomes particularly acute with regard to laser–plasma
interactions because resolving the high-frequency laser field re-
quires a large number of simulation cycles.

Various attempts to overcome this difficulty have been made.
The simplest was to prescribe a nonevolving laser field and su-
perimpose its ponderomotive force over the self-consistent force
on a particle [9]. Because the ponderomotive force varies slowly
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on the timescale of the laser frequency , only the plasma
frequency had to be resolved and an -fold in-
crease in the speed of the simulation was obtained. The problem
with this approach is that the laser radiation is not allowed to
evolve. Processes such as self-focusing and stimulated Raman
scattering (SRS) are therefore excluded from the model.

A more sophisticated solution, from Mora and Antonsen, Jr.
[2], was to derive a self-consistent description of the interac-
tion between the particles and the laser field in terms of only the
slowly varying laser envelope and the associated ponderomo-
tive force. In this way, a factor performance increase
was obtained while still allowing the laser pulse to evolve. The
code, called WAKE, has been successfully used to model the
self-modulation and self-focusing of an intense laser pulse in a
plasma. Some of the limitations of WAKE are as follows. First,
it uses the quasi-static approximation [10] to solve for the par-
ticle motions and the plasma fields. This implies that high-en-
ergy particles may not be modeled accurately. Second, because
the model equations were expressed in terms of laser coordi-
nates , the code automatically does all of
its calculations in a window moving with the laser pulse. Al-
though this is exactly what is desired in some cases, it is not
desirable in others. Finally, because of the structure of the code,
it is difficult to parallelize.

In this paper, we describe a new parallel code called tur-
boWAVE that solves Maxwell’s equations for the plasma fields
and the Mora and Antonsen, Jr. equations for the laser fields.
The turboWAVE algorithm is based largely on the Los Alamos
code WAVE [11], which has been well tested over the years. Al-
though turboWAVE and WAVE are close algorithmically, pro-
gramatically turboWAVE is an entirely new object-oriented C++
code.

The distinction between turboWAVE and WAKE can be un-
derstood as follows. In both codes, the cell size must be small
enough to resolve the nonlinear wake. In turboWAVE, this im-
plies that the timestep must be small enough to resolve a plasma
period in order to satisfy the Courant condition. In WAKE, on
the other hand, the quasi-static assumption is made and only the
laser evolution time needs to be resolved. However, the box size
has to be larger than the laser pulse length because the calcu-
lation is done in the laser frame. By contrast, turboWAVE al-
lows a laser to be injected into a stationary box that is much
shorter than the laser. This is advantageous, for example, when
modeling beatwave acceleration experiments. In addition, the
removal of the quasi-static approximation allows turboWAVE
to model the acceleration of charged particles to high energies,
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provided the accelerated particles are not affected too strongly
by the laser fields.

At present, turboWAVE has the following features and limi-
tations.

1) It solves for high-frequency fields and their effects on
particles using a time-averaged model that can lead to
much shorter simulation times than those obtained using
an ordinary PIC code.

2) In terms of push time per particle per timestep, it runs
roughly a factor of two slower than other PIC codes be-
cause of the complexity of the algorithm.

3) It functions as a fully explicit two-dimensional (2-D) PIC
code when the laser fields are zero.

4) It operates on a 2-D cartesian grid only.
5) It is parallelized via the message passing interface (MPI)

and one-dimensional (1-D) domain decomposition.
6) It offers a moving window option.
7) It models tunneling ionization.

In what follows, we outline the algorithms used to realize these
features and present preliminary results from the code. Further
details will be presented in another paper.

II. M ATHEMATICAL DESCRIPTION OF THEALGORITHM

TurboWAVE is based on the proposition that the electromag-
netic field can be divided into two parts: a “laser” field and a
“wake” field. The laser field is characterized by two require-
ments. First, a typical charged particle should move through a
large amount of optical phase before the field strength changes.
Second, the laser energy should be confined to a small region of

-space far from the origin. The whole electromagnetic field,
expressed using the normalized units typical of simulation
codes, is determined by the wave equation

where represents the laser component of the field andrepre-
sents the wake component. Correspondingly, the current density
is decomposed into a rapidly varying component associated with
the laser, , and a slowly varying component associated with the
wake, . The rapidly varying current is defined as that which
would be driven by the laser if the spot size was infinite

Here, the sum is over the particles,is the distribution of charge
density for the th particle, is the charge, and is the rela-
tivistic mass. The laser field is then defined by some initial con-
dition, along with

(1)

Now, consider a particular component of the laser field ex-
pressed in the form

where and is the laser frequency. Mora and
Antonsen, Jr., showed [2] that if the radiation is dominantly for-

ward propagating, the evolution of the laser envelopeis ap-
proximated by

(2)

where is the transverse Laplacian, and

Here, is the rest mass and is the momentum induced by
the wake. Thus, the particles couple to the laser through the
parameter , which depends on the charge densityand the
average relativistic mass .

TurboWAVE models the wake fields using the same algo-
rithm as WAVE. In particular, the potentials are updated ac-
cording to

where represents a Poisson solver. The use of
ensures charge conservation. The electric fieldand magnetic
field are found from and . The
exact differencing scheme involves various subtle smoothing
operations, which we will not discuss here.

The coupling between the laser and the wake takes place
through the intermediary of the particles. This is expressed by
the momentum equation [2]

Here, and are the fields associated with the wake potentials
and . The term involving represents the ponderomotive

force due to the laser. This expression is accurate, provided the
particles move through a large number of optical cycles before
the laser intensity changes significantly. Once the particle states
are updated, the source terms , and can be updated. These
are then used to update , and , so that the process can start
over. Taking , this reduces to the usual cycle of a PIC code.

III. T HE LASER FIELD SOLVER

In solving numerically for the laser fields, we approximate
(2), which can be written as

Multiplying both sides by , and transforming to ordi-
nary coordinates using and , we obtain

(3)

where a term of order has been dropped from the left-hand
side. The effect of this term is to reduce the axial group velocity
of waves propagating at an angle to the axis. It can be neglected
in the case of forward or near-forward Raman scattering, but
could be important for Raman sidescatter.
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We use Crank–Nicholson to solve (3) stably. In particular,
the terms and are evaluated using data from
timesteps and , whereas all other terms are evaluated
at timestep .

IV. THE PUSHER

TurboWAVE uses a modified version of the Boris pusher [12].
At timestep , we regard as known

, and . This gives , and
in straightforward way. However, to advance in a

manner accurate to second order in the timestep requires knowl-
edge of . An implicit equation for is

which can be solved using the quadratic formula. The mo-
mentum is then updated using

where

and is an operator that rotates a vector about the magnetic
field by an angle

The update of the particle position is also subtle because
knowledge of is required. This quantity depends
implicitly on through its dependence on. An implicit
equation for is obtained by Taylor expanding
about

where

Again, this can be solved using the quadratic formula.

V. THE WAKE FIELD SOLVER

As mentioned above, the field solver for the wake is nearly
identical to that of WAVE. The only difference is in the Poisson
solver, where we have added the option of using open-ended
boundary conditions [13]. This allows for the possibility of a
nonneutral simulation box. Use of open boundary conditions is
also necessary in cases in which the plasma does not fill the
box transversely, such as when it is created by tunneling ioniza-
tion. In such cases, neither axial boundary can be taken to be an
equipotential because electron diffusion will lead to a restoring
space-charge field.

VI. M OVING WINDOW

We have implemented a moving window option using a
technique similar to that of PEGASUS [14]. However, in
turboWAVE, boundary conditions are difficult because in the
Coulomb gauge, neither nor are causal quantities. A tem-
porary solution has been to use the open boundary conditions
for the Poisson solver, and to obtain a boundary condition for

by requiring

at the front of the window. The boundary condition for is
then found from the gauge condition

This technique assumes that all charges are neutralized by the
time they pass through the rear boundary of the window. It is
desirable, therefore, to leave a large space between the rear of
the laser pulse and the rear of the window.

Although we have not yet implemented it, there is a way of
rigorously computing the potentials in the moving window even
for . The method is an interesting study in causality. It
accounts for sources behind the window without any knowledge
of their motions. In the Appendices, we show that the effects
of these sources can be expressed entirely in terms of a scalar
potential determined from

(4)

Here, a Fourier transform has been performed in the-direc-
tion, is the Fourier wavenumber, is a coordinate
moving with the window, and is the charge density at the
rear boundary of the window . The total scalar potential
is then , where is computed assuming outside
the window.

An alternative solution is to rewrite the field solver to operate
in the Lorentz gauge. In particular, we could solve

Here, again, the Poisson solveris used to ensure charge con-
servation. Although is not a causal operator, the vector poten-
tial will be very nearly causal nevertheless. This is because for a
linearly weighted , the contribution of a particle to
takes the form of a quadrupole. The resulting “correction field”
is therefore highly localized to the region of the particle [13].
With both potentials causal, the moving window boundary con-
ditions can be done as in PEGASUS.

VII. I ONIZATION

In many laser–plasma interaction experiments, the plasma is
created by the laser via tunneling ionization. It is desirable there-
fore to include this process in any laser–plasma simulation code.
Tunneling ionization is modeled in turboWAVE by computing
an ionization rate based on the Keldysh model [15]. This rate
is computed in each grid cell to determine the number of new
particles to create in that cell. The particles are given a thermal
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velocity selected by the user and can be positioned either uni-
formly or randomly throughout the cell.

VIII. PARALLELIZATION

Parallelization of turboWAVE is accomplished using the
(MPI). One-dimensional domain decomposition is done in
the -direction. This is largely straightforward, except for
the Poisson solver. The WAVE Poisson solver works by
transforming to frequency space in the-direction and finite
differencing in the -direction. The operation in the-direction
parallelizes immediately because it is independent of. After
this transformation, the scalar potential at eachis determined
from a second-order difference equation in. Because the
domain decomposition is performed in the-direction, solution
of this equation requires a parallel tridiagonal solver. We have
devised and implemented such an algorithm. It is presented in
the Appendices.

IX. BENCHMARKING

We have tested turboWAVE by modeling phenomena that can
be described analytically, and by comparing it with fully explicit
calculations done using WAVE and PEGASUS. We treat these
benchmarks in order of increasing complexity.

A. Vacuum Propagation

The simplest test is to verify that the laser field solver cor-
rectly propagates a Gaussian beam in vacuum. In slab geometry,
a Gaussian beam is described by

where

and the Rayleigh length is

As a test, we focus a laser pulse to the center of a simulation box
long. This is done simply by setting the amplitude and

phase of in the left ghost cell according to .
Fig. 1(a) shows the resulting transverse amplitude profile in the
center of the box. The vertical dotted lines show the locations of

, and the horizontal dotted line shows the location of .
The curve passes through the intersections of these lines just as
expected.

Fig. 1(b) shows the relative phase ofon axis. A “Guoy phase
shift” of radians is expected as the laser propagates through

. This is exactly what is observed.

Fig. 1. Test of propagation in vacuum (a) amplitude profile at best focus. The
curve is expected to pass through the intersections of the dotted lines (b) Guoy
phase shift. The phase shift through one Rayleigh length is expected to be 22.5.

B. Linear Propagation in Plasma

For the next test, we propagate a small amplitude wave
through a uniform plasma in one dimension. Let

where is the phase change due to plasma. It follows that
. Assuming the plasma is homogeneous, it further fol-

lows that , where is constant. Using the well-known
dispersion relation for electromagnetic waves in a plasma, we
obtain

In Fig. 2, we plot for an electromagnetic wave with
propagating through a box with a vacuum region and a plasma
region. The slope of the curve corresponds to. As expected,
the slope is zero in the vacuum region and in the plasma
region.

C. Beat Excitation of a Plasma Wave

It was shown by Rosenbluth and Liu [16] that a two-fre-
quency laser will drive a plasma wave such that the electrostatic
field grows according to
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Fig. 2. Linear propagation in a plasma for! = 10! . The slope of the curve
corresponds toc(k �k)=! . The expected slope in the plasma region is 0.05,
just as is observed in the plot.

where is the cold wavebreaking field, and are the nor-
malized amplitudes of the two lasers, and the frequencies of the
two lasers are chosen such that . Fig. 3 shows
the results of a 1-D simulation in which and

. A particular point in the simulation box
was chosen, and was plotted. The field grows linearly at
the expected rate until relativistic detuning saturates it.

D. Wakefield Excitation

In the (1-D) nonrelativistic limit, the amplitude of the wake
excited by a short pulse laser is [6]

(5)

where . We test the accuracy of this in both one and
two dimensions, using both the moving and stationary windows.
The temporal profiles of the pulses used are of the form

where , and is the full-width
at half-maximum (FWHM) of the pulse. The functionhas
the following properties:

,
and
.
Fig. 4(a) shows the results of both 1-D and 2-D simulations

in which the wake amplitude was measured as a function of
the driver amplitude . The 2-D simulations used the moving
window. The laser parameters were and . For
the 2-D runs, the spot size was . The theoretical curve
was obtained by numerically integrating (5). The agreement be-
tween theory and simulation is excellent for small. For large
, relativistic effects are expected to reduce the wake amplitude

from the theoretical value, as is indeed observed in the figure.
Fig. 4(b) shows the results of 1-D simulations in which the

wake amplitude was measured as a function of the pulse length
. The laser amplitude was , and the frequency was

Fig. 3. Beat excitation of a plasma wave witha = a = 0:1; ! = 9:5,
and! = 10:5. The electric field grows secularly at the expected rate until
relativistic detuning occurs.

Fig. 4. Excitation of wakes by a short-pulse (a) scaling with driver amplitude
and (b) scaling with pulse length near the resonance.

. The theoretical curve was again obtained by numeri-
cally integrating (5). Again, the agreement between theory and
simulation is excellent.

E. Nonlinear Beat Excitation

In [17], a fully explicit 2-D simulation of beat excitation was
done using WAVE, in which , and

. The laser risetime was . Late during this
risetime, the wave amplitudes become large enough so that no



1140 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 28, NO. 4, AUGUST 2000

Fig. 5. Nonlinear beat excitation (a) axial electric field at! t = 150 and (b)
scalar potential at! t = 210.

analytical treatment is available. To test how well turboWAVE
works under such conditions, we repeat the simulation described
in [17] using the ponderomotive guiding center algorithm.

Fig. 5(a) shows the on-axis axial electric field at at a time
shortly before the waves become highly nonlinear. This corre-
sponds to [17, Fig. 12(b)]. The agreement is excellent. Fig. 5(b)
shows a contour plot of the scalar potential after a high degree
of nonlinearity has set in. This corresponds to [17, Fig. 15(c)].
The similarity between the two sets of contours is striking.

F. Self Modulation

Finally, we consider the case of the self-modulation of a short
pulse propagating through a plasma. This is a difficult problem
to model using a ponderomotive guiding center code for two
reasons. First, it has been shown [18], [14] that backscatter can
strongly affect the outcome of such an interaction. This is be-
cause the Raman backscatter instability grows very quickly and
acts as a seed for the forward Raman instability and self-modu-
lation. In regimes in which this seeding mechanism dominates,
its absence from the model causes the forward Raman to de-
velop much more slowly than it should and the entire interac-
tion can end up looking very different. The second difficulty
is that the forward Raman leads to wavebreaking and the gen-
eration of large numbers of very high-energy electrons. These

Fig. 6. Self modulation of a short-pulse (a) laser amplitude at! t = 150,
including seed pulse and (b) accelerating electric field at! t = 150.

electrons may move too slowly through the optical phase fronts
to be modeled accurately by the ponderomotive description.

Despite the difficulties described above, we have found that
it is possible to obtain reasonable results in the self-modulated
regime using turboWAVE. At sufficiently early times, the in-
correct interaction between the high-energy electrons and the
laser fields is not expected to strongly affect the evolution of the
laser or the wake because the number of high-energy electrons is
small. The backscatter problem is not serious, provided the wake
driven by the rising edge of the laser pulse is sufficiently strong.
In particular, if the wake is strong enough to seed the forward
Raman as strongly and as quickly as backscatter, backscatter
will not have a serious impact on the interaction. This is because
once the forward instabilities are underway, they dominate over
all other processes.

As an example that illustrates these difficulties, and how to
overcome them, we attempt to reproduce the 2-D PEGASUS
simulation described in [18]. Unfortunately, [18] describes the
pulse shape in terms of a parameter which is not
precisely defined. We choose to interpret this parameter in the
sense that makes the problem as challenging as possible—that
is, we take the pulse shape to be as described in Section IX-D
with . Other parameters were , and

. In this case, the wake excited by the rising edge of the
pulse takes much longer to excite the forward Raman than does
backscatter. However, we find that the effects of backscatter can
be simulated by superimposing a small short pulse
over the longer main pulse. This takes the place of the “notch”
that backscatter would have created in the laser pulse via pump
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depletion. Using this technique along with the moving window,
we generated Fig. 6. The contours of laser amplitude at

are shown in Fig. 6(a), whereas the contours of the axial
electric field at the same time are shown in Fig. 6(b). These
are to be compared respectively with [18, Figs. 3(c) and (d)].
The two sets of results are qualitatively similar. Better quantita-
tive agreement might be obtained by adjusting the seed pulse. It
should also be noted that the need for a seed pulse might be elim-
inated given a more favorable interpretation of. We indeed ran
a case with a different pulse shape (equal risetime, fall-time, and
flat-top regions of ) and found that contours similar to
those shown in Fig. 6 could be generated without a seed pulse.

X. CONCLUSION

The code turboWAVE provides an effective method of mod-
eling laser–plasma interactions, in which the laser radiation is
dominantly forward propagating and the laser–particle interac-
tion is adequately modeled by the ponderomotive force. Plans
for the future include implementation of cylindrical geometry
and three dimensions, as well as the improved moving window
algorithm discussed above. In addition, a method of handling
high-energy particles whose interaction with the laser is not ad-
equately modeled by the ponderomotive force is being contem-
plated.

APPENDIX A
MOVING WINDOW POISSONSOLVER

To solve for and in a computational region, or “window,”
moving at the speed of light, requires a Poisson solver that ac-
counts for sources behind the window without knowing what
those sources are. The key to solving this problem lies in under-
standing the implications of causality. By causality, the fields in
the window are independent of the sources behind the window.
This means particles behind the window can undergo any mo-
tion whatsoever without affecting the solution for the fields in
the window. The problem then is to choose some motion that
makes it easy to solve for the potentials. The obvious choice is
to immediately “freeze” the particles the moment they cross the
rear boundary of the window. The particles then recede from the
window at the speed of light while maintaining their transverse
position.

The equations for the potentials can be written as follows:

Here, is a Green’s function and represents convolution in
space. If we choose to freeze the particles the moment they cross
the rear boundary of the window, the current behind the window
is zero and the sources behind the window do not contribute
to the vector potential. To solve for the scalar potential due to
sources behind the window, we Fourier transform in the trans-
verse direction. This gives

where for

The upper limit in the integral is the location of the
rear boundary of the window. Because the sources behind the
window do not move, we have for

where is the charge density on the boundary evaluated at
the time . This allows the convolution integral to be written
as

where we renamed the integration variable to emphasize that
the integration is effectively over time. In terms of a coordinate

moving with the window, this becomes

Differentiating both sides with respect to time gives (4). The
solution for the mode is found similarly, using for the
Green’s function

APPENDIX B
PARALLEL TRIDIAGONAL SOLVER

We seek a parallelizable solution to the equation

where is a tridiagonal matrix. Consider diagonal sub-
matrices of size defined by

where varies from 0 to and vary from 1 to . From the
original matrix equation, it follows that

where are the standard basis vectors and

Inverting this equation gives

(6)

where

Let us now regard as indicating one of the nodes on a parallel
computer. The quantities , and can be solved for inde-
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pendently on each node via the usual tridiagonal algorithm. To
obtain the full solution , it only remains to solve for and

.
The quantities and can be viewed as the dirichlet

boundary conditions to the left and right of node, respec-
tively. Equation (6) can, therefore, be viewed as expressing
the solution on a single node in terms of the solutionusing
null boundary conditions, plus a correction taking into account
the actual boundary conditions imposed by the presence of
the other nodes. These boundary conditions are determined
implicitly by combining the definitions of and with (6).
In particular, we have equations

for the unknowns and . Here

The system is closed by taking and as given. These can
be viewed as the dirichlet boundary conditions for the whole
system. Alternatively, if the global boundary conditions are ac-
counted for by the original equation , then

.
The above system of equations can be reexpressed in terms

of two independent tridiagonal systems: one forand one for
. In particular

where for the system, we have

and for the system, we have

The factors can be computed on one node—the “alpha
node”—whereas the factors are computed on another—the
“beta node.” Once this is done, the alpha node transmitsto
node while the beta node transmits to node . Node can
then compute , and the problem is solved.

In many cases, the system has to be solved re-
peatedly under conditions in whichchanges but does not.
In this case, certain quantities can be computed on the first pass
through the program’s main loop,whereas subsequent iterations
reuse the results of that calculation. These quantities are

through , and .
The message passing requirements for the algorithm just de-

scribed are as follows. For each tridiagonal system to be solved,
six numbers must be passed from every node to the alpha node.
The same six numbers must be passed from every node to the
beta node. These numbers are , and through . The
alpha and beta nodes then operate on these parameters to pro-
duce correction factors each. Finally, the alpha node sends
one number to each node ( node ), while the beta node
does likewise.

One way to improve the efficiency of the message passing is
to write the routine in such a way that it handles multiple tridiag-
onal systems at a time. For example, one might have a 2-D grid
on which a tridiagonal solution is required over each horizontal
strip. In this case, it would be best to pass theand factors
for every strip in one message. This alleviates the problem of
latency.
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