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Abstract—Simulation-based-design (SBD) techniques to achieve to increase device efficiencies and to reduce their weight and
“first-pass design success” depend on the development of fast, ac-yolume. Prospective HPM sources include vircators, klystrons,
curate, realistic models that can handle material properties, geom- relativistic magnetrons, high-efficiency backward-wave os-

etry, and appropriate boundary conditions. This paper describes illat d fast devi R h i
a new three-dimensional (3-D) electromagnetic and large-signal cillators, and fast-wave gyrodevices. kesearch contnues on

simulation tool, Cold-Test and Large-Signal Simulator (CTLSS), Nnew sources, based on plasma-filled devices, ultrawideband
which has been developed as part of an SBD tool suite for vacuum technology, and transit-time oscillators. In addition, there are
electron devices. _ _ ~on-going research efforts on advanced cathodes, ferroelectric

Computational electromagnetic codes are essential for applying cathodes. microwave vacuum and window breakdown. and

the SBD methodology to the design of vacuum electron devices . .
and components. CTLSS offers the unique advantage that its multipactor phenomena to increase the RF vacuum strength

computational electromagnetics model is linked intimately with Of cavities and windows to produce higher energy density and

a large-signal simulation tool for computing the electron-wave longer pulse devices.

interaction in the radiating structure. Currently, this link has The simulation and virtual prototyping of HPM devices [1]

been implemented for helix traveling-wave tubes (TWT’s) only, i ; .

using the CHRISTINE code as the large-signal model, but a new, traditionally has fallen into three areas.. .

general, large-signal model is under development and is described 1) Pulsed power sourcesThese devices create the high-

in this paper. power electrical pulses needed to drive HPM sources.
The electromagnetic simulation engine in CTLSS has been de- They may be based on very rapid magnetic flux com-

signed and implemented as a volumetric frequency-domain model pression by explosively driven liners, for example, and

that can handle both resonant eigenvalue problems, using the . .
Jacobi-Davidson algorithm, and nonresonant driven-frequency are often modeled with magnetohydrodynamics (MHD)

problems, using the quasi-minimal residual (QMR) technique simulation codes.
to invert the non-Hermitian matrices that often occur in real 2) HPM sources Particle-in-cell (PIC) simulation codes
problems. have been used in the HPM research community to model

The features and advantages of this code relative to other models
and results from the code for several classes of microwave devices
are presented.

the interaction of a high-power electron beam with the
cavity structure and applied fields in the source.

3) AntennasComputational electromagnetics software has
been used to model the antenna structure with particular
emphasis on mode control to avoid “hot spots,” which
lead to RF breakdown and plasma formation.

The development of general electromagnetic and large-signal

. INTRODUCTION models, like the Cold-Test and Large-Signal Simulator

A. Simulation Codes for HPM (CTLSS), will offer the potential to greatly accelerate the

. development of HPM devices by allowing integrated design
IGH-POWER microwave (HPM) research has focused verop v y wing Infeg '9

Qlculations of the HPM source, the output coupler, and the

the development of microwave sources, output Wmdowantenna, with fast-running large-signal analyzes of the inter-

and advanced cathodes. An overall goal of HPM researCha'@tion region. The current use of time-consuming PIC models
is required because faster parametric models and large-signal
models based on averaging over the highest frequencies in the
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B. CTLSS Code Overview

?.".'1, Single pericd
CTLSS has been designed as a state-of-the-art three-dimen- . 3\ of heelix-TWT
sional (3-D) simulation model for the electromagnetic and large- ) ?_'3,.,% o
signal behavior of vacuum electron devices. It builds on years i ﬂ&
of development of electromagnetic and large-signal simulation
codes, and it has been designed to remedy many shortcomings in o,

&

existing codes when treating realistic problems involving lossy I e =
materials and complex geometry. Kivetron cavity s "“-'4-”.-’_:- |
The CTLSS model offers many useful features as follows. = il

1) Meshing CTLSS currently uses a 3-D structured, TH
single-block mesh, and it supports orthogonal coordinate =
systems in both Cartesian and cylindrical geometry. The '
mesh includes special models to impose sharp-corner
corrections on material boundaries. New development
in progress will incorporate multiblock, nonorthogonal
structured mesh for conformal representation of 3-D
structures.

2) Materials CTLSS supports inhomogeneous material
parameters, with structures mapped to mesh cellsg. 1. Some electromagnetic applications of the CTLSS code.
Anisotropic materials with diagonal tensor properties are
permitted, and the formulation extends to full tensor mahe advantage that it works very well whenis non-Hermitian
terial properties. Absorbing materials are included usirgnd, therefore, can handle problems with lossy materials.
complex-valued material parameters to represent lossesThe resonant eigenvalue problem involves the solution of the
The CTLSS eigenvalue algorithm successfully operatageneralized eigenvalue equation
even with very large loss tangentsané ~ 100% has
been used successfully.) New algorithms for advanced {A—ABlz, =0

mate_nal proper_tles are under_ development to handvlveiwere bothA and B are large matrices. CTLSS uses the
nonlinear and dispersive materials. Jacobi-Davidson method [6] to solve these problems. Ja-
3) Boundary conditionsBlock boundary conditions, in- P '

cluding perfect electric conductor, perfect magnetiCObi_PaVidson. s a purgly iterative method relat'ed to the
conductor, symmetry wall periodic’ and Floquet peri-ﬁayleIgh quqtlent iteration (RQI) M?tho.d’ and .'t uses a
odic with jspecified phase ,advance ,are supported on BLPck—GaIerkm_ procedure fpr the estlmc_':ltlon Of. elggnvall_,les.

The subspace is updated via an approximate (iterative) linear

three axes. New development is incorporating perfectl . .
matched layers (PML's), ports, and outgoing-wavc%’luuon [7], followed by subspace augmentation [8]. The

boundary conditions. original formulation of the Jacobi—Davidson algorithm [6] cal-

CTLSS can be employed for solving diverse practica?lUIates a set of solutions in a given randm < An < Amax,

problems, such as the computation of electromagnetic fiel%nd therefore can exclude static solutions automatically. It also

T . . OBtains high-order mode solutions efficiently. The subspace
developing in components for high-power microwave gen-

eration [e.g., klystrons, coupled-cavity and helix travelinUpdate step uses the QMR algorithm to ensure stable behavior

) . . . a/ith lossy materials.
wave _tubes (TWT's), and gyroklystrons], including absorbing The Jacobi—Davidson model offers several advantages over
materials commonly used to control mo@eand to suppress

i I e : other eigenvalue models as follows.
spurious oscillations. Applications to particle accelerators

include the simulation of microwave accelerator cavities, 1) Ithandleslossy materials with high loss tangent (complex
couplers, etc. Cavity eigenmode solutions provide mode  €igenvalues). B
frequencies’s and eigenfields, as well as dispersion and cou- 2) All modes are ensured to converge to the same specified
pling impedance. CTLSS has the capability for simultaneous ~ 1€Vel Of accuracy—the unnecessary use of resources in
extraction of all eigenmodes in a given band. Fig. 1 depicts _ cOnverging additional modes is avoided. ,
several configurations to which CTLSS has been applied. 3) The algorithm can start or restart with an approximate
The electromagnetic solver in CTLSS has been designed to _ Solution. _ _
handle two separate classes of problems, resonant and nonre§) The algorithm can be accelerated using multilevel

onant frequency-domain simulations. The nonresonant solver  Methods. N _ .
uses the “quasi-minimal residual” (QMR) method [5] to invert These features are described in the remainder of this paper.

Sungle period

of coupled cavity
TWT. showing
Egen el Fiesld

the linear matrix equation During the development of CTLSS, the Jacobi—Davidson algo-
rithm was modified [9] to control the growth of the subspace
Az =10 during the solution. Additional modifications to accelerate con-

vergence are described in Section V.
whereA is a very large matrix, and the problem therefore may The large-signal model in CTLSS is currently based on
best be solved using iterative methods. The QMR method offéhe one-dimensional (1-D) CHRISTINE code [10] that was
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developed for modeling helix TWT’s. This model has been For a driven-frequency problem, a prescribed spatial distri-
generalized first to provide a three-dimensional model, CHRI8ution of J at a specified value of drives the electric field
TINE-3D, for the helix TWT. The current development activitysolution. Then, these equations define a standard linear operator
is aimed at the development of a general three-dimensiopabblem of the formA« = bthat can be solved with appropriate

large-signal model, described in Section IlI. boundary conditions to obtain the spatial profiB&v,r) that
describe the electric field response to this source at the given
[I. ELECTROMAGNETIC THEORY AND NUMERICAL frequency. If the system is driven on a resonance, very large
FORMULATION amplitude solutions will be driven. The driven amplitude is pro-

CTLSS solves Maxwell's equations in three dimensions Portlonal to the) of the resonant mode. Solutions of this type
are discussed in Section IV.

obtain full electromagnetic solutions in the frequency domain
for either the resonant eigenmodes or the driven-frequency I8
sponse of an electromagnetic structure.

With no source field,.7, this equation takes the stan-
rd form of a generalized eigenvalue problem of the form
Az, = )\,Bzx,, which describes the resonant modes of the

A. Maxwell's Equations—Continuum Theory structure

Maxwell's equations provide a continuum model, based on {curlu curl —w s} E,=0
partial differential equations for the electric and magnetic fields
in space and time. The equations describe the relationshipssdfere normal-mode frequency squatedis the eigenvalue of
these fields to each other and their interaction with materiglse system, associated with the electric field eigenvector. Eigen-

through a set of constitutive relations. value solutions are discussed in Section V.
1) Frequency Domain and Time Domaiin the time do-  To handle arbitrary coordinate systems, we express
main, Maxwell'scurl equations are written as Maxwell’s equations in tensor form
oD ijk OH,, " i
il S — = D
curlH =J + 5 g +
aB igk Y&k i
curlE = — Ty < o7 B

in terms of a set of global logical coordlnatéz1 72,7%). The
global physical Cartesian coordinates', 2%, 2®) = (z,y, 2)

are expressed as a mapping from the logical coordinates from
which the metrigy;; is obtained, i.e., where

in terms of the electric field and displacement vectB(s:, ¢)

andD(z, t), the magnetic field and flux density vectdKz, ¢)

andB(z, ), and the electric current density vectlier, ¢).
The linear constitutive relations

5 —.& =27, 7%, 7°)
= 1,  for cyclic indexes
H=y,"'B (91/2 e”"‘) =ik = {0, with repeated index
N —1, for anticyclic indexes
express the relationships betwdémndD and betweel and g = det g;;, i, 7,k € {1,2,3}.

H that are required to solve Maxwell's equations in either the

time domain or the frequency domain. Bulk material propertiethe logical coordinate domain chosen for our discretization is a

are described by the permittivity and permeability tensoasid  3-D grid of unit, cubic cells, for which the numerical computa-

2 tion is greatly simplified, mapped to a physical domain that may
To derive the frequency domain equations, the electric abd nonuniform, curvilinear, and even nonorthogonal.

magnetic fields and sources are assumed to be harmonic funcFhe equations may be transformed into a simpler, metric-free

tions of time, using the convention form by a volumetric scaling of parameters [11]
E =Re( Ec ka kK pi i
= e . o =1 +d
Substitution into Maxwell’s equations then yields the frequency ik OB S
domain equations owl
S S L where
curl =J —iwD ‘ ‘
curl E =iwB. d' =g"* D'
bi :gl/QBi
Using the curl operation and the constitutive relations to elimi- I =g\/%ji
nate all fields buf’ and./, these equations give the second-order '
vector differential equation This prescription permits the metric information to be amal-

R R gamated with the anisotropic, continuum materials parameters
{CUHM feurl — w 5} E=wl. when the physical problem is mapped into logical coordinates.
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Although the tensor constitutive relations in the physical spa8e< 3 tensor material properties;; and p;;. At present, the

are written as discretization method implemented in CTLSS supports only
) diagonal tensor material properties, although this is not an
D; =€}k, ' inherent limitation of the method. Diagonal tensor properties

H, = (/fl)f B, are simpler because each of the diagonal tensor components is

associated with a single field component (elg,, = .. F.),
they may be expressed in the logical space as and the resulting matrix equations are simplified.
7V E It is sometimes impractical or impossible to align the co-
- i ordinate system in a simulation with the principal axes of the
H; = ijlb] anisotropic material, and the ability to treat the fuk 3 tensor
is therefore required in such cases. As described abovexthe

where permittivity tensor can be combined with the 3 metric tensor
ik 1/2 ij k describing a nonorthogonal grid to include both effects without
C*" =g/"g"e] L - . . . .
i requiring additional storage. Using this feature, anisotropic di-
Lt =g 2g; (/fl)k . electrics can be automatically included within a nonorthogonal
grid formulation. This capability is presently under develop-

In the dimensionless logical coordinate system, the terGhrs ment.

andL¥ hgve units of capacita_nce and inductance_, respectively, d) Dispersive materials:These are materials having fre-
E h_as units of voltage] h_as units of chargé,hgs units of mag- quency-dependent materials properties) and(w). All lossy
netic flux, andf has units of current. The simple form of théyaterials must be dispersive because the imaginary pagt.of
continuum equations obtained makes the discretization ProS®id,i(w) must be odd functions of frequency whenever the real
dure required for a numerical solution particularly straightforﬁart is an even function.

ward. This procedure is detailed in Section II-B. A model for dispersive materials that is valid for several ce-

~ 2) Material Properties: The model described above readilygmic materials and for cold plasma is based on writing the per-
includes ideal materials, such as loss-free dielectrics and perfﬁﬁ’&ivity as

metals. The modeling of vacuum electron devices requires the
inclusion of real materials that often are employed to control < w2(a‘:’)>
i (U

the device behavior. Material properties currently implemented 22
in CTLSS include the following.

a) Complex (Iossy)_matenalsTr_\ese mat_enals _have COM- herew? depends on position and yields the modified operator
plex values of andg, which are required for simulating energy p
losses in the material. In the equations above, when the mate- . o 5. . o
rials can have complex properties, the field solutions also be- {[C“”ﬁ curl + wp(x)é[o]} —w é[o]}E = s
come complex. The major complication that develops is that the . .
resulting operator is non-Hermitian, in general, and common so-3) Boundary Conditions:Boundary conditions (BC's) typ-
lution methods fail. Algorithms for handling such operators af§!ly define or limit the efficacy of simulation tools. The fol-

described in Sections IV and V. lowing types of boundary conditions are particularly useful in
b) Resistive materialsThe equations above generalize t§'€Ctromagnetic simulation codes.
include Ohmic losses by writing the current densityas J,+ a) Electric wall: This BC represents a type of symmetry
Jo, and expressing the Ohmic current densityas= o - E to plane in Wh!Ch the W_all_acts as a perfect conductor_. In_ this case,
obtain the tangential electric field and the normal magnetic field at the
wall are zero.
{cun,fl curl — iwg — w2§} E=iwl b) Magnetic wall: This BC is the complement of the elec-
= N - tric wall, with the tangential magnetic field and normal electric
which yields an operator that is quadratic.n field components zero.
An approximate treatment of this equation is usually em- c) Floquet boundary:The Floguet BC is a periodic
ployed, in which a complex permittivity boundary condition having a specified phase advance across
i the period. To impose a phase advafieeross a period, in z,
=g+ = the boundary condition is
- - W
is defined, and then assumed to be independent sb that the E(z,y,L) = E(z,y,0)e".

operator again becomes linear.if ) ) o ) )
It is used to simulate many periodic field solutions using only

{curllfl curl = w2§} E= was a well-resolved period of the structure. As special cases, phase-
= B angles of0° and180° require only the real-valued factotsl.
This approximation usually can be justified over a narrowrange d) Impedance wall:This type of BC allows surface im-
of frequencies. pedances to be used in place of modeling the actual volume of
¢) Anisotropic materials: The formulation above permits a lossy material. Typically, such boundaries are used to simu-
treatment of the full tensor equations for materials havidgte thin coatings on metallic surfaces or as a model for open
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absorbing boundaries. The form of the impedance function deethods, the boundaries of all surfaces in the problem are
pends on the material and structure that it represents. Typicatliscretized, and a superposition of Green'’s function solutions
the impedance is dispersive; i.e., it is a function of frequencyfrom each surface element is used to compute the electromag-
The impedance wall BC is most often used in two situatetic fields everywhere in the enclosed volume. This method
tions: 1) to model a resistive metal whose thickness is many skinorks well when there are few embedded structures or volume
depths, and 2) to model a thin resistive coating (with thicknessaterials and when the scale of the simulation is no more than
less than a skin depth) on a perfectly conducting substrate. Théew wavelengths. Volume methods, which are the focus of

boundary condition is founded on Ohm'’s law this paper, involve gridding the entire volume of the simulation
and discretizing Maxwell's equations throughout the solution
= N . .o 0 domain.
E an ) = ZS )7 ’]SUI‘ ace ) = ZS )7 X H ) .. . . . .
tan(7) (7 @) ruetace () (7, w) [n (F’)} 1) Finite Integration Theory (FIT):The discretization of

Maxwell's equations is based on an orthogonal, structured grid
model, which has been implemented in the CTLSS code. The
methodology generalizes readily to a nonorthogonal, structured
grid model, which is planned in a future CTLSS release, and
which will allow embedded structures to be treated with con-

S : . . .
. ?ormal coordinates. In the current implementation, a continuous
so that the boundary acts as though it were not there and gener- . ~ " . P . T

. . .~ mapping is used to include non-Cartesian coordinates, such
ates no reflected waves. Lindman [12] has described the imple-"" . = . . ) .

. . , . as cylindrical coordinates, which allow certain problems to be
mentation of open, radiating BC’s for the discrete wave equa- . )
executed with greater accuracy and fewer computational cells.

tion by using projection operators to simulate an infinite region Before discretizing, we construct A x N2 x N3 grid

of free space in contact with the computational region, of cubic cells as the logical coordinate system, with coordi-

f) Ports: A variation of the open BC is the “port.” Port i ; ) . . o
, . . natesz* € [0, N*], and define a continuous, piecewise-linear
BC'’s are models that match outgoing waves into an aperture as_ . . . .
. A mapping to the physical space by interpolating among sets of
though that aperture is the entrance to an infinitely long Waves ol boints. Eor cvlindrical aeometry. the mappind is made
guide. The fields in the aperture are decomposed into Wavegu*é)e b ' y 9 Y, pping

. ; ISt to global cylindrical coordinatesyr, 6, z). Then, a contin-

modes, and each component is matched to waveguide modes C ; .

. ; L uous transformation is used to mapé, =) to Cartesian coordi-
having the same phase velocity as the incident wave.

g) Perfectly matched layer (PML)The PML is a method nates(x, y, z), with special attention to handle on-axis singular
) paints.

of using impedance boundaries to simulate the impedance™o he physical model is cast in the logical space, where each

free space. It is an alternative to the open BC described above, . . . ) :
) : . ell is a simple unit cube. In the logical coordinate system,
In practice, a single-layer impedance BC can match perfecﬁ¥

onlv for waves over a narrow band of incident anales. B e metric-free differential equations are used, the continuous
cor?structin the imoedance from multiole lavers hovx?eve.r té((laectric field vector has dimensions of voltage, and the other

g ped P yers, ' rflleld guantities are expressed similarly as their analogous cir-
boundary can be designed to match outgoing waves over a quantities, defined earlier

broad range of angles. The PML is usually implemented as he discretization procedure is similar to that of the finite in-

volumgtrlc re5|§t|ye layer, extendlng over 4-30 cells for gpot%gration technique (FIT) [14], [15]. Field quantities are asso-
matching, and it is therefore not strictly a boundary Cond'tlo'?:iated with the edaes and faces of the arid cells. using the now
The PML implementation is described in Section II-B5. 9 9 ! 9

h) Far-field transform: This boundary condition trans- standard Yee-cell arrangement [16]. This arrangement actually

) . o . consists of two interleaved grids. On one grid, the components
forms the near-field solution at a radiating boundary into th !
: S . of the E vector are defined on the cell edges parallel to that

far field so that radiation patterns can be computed withoy .
component, and the components of fevector are defined at

Yhe centers of the cell faces orthogonal to that component. In

important for radiating elements such as antennas. By dec HE FIT, the discrete fields are stored as cell voltagesmn each

posing the outgoing waves on a close-in surface into Sphe”% ge of the cell and magnetic fluxésthrough each cell face.

multipole components, we can analytically carry the SOIUtiQPhe cell currentd are stored on the dual-cell edges, and the

to th? far field. N o electric displacement fluxggd through the dual-cell faces. The
i) External circuit: Another specialization of the surface -~ :
. ; - . constitutive relations then rela® andV through the cell ca-
impedance BC is the external circuit BC. In this case, the . ! .
. e . acitance matriXD and® andI through the cell inductance
impedance condition is set from an external model, typmalPr%atrixD
a lumped circuit or a transmission line model, relating the L . .
. e The inductance and capacitance matrices account for the cell
electric and magnetic fields at the boundary. o .
geometry as well as the average permittivity and permeability
tensors for that field component. If the permittivity and perme-
ability tensors are diagonal and the coordinate system is orthog-
Numerous numerical methods [13] have been developedal, D and Dy, are diagonal matrices.
to approximate the solution of the continuum Maxwell's The differential operators derive from the integral forms of
equations. These methods divide approximately into two brolthxwell’s equation and involve directed summations of adja-

classes: surface methods and volume methods. In surfaeat field quantities. Theurl operator evaluated for the face of

whereZ, is the surface impedance afids the surface normal.
This expression is used to update the tangential electric field
from H at the boundary.

e) Radiating or open boundaryThis BC matches elec-

B. Maxwell's Equations—Discrete Theory
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a grid cell is a simple, directed sum corresponding to the line iGTLSS solves the matrix equation iteratively, using an operator
egral around the face edges. This operator may be represeffibedtion to compute the differential operator matrix elements
as a matrix operatat, though this matrix is never formed ex-“on the fly,” as needed. It does not store the matrix explicitly.
plicitly. The matrix representation for the curl on the dual gritiVhere possible, matrix symmetry can be employed to reduce
cell is simply the transpos# [15]. the calculations by half.

The FIT technique provides a means to create a discrete maThis matrix equation takes the form of a generalized matrix
trix equation from the continuum field equations. It offers theigenvalue problem
following advantages:

a) The method is readily generalized to a related finite ele-

ment (FE) methpd. _ . _ Several distinct classes of problems emerge as follows.
b) Maxwell's equations and field variables map to familiar a) Without Ohmic losses, and using only electric-wall, mag-

e!ectrlca_l circuit quantities. ) netic-wall, or Floquet BC's, the problem is Hermitian;
c) Differential operators translate to very sparse matrices, ie., A= AH andB = BH. In this case, the eigenvalues

having only element values, 0 ankl, that are fast to are real and the eigenvectors are orthogonal.

compute. , _ _ b) With Ohmic losses, and using only electric-wall, mag-
d) The structured grid permits fast matrix-vector products. netic-wall, or simple periodic BC’s, the problem is com-
e) All differential operator identities are satisfied. plex symmetric; i.e.A = AT andB = BT In this case

f) The coordinate metric is incorporated with material pa- the eigenvalues are complex and the eigenvectors are lin-

Az, = A\, Bz,.

rameters. o _ _ early dependent.
g) Symmetries in the original equations are retained. c) With both Ohmic losses and Floquet BC's, the problem is
2) Treatment of Materials:Materials are treated through the both non-Hermitian and nonsymmetric.

inductance and capacitance tensors, described above. These tefre eigenvalue problem has the troublesome property that it
sors include all of the geometry and materials data for each cgllits static solutions, havingurl-free eigenvectors and zero
and for_orthogo_nal grids, the discrete diagonal matrix elemerétr:g‘;envaluew — 0. Such solutions must be carefully avoided or
are defined as integrals over the relevant tensor component g|iminated. CTLSS avoids static solutions by forcing the solver
Do _ // O P to seek solutions within a prescribed frequency band. Other
¢ = A, codes employ a “penalty function” to constrain the operator

L away from zerceurl solutions.
D(Lj) = // L;'de 4) Treatment of Simple Boundary ConditionA:particular
& problem is completely defined by the material parameters over a
where integration is over the face and edge, respecti)&-;lynd domain, the domain shape, and the field boundary conditions at

I;, of the logical dual grid at the location of the correspondintj'€ domain boundary. The solution is then obtained in some co-
field element;, having directioni. Each integral is calculated Ordinate system, either orthogonal (e.g., Cartesian, cylindrical,

by numerical integration, summing contributions from each a§!C-) 0 nonorthogonal (having a nondiagonal metric). _
jacent cell. At present, the CTLSS model for orthogonal coordinates in-

Maxwell’'s equations and the constitutive relations then carfides the most commonly used, and useful, boundary condi-

over to circuit equations tions, as f0|_|0WS-
o - .. . a) Electric wall (or metal wall)
curld = J —iwD = &'l = I, —iwQ

curl E = iwB = &V = iwd

—

AxE=0 A-B=0.

Electric fields on the boundary of a metallic cell are set to

and
zero.
D=¢E=0Q=DcV b) Magnetic wall (or symmetry)
H=p"'B=I=D, o AxH=0 A -D=0.
where quantities on the dual grid have been denotedhby * This is the natural boundary condition, and it requires that
3) Matrix Formulation: The linear eigenvalue operator the capacitance and inductance integrals be restricted to
equation the solution domain.

{curlﬁ_l curl — wﬁg} B, =0 ¢) Floquet (or periodic with phase advance)

is implemented in CTLSS as the matrix equation E(To+ br) = E(o) exp(if3 - 67).

Electric fields at one face of the solution domain are set
to equal those at the opposite face, scaled by the complex
The matrix size3N x 3N, whereN = N*N2N?3, can be enor- exponential phase factor.

mous in 3-D problems. TypicallgN is ~10°—10%, butthe ma-  5) Perfectly Matched Layer (PML)For an outgoing wave
trices are usually sparse, requiring storag&¢3N ) elements. boundary condition, CTLSS implements a PML [17]. In this

{(e"D;'¢) —w2Dc}V, =0.
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model, the boundary surface is extended to a volumetric layerThe focusing field is generally a DC magnetic field pro-
containing an artificial absorbing material having a particulatuced by coils or permanent magnets positioned near the
inhomogeneous distribution of anisotropic material parametebgam. 1-D treatments of beam-wave interactions assume that
The parameters are chosen such that the transition for an inbe transverse focusing strength of these fields is so large
dent wave is well matched and waves are almost perfectly dbat transverse beam motion may be neglected. Such codes,
sorbed over awide range of frequencies and incident angles. €herefore, do not need any quantitative information about the
implementation is related to the stretched coordinate formulacusing fields—they are assumed to be “infinitely strong.”
tion of that method [18], [19], but it is derived by a generalizeBull 3-D codes, like CTLSS, however, must import some
metric tensor. This technique derives from the complex-coordepresentation of the actual fields, generally from another code
nate method [20] usingxterior scaling[21], [22], extended to like POISSON/PANDIRA [23], [47], MAXWELL (product of
apply to vector fields in three dimensions. Ansoft Corporation), mPPM [24], or lesPPM [25]. Below, we

The complex-coordinate method expresses a set of differevil assume that these fields are available in some form to the
tial equations over a domain in which the coordinates are reitnulation and we will not say much more about them.
constrained to be real valued, but may follow a continuous tra-The structure fields are produced by charges moving on the
jectory in the complex plane. The solution of the equations mayrfaces of the metallic structure surrounding the beam. These
be found on this domain, and related to the solution over the rdéig@lds are solutions to Maxwell's equations in vacuum, with the
domain by analytic continuation. Typically, the complex-coormppropriate boundary conditions on the surface of the circuit.
dinate trajectories are chosen to follow the real axis over mdgtere are two basic types of structure used in linear beam tubes.
of the solution volume of interest, but they deviate increasing®ne is a traveling-wave structure, composed of a series of many,
once outside of this region. Such a domain may be open, in thearly identical unit cells, as in TWT’s or backward wave os-
sense that the complex-coordinate trajectory is infinite in extewtllators. The other is composed of a series of a small number
but for numerical computation, it will be terminated at a finit®f generally nonidentical resonant cavities that do not share en-
distance. ergy, except as carried by the beam, as in klystrons.

The differential equations take their usual form where the The large-signal model currently linked to CTLSS is the
coordinates are real, and they are therefore modified only GHRISTINE code [10], a 1-D large-signal code for helix
the bounding region, such that they represent a modified vollWT'’s. CHRISTINE 3-D is an extension of CHRISTINE to
metric boundary condition. The effective properties of this conftandle 3-D helix TWT configurations, and it will be linked to
plex-coordinate boundary region are such that a propagat@gLSS in the near future. A generalization of CHRISTINE
wave gradually transforms into an exponentially decayingwavg&D to handle devices other than helix TWT's is “future
Therefore, if the numerical grid extends sufficiently far into thdevelopment” work. The large signal algorithm in CTLSS will
complex-coordinate region, the outgoing wave will effectivelpe designed initially to treat the interactions of an electron
vanish, and termination of the numerical grid will have no siggeam with traveling waves supported by a periodic, slow-wave
nificant influence on the solution in the region of interest. Istructure. The interaction may be with either forward or
therefore acts as an effective outgoing wave boundary conbdackward waves, as described below.
tion. Traveling waves are characterized by their dispersion rela-

In our implementation, the components of the metric tenston (relation between frequency and wavelength) and by their
are derived assuming only that the mapping from the logical ceteraction impedance (field strength per unit power). In one di-
ordinates to the global coordinates is to the complex-coordinaension, when the only structure field of interest is the longi-
system. PML regions correspond to zones where one or maudinal electric field, it suffices to specify only phase velocity
coordinates have a nonzero imaginary component. This giva¥ interaction impedance for each signal frequency. In three
us a uniform treatment that allows us to include the PML intdimensions, as we shall see, when all components of both the
the complex capacitance and inductance matrices without m&t= electric and magnetic fields must be included, additional in-
ifying the actual material properties. Properties such as lossformation is required to compute the full set of structure fields
anisotropy are therefore carried over directly into our PML foiin the interaction region.
mulation automatically without additional consideration. The space charge fields, produced by the neighboring charges
in the beam, are generally the most difficult to treat, because
the full set of Maxwell's equations must be solved, using the
beam current and charge density as the source terms, subject to

Afull 3-D treatment of the beam-wave interaction is essentialitable boundary conditions on the circuit surface. Care must
if we need to compute quantities like circuit interception curretie taken not to double count the structure fields, whose strength
or transverse beam exit distributions that are unavailable fronsaalso proportional to beam current, when computing the space
1-D code for linear beam tubes. The CTLSS code will be abbharge fields.
to analyze the 3-D interactions of an electron beam with an ar-The large signal algorithm under development for CTLSS is
bitrary surrounding structure. In order to do so, the code musigeneralization of the one used in the 3-D helix TWT code,
take into account three distinct types of fields when computif@HRISTINE 3-D, which uses analytical models for the sheath
the motion of the beam and the evolution of the RF signals ahd tape [26] helix. CHRISTINE 3-D is, and CTLSS will ini-
interest. These are 1) the externally applied focusing field, 8lly be, a multifrequency, steady-state code, in which all quan-
the structure field, and 3) the space charge field. tities are assumed to oscillate at a set of specified, real-valued

IIl. L ARGE-SIGNAL THEORY FORMULATION
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signal frequencies. These frequencies must all be integer m '
tiples of some lowest frequency, in order that certain time a w
erages may be calculated. There is no other explicit time d > .
pendence, however. All quantities, including particle locatio
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(phase) and momentum and field amplitudes and phases, are \

tegrated along the direction of beam propagation. The full set
equations governing the evolution of the particles and the fielt

is derived below.

A. The Structure Fields and Their Evolution

We consider the waves supported by an arbitrary periodic

Fig. 2. Dispersion relation for a forward wave structure.

A
structure composed of metal and dielectric. As in [10], hereaft
referred to as A-L, where the analysis is specialized to a hel
circuit, the solutions to Maxwell's equations may be written ir “\ \‘ “\
the generalized Floquet form 5 Io
LW ‘\. “\ \\..
E ;(x,t) = Z i~ Ageu(x)
_ . - , ; »
-exp|i </ kow(2)d — wt) +cc. (@) k2 k> k2
L 0 J
B,,f(x, t) _ Z i w Awbw(x) Fig. 3. Dispersion relation for a backward wave structure.
C
w
B = o ] wave structures, the group velocity of the injected signal must
-exp|i </ Fow(2') d2' — W) +c.c.  (2) also be in thetz direction and in backward wave structures,
L 0

®3)

_ Y qAs 172

c me2 elhw

a.,(2) (4)

2N 2
pP=< <E> — 1.386 x 10 ergs/s
2 q

=1.386 x 10° W.

- the group velocity must be in the~ direction. Note that if in a
where E.¢(x,t) and B,¢(x,t) are the electric and magneticforward wave structure the injected signal is partially reflected
fields ande, (x) and b, (x) are dimensionless solutions tofrom a circuit termination or imperfection, the reflected wave
Maxwell's equations for frequency and propagation constantwill have negative group velocity; a spatial harmonic of the re-
k... We will take k.., to be real; circuit attenuation will be flected wave (dashed lines of Fig. 2) may also interact with the
accounted for separately; see below. To allow for slow axibeam.
variation (tapering) of the slow-wave structure, the propagationThe power flowing along the structure may be obtained by
constantk,, is taken to vary slowly with axial distance. Thesubstituting (1) and (2) into the expression for the Poynting flux.
functionse,,(x) andb.,(x) are periodic with the local structure The result is
period; these are obtained from the solutions by the CTLSS
cold test module A4, is the field amplitude; it has units of P=Fr Z lau(2)]* = Z P,
vector potential (gauss-cm). In the presence of the beam it too w w
will be taken to vary slowly withz. The sums in (1) and (2) where the normalized wave amplitude has been defined as
are over a discrete set of real frequenciesall of which are
assumed to be integer multiples of a lowest frequentyCGS
units are used.

For a specified frequenay, which we take to be a positive gnd
real numberk., is determined by the CTLSS code test module.
If k.., is a root of the dispersion relation, so &tek.., + nks),
wherek, = 2r/L, is the wavenumber corresponding to the
structure period., andn is any integer. Without loss of gener- (5)
ality, we take|k..| < n/Ls.

According to common convention, all periodic structures an effective area of the mode has been defined in (4) as
classified as either forward wave or backward wave, according
to whether the slope of the — k.., relation in the regior® < Ao =35 / dxiz-(ef, x b, +e,xbl).  (6)
k... < ks/2 is positive or negative, respectively. Examples are
shown in Figs. 2 and 3. In each case, spatial harmonics withe integral in (6) is over the entire plane transverse to the
positive group velocity (energy flow in thez direction) are z-axis. In (4) and (5)¢ arem are the electron charge and mass,
shown as solid lines and spatial harmonics with negative groapdc is the speed of light in vacuum. In the following, we will
velocity are shown as dashed lines. A signal injected at 0  drop the subscript.
and propagated toward a loadzat z;, > 0 has positive group  If we consider the fields within an imaginary cylinder
velocity by this definition; it is composed of a superposition ofentered on the:-axis, but not intersecting any part of the
all spatial harmonics shown as solid lines in Fig. 2. If we alwaysow-wave structure (See Fig. 4), the functional forme@f)
define the direction of beam propagation to-be, in forward andb(x) may be simply expressed in cylindrical coordinates.
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Structurns boundary

Simulation boundary

Beam

Fig. 4. Equations (7a) and (b) hold in cylindrical region bounded by the “simulation boundary,” the cylinder of largest radius that does nothatstrsettre.

In particular, if we write thez-components of the normalizedstill in CGS units. The extra factor of 2 in the numerator is from
fields as the definition of the fields as a sum of a quantity and its complex
conjugate in (1) and (2). It follows that

Cz(Tv 97 Z) = Z Z Czrnn(r) —-1/2

kn Krnn " 1/2
m=—o0 n=—oo At 1l = < - W) )
- exp[—iml +inkyz] (7a) m () /e
i i These impedances are simply calculated by the CTLSS code test
b=(r,0,2) = Z Z bzmn(r) module. Once it is known, the axial normalized electric field
mETeo mEToo A;Tl/2|ezmn(7’)| is known for allr, using (11a).
- exp[—imé + ink,z] (7b) In order to obtain the transverse fields from (8d), for use in

herek. — 21 /L. is th b i hthe 3-D equations of motion, it is necessary to know the axial
wherer, = .W/ s IS the wavenumber corresponding 1o t ?‘nagnetic field as well. To this end, it is convenient to define a
structure period,.L,, then the transverse components fono"&uantity analogous t&,,, for the magnetic field

mn

from Maxwell’s equations:
2

2 ‘2 2 Awbznln(TO)
Cc

L0 m w C

2 N g - R . . —
7n67’"m’(7) = —ikn ar szn(7) r c bzmn(7) (8a) Lmn(70) o (47r) 22D,

2 N o™ N0 , ¢ [Bamn(r0)?
ryn,COrnn(7) = , knezrnn(7) + c or bzrnn(7) (8b) — E | k2§ f(f))| (14)

15} ne

2b7*rnn ") = T f amn\T) — I‘kn a_ b’/rnn ) 8 . .

Tn (r) T oC Camn(r) =1 or ~ (r) (8c) where we have introduced the factay4r)? to give L,,,, the

w0 m di i f admittance. THeg,,,, may also be simply calcu-
2b mn\T) = —1 g . Camn\T) — — knbzrnn i 8d IMENsIons o . n y Py
Vobemn(r) "ear© () T () (8d) lated by the CTLSS code test module. It follows that
1/2
where L1250 | _ k, Lo (70) / -
ell | zmnl I ( 7’) C/47T ( )
kn =k, 4+ nks 9) m\Tn
which, with (1), (7), (8), (12)—(14), give the structure fields ev-

and the radial propagation factor is defined by erywhere in the beam.

) It remains only to find the equation governing the evolution of

Y=k - w_2 (10) the normalized mode amplitudg (~) as the wave interacts with
¢ the beam. The development of this equation follows the standard
The axial components of the fields have simple representatigiivation of Poynting’s theorem, as shown in A-L. The general
in any region containing the origin. These are result is
d
o) =0, ) am  (fre)ee
bzmn(T) = bi?,)mfm (’VnT) (11b) 7
- < / P I(x,1) - ¢*(x)
IAM?
Afeff

Whereegﬂ,)m andbgﬂ,)m are constants anf},,(x) is the modified ;
Bessel function of order. ctn, may be expressed by the inter- - exp [—i </ k() d? — wtﬂ > (16)
action impedance of the mode defined at some reference radius 0 t,z

o, defined as wherea(z) is the attenuation per unit length, is the Alfven

w 2 current(mec®/q), J(x,t) is the beam current density, and the
2 P Aveomn(ro) 4w |€zmn (T0)|? 12 angular brackets denote averages over the temporal period of
2k2P, T ¢ RK2Ag (12) the radiation and the spatial period of the structure.

Krnn (TO) =
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We now write the current density as a sum over particles (ias the simulation proceeds. The final result for the field equation

stead of a sum over disks, as in A-L), is written as
J(x,t) = Z v (£8P (x1 — x1()6(z — a(t)  (17) <di + a(z)) a(z)
k 4
2 e’ "k
whereg; is the chargex. (t) = (x1(t), z1.(t)) is the position 2m Z Moo e e"l’;f (re)
attimet, anduy(¢) is the velocity of particlé: at timet. Substi- ker m v (7)Ao (2)
tuting (17) into (16) and performing the integrals owar andt . exp[ (A, (2) — mek(y) ()] (24)

gives, for the right hand side of (16)
The equations of motion that are integrated together with the

2m Z I < -e* (x3(2)) field equation are most simply expressed, and numerically inte-
= vz )Aif/fQ(Z) grated, in Cartesian coordinates
d qx 1
- exp |:—L </ k(2)d? — wty(z ))} (18) e pi(z) = o \Ex T (Vi X By) (25)
B 1 1 26
where the sum is now over all particles that enter during an RF dz hi(z) =w Voo Uen ) (26)

period, T, I}, = g, /T is the current associated with “beamlet”

%, and all particle positions and velocities are now functions &fquations (24)—(26) are a complete description of the steady-
z; t1(z) is the arrival time of particlé at z. In order to perform state, large-signal model for arbitrary traveling-wave structures,
the remaining average in over a structure periodl,, we ex- once the space charge fields are included in (25).

pand the electric field as in (7), to obtain
B. The Space Charge Field of an Arbitrary Current

27” Z Z I “€rn(Tk) To compute the space charge field of an arbitrary beam cur-
4kA1/2 rent flowing in an arbitrary periodic structure, we have gener-
alized the approach used in A-L for a uniform beam traveling
- exp [_L < my(z / kn(2)d? — wti(z ))} > . in the interior of a helix. The total fields from an arbitrary, spa-
N tially periodic current are shown to consist of a pole term, which
(19) isidentified as the structure field treated in the previous section,
and a remainder, which is identified as the space charge field.
If we assume that the transverse particle position and velocRysimilar technique was used by Pierce [27], in one dimension,
do not change much within a structure period, the only term {8r the special case of a helix.
the sum over in (19) that will survive the averaging process The calculation proceeds by computing the response of the
overz is a term for which structure to a current of the form

kCT mmn

w =~ kpv.o (20) J(x) = J(x)eiF==t 4 c.c. (27)

for some value of.. This clearly means just that the beam igyhere herd:. is notthe solution of the cold structure dispersion

synchronous with theth spatial harmonic of the wave. Linearye|ation, but it is arbitrary. The electric and magnetic fields are
beam tubes are generally designed to satisfy (20).fer 0 or  gimilarly represented

1, because the interaction impedaricg,, typically decreases

with increasing values of. E(x) = E(x)e’F=*=<" 4 c.c. (28a)
We denote the index of the synchronous spatial harmonic as B(x) = B(x)ei®=* % L cc (28b)
n, and write o

- whereJ, E, andB are periodic in= with the structure period.
/ kp, (7)) d2' — wty(2) Inside the simulation boundary (Fig. 4), we write the fields as a
0 sum of a particular and a homogeneous solution to Maxwell’s

= /k <I€ns (=) — —> d7 +w < i (z)) . (21) equations
0 V20 720

We define two slowly varying function4,,, (z), andy(2) E - EP + E}h (292)
B=B,+B, (29h)
— AN i ’
AL () = /0 <kns (') UzO) dz (22) " \yhere we will choose the particular solution to satisfy the con-
p dition that the tangential componentskf = 0 on the (cylin-
() =w <Uz0 ‘(Z)> . (23) drical) simulation boundary. This boundary condition is easily

implemented in a tridiagonal solver and the particular solution
Note that the quantity,,,, (=) is the same for all particles. It mayis therefore easily obtained numerically. In order to obtain the
therefore be computed and stored at initialization time and useaimnogeneous solution, we proceed as follows.



COOKEget al: CTLSS—ELECTROMAGNETIC SIMULATION TOOL 851

We first expand the homogeneous solution in a complete Fdtis field contains both the structure field and the space charge

of cold structure modes field. In order to isolate the space charge field (we already
. . treated the structure field in Section IlI-A, above), we must find
Ep. = Z AmCm (302) a way to subtract out the structure field. To do this, we first note
R R that if we substitute the current (27) in (16) and solve for the
B = Z amb, (30b)  structure field amplitude, the resulting expression has a pole as

a function ofk., for k., = k.o = the cold structure propagation
where a,, is the amplitude of moden. Manipulation of constant. This suggests that if we can isolate the singular part of
Maxwell’s equations then gives (37) as a function of_, the remaining (i.e., nonsingular) part

dr o ’ is the space charge field we are after. Note that the particular

— /dvj el = _/dSﬁ . [E x bX, +ér x B] (31) solutionE, has no singular part, because from its definition, it

¢ must vanish as the beam current tends to zero; this means that
where the integral on the left side of (31) is over the volume &, cannot be supported by the structure alone.
the simulation region and the integral on the right side is over its|t follows from (35) that the dispersion relation for the cold
surface. In (31)E andB are any solutions to Maxwell’s equa-structure(J = 0) may be written aslet(D) = 0. Considered
tions; 1 is the unit outward normal to the surface of the simulaas a function ot therefore D,,,,, must become singular when
tion region. If we take andB to be the particular solution, the k. = k.¢. If k. is close tok.o, this fact may be used to obtain
E term on the right-hand side of (31) drops out and we have thg approximate expression fér—. To do so, we rewrite (35)
important relation as

. 47r
v / dSnh-[e5, xB,l. (32 D (ks )an = — avi-el, =J,. (38)
C

Next, we consider the fields in the region outside the simuld© Solve (35) for the amplitudes,, we expand around the cold
tion boundary, in the region of the slow-wave circuit. The field&fructure solution
in '_[h|s region are complicated and must generally be solved for a, = Au, + ba,, (39)
using the CTLSS cold-test solver, but when they are evaluated
on the simulation boundary, the tangential components mugterew,, is the cold structure eigenfunction antlis a coeffi-

obey a relation of the form cient to be determined. Substituting in (38) and expanding the
A ds’ . matrix D, we obtain to first order ik, — k.o)
B.(x) = / SV (X Bx) (39 oD

Dnln(kzo)éa/n + (kz - kzO) ok
where the integral is over the surface of the simulation boundary %
of areaA andY is an admittance matrix that may be calcuwhere we have used

lated by the cold-test modul®. contains information about the

structure. Because the tangential fields must be continuous on Dy (kz0)un = 0. (41)
the simulation boundary, we may use the fields from inside th@follows that

simulation region, evaluated on the boundary, in (33). Writing

(kZO)AU/'n, =Im (40)

the tangential field components as sums of particular and homo- A= Ui T (42)
geneous parts, as in (29), expanding the homogeneous solutions . 9Dmn
as in (30), and operating on both sides of (33) with the operator (ks = kz0) <um Ok |ii u")
/ dSn x e}, (34) and
— u;knun R
gives an equation for the mode amplitudes Dy, = oD + Zpn(kz0)
47r o (kf«/ - kZO) <ujn a]:ln un)
Dopnan = — /dVJ -ér, (35) % Ako=k.o
¢ (43)
where the matrixD is given by where ZE (k) is finite (no pole) ask. — k.o. In practice,
the space charge field may be obtained by evaluating (37) for
D, = /dSﬁ % & . [b _ / d_SIY(S S) X 6| . (at least) two values df, and calculating a best fit to the func-
™ot A " tional form obtained by substituting (43) into (37). The finite
(36) (nonpole) part is then the required space charge field.
Note thatD involves only quz_;mtities that may be dete_zrm_ine(_j by IV. DRIVEN-FREQUENCY ELECTROMAGNETIC SOLVER
the cold-test module. Onae is found, the total electric field is
given by The CTLSS driven-frequency solver provides a natural means
of connecting electromagnetic and large-signal models, where
E—§k 47r Z Dmn/dV’ &' (x')-J(x'). (37) thedriving frequency is specified. The solver handles electro-
o magnetic problems in which a driving sinusoidal current source
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excites fields in a cavity. The source may be an electron beath, QMR—Iterative Matrix Inversion
coupling antenna, or waveguide port. In each case, the methog gqjve the system of linear equations, we use the QMR

of solution for the discretized problem is identical. If the solvel,athod [5], [30]. This method has some particularly attractive
is driven with an axial current source at a fixed frequency a operties ,for our purpose—it converges almost monoton-
axial wavenumber, it can be embedded in an exterior iteratilxﬁ%"y even when the matrix is non-Hermitian, yet requires

solver to extract the resonant axial wavenumber associated vay a small number of workspace vectors. Non-Hermitian

the specified driven frequency. matrices frequently cause iterative methods to fail altogether
or to diverge periodically from the solution as search vectors
become linearly dependent and near-singularities occur in the
The driven-frequency problem implemented by CTLS8erative procedure. The small set of working vectors makes

A. Solution of the Driven Frequency Problem

solves the discrete form of the linear field equation this algorithm attractive in comparison to robust methods, such
) 2\ = . as GMRES [31], which typically require that a significant size
{Curlg_ curl — w é} E=iwl, of subspace must be stored.

Advantage may be taken of the matrix symmetry when per-
given a frequency and source current distributiof that in-  forming the iterative solution. If the matrix is either Hermitian
cludes boundary current sources such as develop in the implesymmetric, the computation required at each iteration may be
mentation of waveguide ports. The discrete form of this operatgigynificantly reduced, as pairs of workspace vectors used in the
equation is a matrix equation of the standard form computation become either equal or related by simple complex

conjugation of the elements.

Ar=b When there is no matrix symmetry [(case 4) above], the
where A represents the matrix form of the operatiis pro- standgrd QMR method requires that the transpose of the mgtrix
portional to the known discretized source current vector,aandfS avallable._llj CTLSS, the transpose operator may .be obtained

om the original operator by only a change of sign of the

is the unknown discretized electric field (voltage) vector to b d | tthe FI t boundaries. Alt tivel
solved. The operator matrix is not stored explicitly, but its actiogy 2S¢ advance angies at tné Floguet bounaaries. Afternatively,
possible to use a transpose-free variant of the algorithm,

is impl ted vi f functions that b I : . o
IS IMp'eMENed Via a Sequence ol 1Unclions hat may be app "FQMR [32]; however, this algorithm exhibits poorer conver-

to a given field vector, and that satisfy the requirements of li ties than d the standard OMR alaorithm. |
earity and symmetry that the equivalent matrix would posse§§nce properties than does the standard Q aigonthm. in

Methods of linear algebraic analysis are therefore equally appefECh C?St?’ converge?ce dOf trlﬁ alg?rlth;ntr:s (IjEetcelrénlned based
cable, and matrix methods may be applied. on a relative error defined as the ratio of the Euclidean norms

Numerous methods and algorithms are available for the soRI—the residual error and source vectors

tion of large, sparse, linear systems, including both direct [28] ||Az — b||2

and iterative [29] solution methods. For our operator, where only M = Tl

the action of the matrix on a field vector is available, iterative

algorithms are the most appropriate. wherex andb are the field solution and source current vectors,
respectively. The target convergence tolerance is set as a user-

B. CTLSS Matrix Properties defined input parameter.

The properties of the matrix operator that develops in the
frequency domain formulation are determined by the physidal Example

properties of the problem. There are four significant cases, asig. 5 shows a driven-frequency solution of a simple problem
follows. geometry that has a wedge of lossy dielectric matéiat 43,

1) Ifthere are no losses, and if any periodic boundaries haven 6 = 0.5) in the closed end of a rectangular WR10 wave-
phase advances of @r 18C°, the matrix that results is guide,0.1” x 0.05” in cross section. A PML boundary region
purely real and symmetric and, therefore, Hermitian. The introduced to attenuate outgoing waves before they reach the
eigenvalues are all real and nonnegative, so that the matixd of the solution domain. The driving source is a current sheet
is positive semidefinite. that couples selectively to the Timode of the waveguide at a

2) If there are no losses, but periodic boundaries exist witfequency of 68.4 GHz, producing both forward and backward
arbitrary phase advance angles, elements of the matrixpabpagating waves inside the waveguide. The forward waves are
the periodic boundaries become complex. Provided thatident on the wedge and (partially) reflected back to the PML,
the elements are correctly scaled, however, the matrixvidereas the backward waves are absorbed directly by the PML
still Hermitian and positive semidefinite. region. The problem was discretised or2dax 40 x 70 cell

3) If there are losses, and if all periodic boundaries hawmiformly spaced grid, with 201 600 complex unknown field
phase advance angles 6f@ 180, the matrix is complex values. Convergence to a residual eryes 10~° took just over
symmetric. The eigenvalues are no longer real, though f2h on a 400 MHz Pentium Il PC. THhg ; reflection coefficient
small losses, they lie close to the positive real axis.  was calculated to be 17.6 dB, which compares well with a cal-

4) If there are both losses and periodic boundaries havinglation from the HFSS code (Ansoft Corporation)f6.9 dB.
arbitrary phase advance, the resulting matrix has no usefiile PML layer was implemented with a thickness of ten cells,
symmetry. and the observed reflection coefficient was7.6 dB.
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Fig. 5. Contours of electric field energy density inside a rectangular waveguide, terminated by a wedge of lossy dielectric and excitedpgigrzal Eurrent
source at the position shown. The right-hand end of the solution domain represents a PML region for the outgoing wave boundary condition.

The intensity distribution inside the waveguide and dielectriterative methods for the solution of large linear generalized
regions is apparentin the figure. Field concentrations are visildgenvalue problems fall into a number of categories, including
at the apex of the wedge, where strong coupling leads to higlrerse power iteration methods (e.g., inverse power iteration,
absorption in “hotspots” localized at the sides of the waveguid@ayleigh quotient iteration) and subspace iteration methods
Standing waves are observed both vertically in the dielectric atelg., Arnoldi, Davidson, Jacobi—Davidson, and Lanczos),
axially in the waveguide. The wave is also clearly attenuated iwith variations possible using spectral transformations. The
side the PML region well before the end of the solution domaieffectiveness of each method depends on the nature of the
as suggested by the low observed PML reflection coefficiertigenproblem, particularly the location of the eigenvalues that
The combination of the mode-selective current source and PMte to be determined with respect to the overall eigenvalue
layer therefore provides an effective waveguide port boundattistribution. With each method, the number of vectors that
condition. must be stored during the solution procedure is critical, and it
may become a major limitation when problem size exceeds of
the order ofl0°—~107 complex unknown field values.

Subspace projection methods represent a general class
The resonant eigenmode solver in CTLSS was developedofo methods for the solution of large eigensystems. Such
address the specific requirements encountered in modeling cdeshniques generate and iteratively refine a vector subspace,
plex electromagnetic structures. The particular issues relatingépresented by a small set of basis vectors, such that the
our discretized operator are the following: converged subspace contains the eigenvectors corresponding

1) Problem size—each numerical field vector may holtp the eigenvalues of interest. The implicitly restarted Arnoldi
10°—10° complex elements. method [33] is an algorithm of this type that has been applied

mitian operators. routine library ARPACK. We chose to implement an algorithm

3) Zero eigenvalues—the operator has a large null-space thgged on the Jacobi-Davidson procedure [6], without spectral
is not of interest to the present computation. transformations, which offered many attractive features for

4) Conditioning—the matrix may have a large conditioUr Purpose and enabled us to tailor the implementation to
number originating from the presence of cells that af@r Specific needs. This algorithm has been applied to large
small compared with the total computational volumd?roblems in fields of quantum chemistry, acoustics, and mag-

This typically leads to poor convergence of iterativéetohydrodynamics [34]. o _
numerical methods. Although our discrete electromagnetic eigenequation may be

Large problem sizes make necessary the use of algorith lyzed purely as a matrix eigenequation, without reference

with a low workspace overhead, whereas the distribution of t Qs physical derivation, it is useful in practice to take advan'-
eigenvalues requires that an algorithm is very selective to 1goe of ou; !:nov;:led'gel of 'th'e S_It_LthEre |r|nrzjosed on :)he ma(;rltx
tain only the desired solutions. The specific features of the al zcause ot 1is physical origin. 1 his xnowledge may be Used 1

rithms used and their development are described in this sectigﬁ??lerfﬂe convergence throu_gh use of different levels of dis-
cretization. Initial solution estimates may be made on coarse

. grids and used as the starting point of refined estimates. This
A. Numerical Methods can significantly improve the algorithm convergence, particu-
To obtain the modes of the discretized eigenvalue equarly for fine meshes. In the following sections, the simple ma-
tion, we choose to use a purely iterative algorithm, so thaxtx eigenproblem is detailed, and then specific adaptations to
the matrix need not be expressed or manipulated explicithccelerate our particular problem are outlined.

V. RESONANT ELECTROMAGNETIC MODE SOLVER
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B. Formulation of the Eigenvalue Problem where vectorss,, andt,, of length p are to be determined.

The most general type of eigenproblem that we must solVe can express the right and left residual error vectors for the

is the complex, nonsymmetric, generalized eigenproblem. fifenequation
obta_m a converger_lt iterative algor_|thm for obtaining SQ|UtI0nS Fon = (A — 6, B)zm, ¢! = yH(A — 6, B)
to this type of matrix problem requires a careful analysis of the
properties of the eigenequation [35]. and require that the projection of this error onto the other sub-
1) Nonsymmetric Generalized Eigenproblenihe gener- gspace is zero
alized eigenvalue equation takes the standard form
Wiy =WH(A -6,,B)Vs,, =0
{A - X,B}z, =0. vV =tIw"(A -6,B)V =0.

For the general case when eitteor B may be non-Hermitian, This is equivalent to the projected pair of right and left
it is necessary to consider the associated eigenvalue equatidtgenequations

(PA - ernPB)Srn =0

HiA )\ Bl=0
i ’ t1(P 4~ 0,,P) =0

for the left-hand eigenvectors. The eigenvalues of th,,§ ving right and left solution vectoss,, and+,,, respectively,

system are |den.t|cal to those of the rl.ght-hand syster_n, a\W/aere the small projected matrix operators are defined as
corresponding right- and left-hand eigenvectors satisfy a

bi-orthogonality relation P, =WYAV

L Pp=W"BV.
HB L {sz t=7
Y, bx; = sy I . . . :

0, ©#J. By obtaining solution eigenvectors to the projected eigen-

] ) ) _ i problem using a solver for dense matrices, we may obtain
If degenerate solutions exist, the associated invariant syRair representations in the full solution spaecg and ¥,

spaces may be represented by sets of vectors that span that éb'rt?ésponding to each valde,, termed the right and left Ritz
space, chosen such that they satisfy the above relation. yectors and Ritz value, respectively. The dense, generalized
To solve non-Hermitian eigenvalue problems, it is useful tgigensolver routine used to solve the projected eigenproblem
consic_ier the right- a_nd left-hand sides of th(_a matrix eigenfqy\;as taken from the LAPACK library [37].
mulatl_or_w equally. This has been sugge_sted in connect|0n_W|thThe subspace projection step forms part of the nonsymmetric
the original Davidson method for use with nonnormal matriceg,copi—Davidson algorithm [38]. The other main component
[40], whereas a generalized Lanczos solver for nonsymmetiiGihe modification of the subspac&sand W to ensure their
systems was introduced by Culliebal. [36] using a two-sided convergence to subspaces that contain the solution eigenvectors
approach to represent the left and right eigenvector solutionsyf interest. The Hermitian and complex-symmetric cases may
2) Subspace Projection MethodShe Jacobi-Davidson e recovered straightforwardly from the nonsymmetric case by

method makes use of subspace projection to obtain estimqp%g W =V or W = V*, respectively, in the following de-
of a few eigenvalues of a large matrix eigenproblem. Here, ¥eription.

summarize this procedure, taking into account the two-sided
nature of the nonsymmetric eigenproblem. C. Jacobi—-Davidson Method
Any small, p-dimensional subspace of the full solution space

may be represented by a setjobasis vectors in that space The Jacobi—Davidson algorithm is depicted in Fig. 6. As de-
Each vector corresponds to a discretized electric field and scribed by Sleijperet al. [6], a single subspace is used to span

. - subspace of right eigenvectors, and either the same subspace
be stored numerically as a column vector of coefficients. b 9 g P

subspace may be represented by a matrix composgcsoth or one derived from it is used for the left-subspace projection. A
columns, so that right and left subspac¥sand W, respec- theory for the generalized eigenproblem using a single subspace

tively, may be written as is outlined by Booteet aI.[34]..Here, we Qiescribe the algorithm
’ for the general, nonsymmetric case using two subspaces and a
combined subspace refinement procedure.
V ={vi, vz, vp} Beginning with an initial seed subspace, or pair of subspaces
W ={w, w2, -, wp}. for the nonsymmetric case, iterations of the outer loop modify
the subspaces by first estimating eigensolutions by subspace
Using a Ritz—Galerkin procedure, we may obtain an estimgiteojection, and then selectively applying an orthogonal correc-
of the eigensolution projected on these subspaces. Assuming procedure to correct or extend the subspaces. The correc-
right-hand eigenvector estimates, are constrained to lie tion step is related to that of the block Galerkin inverse iteration
within V, and left-hand eigenvector estimatgs in W, we (BGIl) method [39], but the correction vectors are determined
may write only approximately, and they are used to extend the subspaces,
as in the Davidson method [8], [40], to promote an improved
T = VS, Ym = Wi, solution estimate at the next iteration.
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_——-— A moderate improvement is sufficient, and it may be obtained
nitialize subspaces ] using a number of iterations of an iterative procedure. As the
—"_”“4/ Ritz value estimate improves, it becomes increasingly effective

{ Projecteigenproblem] to iterate closer to the optimal correction. In the following
I sections, we outline the orthogonal correction step for the
{Calculate Ritz vectors. nonsymmetric case.

Ca]cmm'msiduals } 2) Orthogonal Projection: The right and left eigenvectors
of the solution to the projected eigensystem possess the same
biorthogonality relation as do those of the full eigensystem. For

Outer
iterations

Subspace is updated Timmer. ] the simplest case in which eigenvalues are distinct, pairs of non-
antil it contains the Y ) ) A
solution eigenvectors N iterations degenerate eigensolutions satisfy

" Generatetiow.. | | lterative linear - o

' subspacevectors | | solve (QMR) t7Pps; =0, I

[ Update subspaces ] From this relation, a similar biorthogonality relation is retained
R for the Ritz vectors

Fig. 6. Flow diagram of the Jacobi—Davidson algorithm. yZHBg;j =0, 7 7£ 7

. . . and therefore pairs of distinct right and left Ritz-vectors are
To limit the maximum subspace size that must be stored, tlﬂﬁ)rthogonal with respect t8

procedure is typically restarted after some fixed number of it- To improve each eigenvector estimate, we search for a cor-

erations, at which time the s_ubspace IS gontracted to include tion vector orthogonal to the current Ritz vector that brings
only a few of the solution estimates that lie closest to the d

sired eigensolutions. The process of subspace expansion ur estimate closer to the solution vector. To implement this step
rtlecomr:?encesu 1ons. P ubsp xpansi the following section, we will require operators that perform

. L . his projection. We define orthogonal projection operators
In place of this approach, we describe in Section V-D a sult)- pro) g prol P

space management strategy that minimizes the use of computa-
tional resources. There is no explicit restart step, as the subspace
size is carefully managed at each iteration. A similar procedure
has been suggested for the Arnoldi method [33]. In addition, fifat project orthogonally to the given Ritz vectors to the right
very poorly converged eigenvalues, we use approximate invef$tél left, respectively.
iteration in place of orthogonal correction to enhance the initial 3) Jacobi Orthogonal Component CorrectioThe Ja-
Convergence to the desired frequency range_ CObi—DaVidson algorithm fOI’ a Single Subspace uses eaCh
The following sections detail the steps of the algorithm. ~ rght-hand residual vector to generate a new vector that is
1) Subspace Convergencét the beginning of each outer orthogonal to the corresponding Ritz vector by obtaining an
iteration, the Ritz vectors and residual error vectors are det@RProximate solution to a projected linear system of equations.
mined for the current Subspaces by Subspace projection_ '|T|y@lca||y, thisis performed Using a few iterations of an iterative
Ritz vectors represent the best approximation within the suifiear solver. Because we are using separate left and right
spaces to the eigenvector solutions, whereas the residuals éstrspaces, we generate for each Ritz value of interest a pair
tain information in the full solution space, orthogonal to the cuf correction vectors;, andw; that satisfy a biorthogonality
rent subspaces. relationship to the current right and left Ritz vectors. We solve,
To determine convergence of the Ritz vectors to eigenvectodProximately, for correction vectors. and w; in the two
we evaluate a measure of the error based on the Euclidean nétfigpendent systems of linear equations
of the residual vector. We define the normalized convergence n n
parameter for each Ritz vector O (A = rB)Pyzy = —7
ufl Qe (A — 6 B)Py = — g

xk?JEB Bxkyf

P=1- QG =I-

Y By, i By

_ (A = bmB)zmll2 -
Pm = |1 AZm][2 In principle, the search could be made completely orthogonal to
the current subspace, over which the residuals are already op-

and compare this value at each iteration of the outer loop witimal following the Ritz—Galerkin procedure. This would intro-
a specified tolerance, typically 10-2—10—2, perfoming cor- duce products of projection operators, computed using a mod-
rection steps only on remaining unconverged vectors, so thatiidd Gram—-Schmidt procedure. The single projection step was
solutions are finally converged to the same specified level. Thmund to be sufficient in practice, and further projection only
eigenvalue converges at a faster rate, typicaly?,). added unnecessary computation.

To generate new subspace vectors, the Jacobi—DavidsoBecause the above equations contain the same product of op-
method searches for a correction vector orthogonal to theators, they may be solved in a single procedure using an itera-
current Ritz vector that reduces the norm of the residual. Ittise algorithm such as QMR or the biconjugate gradient method.
not necessary to obtain the minimum value, as in any case theur implementation, we used the QMR method, which even
residual is calculated using only the approximate Ritz valufar nonsymmetric matrices reduces the residual error almost
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Fig. 7. Three resolutions of grid representation for a helix TWT structure.

monotonically with only a small set of workspace vectors. Usingultiplicity of degenerate solutions that can be determined is
qr to generate the left-hand correction andor the right-hand limited by the number of linearly independent initial vectors that
correction, we may use QMR directly to solve both sets of equare defined. A single vector is sufficient to seed the solution in
tions simultaneously. the absence of degeneracy.

The convergence of the iterative QMR algorithm is controlled At each step, following subspace projection, we first filter the
based on a relative convergence parameter, defined fatithesubspace on the basis of the determined Ritz values by speci-

(inner) iteration, fying a desired range of eigenvalues (or circle in the complex
N e plane) or a limit on the number of solutions to be determined.
o Qg (A = 6B)Py 27 + 7|2 Ritz vectors having Ritz values outside the target region are se-
() _
ke 75|12 lected for removal from the subspace, subject to two restrictions:

. h ither th L h 1) sufficient vectors are kept to maintain the initial level of linear
QMR terminates when either the error criterion is reac eﬁifdependence for degenerate solutions, and 2) an upper limit to

or if num?_rrl]cal breakdown (f)ccurs '? thet uno!erli(mg Lancz(;)(ﬁe number kept is set at the number of solutions requested. In
process. The occurrence of premature termination cause h case, values closest to the center frequency are retained

nume_ncal breakdown IS not c_atastroph|c here, bgcau;e B?gferentially, and the subspace vectors are ordered accordingly.
resulting approximate solution is adequate for continuation of For each remaining Ritz vector, the error texis calculated

the Jacobi-Davidson method, and convergence will be resu compared with the specified convergence tolerance. Those

at the next outer iteration. Therefore, to avoid th_e addltlonmat have not yet reached the specified convergence level are
storage necessary, no look-ahead procedure [41]is performedy ,qated in turn, whereas converged solutions are simply
Id.eally,.lf the update equations are ;olved exactly, the 2pt in the subspace. For Ritz values inside the target range,
cob|fDaV|d§on method can achieve cubic convergence for SY@%proximate corrections are obtained using orthogonal projec-
metric matr!qes (quadratic convergence for the nonsymmetgie, QMR, as for the original Jacobi—Davidson algorithm,
case), requiring very few outer iterations. However, a balanﬁging the Ritz value as the shift in the operator. The default

exists between solving the equations to full precision a miﬂirget for convergenceig, ~ 0.1, a value selected to minimize
imal number of times and solving approximately over a greatgy,

i ; | e overall convergence time. The resulting correction vector is
number of iterations. Typically, the overall cost was found t sed to extend the subspace, though the number of extensions
be reduced using approximate solutions, though the eigenvai

. . X , . ﬁny iteration is limited to typically one or two vectors to min-
convergence deviates from being cubic (quadratic). In p”nc'p\?nize memory usage. Remaining corrections, and in particular
the rate of convergence of the Jacobi

, ~Davidson algorithm mgy,.e tions for well-converged solutions having residual errors
be greatly acc_:e_ler_ated if a g(_)od precon_dmoner is avallf';lble O ~ 10~4, are added to the corresponding Ritz vectors di-
improve conditioning of the linear solution step [42]. Simpl ectly, as in the BGII method [40]. It is observed that for mod-
preconditioning is applied by symmetrically scaling the opeg;aialy well converged vectors, the erparin the next iteration
ators by the diagonal matrii@;l/2 and solution field vectors is smaller by a factors 7. '
by D¢/?, which leads, for orthogonal coordinate systems, to a Ritz values outside the target range are updated using approx-
standard type of eigenproblem. If a more complex preconginate inverse iteration, with the center frequency of the target
tioner were available, the preconditioned variant of the QMRnge as the shift in the operator. The approximate solution re-
algorithm could be applied. places the Ritz vector in the subspace. This acts to enhance
the components of the desired eigenvectors before reasonable
D. Subspace Update Strategy eigenvalue approximations are available. A target convergence
To begin, a set of subspace vectors is initialized either ram: ~ 10~2-103 is found to be effective.
domly, effectively populating all component eigenmodes with The above procedure maximizes the retention of informa-
random amplitudes, or from a seed subspace if an approximéde in a subspace that is only a few vectors larger than is the
field solution is available. Each pass of the algorithm acts to seamber of solutions sought. The update steps, the most compu-
lectively filter out unwanted frequencies from this initial field tationally intensive phase of the solution, provide an inherent
Because all subsequent vectors are derived systematically fromarse-grained parallelism. In principle, each update may be
this initial set by successive application of the operators, tperformed independently.
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Fig. 9. Vaned TWT circuit. Metallic vanes strongly couple to the operating
mode. Parameters are selected to achieve a flat dispersion curve.

0.125
0.120 ¢
[ ]
§ Mﬁﬁ'v“v LChE ek at i i i
© v
>
Fig. 8. View of klystron simulation region (1/16th of cavity), showing electric
field vectors (arrows) and contours of electric energy density, spaced at 2% 0415k
intervals, visible in the ceramic load and gap regions. Mode frequency 3.097 ’
GHz,Q = 40.7. ~ - - CHRISTINES.0 Tape Model (s=1.74)
e——— CHRISTINE9.0 (e.=1.74)
&~ ~ o CTLSS (case inp005, ¢,=6.0}
TABLE | v VEO03 Measured
CALCULATED EIGENFREQUENCY VERSUSPHASE ADVANCE PERCELL (IN 0.110 .
DEGREE9 FOR A COUPLED-CAVITY TWT CIRCUIT 0 5 10 15 20

Phase Mode1 Mode2 Mode3 Mode4d
0 89.871 121.993 121.576 121.576 1000

15 80.955 121538 121.583 121.583

30  90.207 120.332 121.603 121.603

45  90.623 118.665 121.635 121.635

60 91202 116.756 121.677 121.677 . 100¢

75  91.940 114733 121.725 121.725 )

90 92.832 112.666 121.778 121.778 N
105 93.878 110.600 121.831 121.831 8 1ot
120  95.051 108.560 121.880 121.880 g
135  96.365 106.569 121.922 121.922 &
150  97.805 104.641 121.955 121.955 = i 2, /2 05
165  99.361 102790 121.976 121.976
180  101.026 101.026 121.983 121.983 e CHRISTINES. Tage Model 617

s ~~ -a CTLSS (case inp005, £r=6.0)
o1 0 5 10 15 20

E. Multilevel Solution
o " f(GHz)
When the problem size increases, the condition number ol

the matrix becomes very large, and iterative methods conveggg 10. mode dispersion and coupling impedance for a vaned helix-TWT

very slowly. Multigrid solutions are applicable to this typesircuit (data courtesy of Northrop Grumman).

of problem and take advantage of the known structure of the

physical problem. Integration of full multigrid (FMG) with thelution subspace obtained at this level is interpolated to the finer

CTLSS eigensolver has not yet been performed; howevergid as an initial subspace for the larger problem. By this proce-

hierarchy of grids is used in the solution of the eigenproblemdure, much of the effort required to approach the desired solu-
Once the problem has been defined on the finest level of gridhn at the finest grid is circumvented. At the finest level, only

an averaging procedure is applied to the capacitance and indauéew refinement steps are necessary. This method was found to

tance terms to generate arelated problem having half the numbewery effective, and typically, two levels of approximation are

of cells in each dimension. The number of field values is therelapplied to further accelerate the process.

reduced by a factor of eight for a 3-D problem, and the solution Fig. 7 shows an example of three successive levels of solution

at the coarser level is much faster than is the full solution. A stor helix TWT geometry at high resolution. During the CTLSS
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Fig. 11. CTLSS modules.

validation phase of the program, the multigridding function wdess,tan 6 = 0.179, of the ceramic load used in the simulation
evaluated and determined to provide significant reduction in etkat leads to poor conditioning of the problem.
ecution times over systems that did not use the multigridding The TM,;;-mode of the cavity is shown in Fig. 8. The electric
function. For a case that employed the optimum gridding fdield is concentrated across the gap region, whereas a significant
helix TWT geometry, providing the best balance between solenergy density inside the ceramic buttons causes strong absorp-
tion accuracy and execution times, two levels of multigriddintion, leading to the low observed.
were used on a2 x 36 x 32 grid, and resulted in areductionin 2) Example 2: Coupled Cavity TWTA section of a coupled
run times of approximatel@.5x. In this case, nearly identical cavity TWT circuit is also shown in Fig. 1. The structure of
eigenfrequencies were computed with and without the multhis device is periodic, with the unit cell shown. Approximating
gridding function, whereas execution times were reduced fraime finite circuit structure by an infinite structure, its dispersion
4.9 h to 2.0 h. Larger simulations, such as the one depictedcimaracteristics may be obtained by applying a Floquet boundary
Fig. 7, would benefit even more from use of this function.  condition parameterized by the phase advance angle [43]. In this
case, the full unit-cell structure was modeled to obtain all types
of mode symmetry. It would be possible to reduce the computa-
tion time significantly by applying either electric-wall or mag-
To illustrate the present capabilities of the CTLSS code, weetic-wall boundary conditions at the two planes of reflection
present a number of examples taken from real devices. symmetry that exist.
1) Example 1: Klystron CavityA klystron cavity, depicted  The simulation was performed onéd x 64 x 40 cell mesh
in Fig. 1, was modeled using a cylindrical coordinate mesh, witd91 520 complex unknowns). Convergence of all four eigen-
nonuniform spacing of cells. The cavity consists of a cylindricaodes to a residual errgr, = 10~2 took 40 min per phase
pill-box, with coaxial, cutoff cylindrical waveguides protrudingangle, on a 400-MHz Pentium Il PC.
into the volume and having the noses radiused and separatetable | shows the frequency dispersion of each of the first four
by a small gap. Eight absorbing ceramic buttons surround eanbdes, determined by CTLSS. Modes 3 and 4 are degenerate.
waveguide on the flat end-walls of the pill-box to control the 3) Example 3: Helix TWT Circuit, with Vanesto control
cavity Q. the dispersion properties of a helix traveling wave interaction
Using a combination of symmetry and metal wall boundargircuit, metallic vanes are introduced as coatings on the dielec-
conditions, solving only 1/16th of the cavity was sufficient tdric supports as shown in Fig. 9. A careful choice of dimensions
determine the lowest, Th{;-mode. This sector was discretizedallows an almost constant phase velocity to be achieved over a
using a88 x 32 x 44 cell mesh, having 371712 complex unvery wide frequency band.
known field values. Convergence of the eigenmode solution toUsing CTLSS, the dispersion characteristics were obtained
a residual errop;, = 10~2 took 6 h on a 600-MHz Pentium Il using a mesh wit5 x 67 x 17 cells, in a cylindrical geometry.
PC. The eigenfrequency of 3.097 GHz apaf 40.7 agree well The structure is doubly periodic, in the azimuthal and axial co-
with experimentally determined values, 3.140 Gz~ 44, ordinates. Using a Floquet boundary condition axially, the dis-
given the estimated uncertainty in the ceramic dielectric copersion was calculated for the vaned circuit, as shown in Fig. 10.
stant of 5%. The long run-time for this example may be afFhe effect of the vanes is in flattening the wave phase velocity,
tributed to the large dielectric constaat,= 78.25, and high and the flatness predicted by CTLSS agrees very well with the

F. Examples
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Fig. 12. CTLSS templates.

experimental data. The CHRISTINE dispersion curves are cgliency range with a tape helix shows a large impedance drop
culated from the semianalytic sheath and tape helix modedd the high end of the band, confirmed by the CTLSS data. The
using an arbitrary effective permittivity parameter chosen to fitause of this impedance drop is still not resolved, and measure-
to an average of experimentally determined values. ments on cold-test circuits are in progress to try to gain a better

Comparisons between CTLSS and measured phase veloamgerstanding.
data were obtained for an unvaned circuit and three separate
vaned circuits. The grid size used in Fig. 10 8&sx 67 x 17,
though a case with5 x 91 x 17 also showed good convergence.

The azimuthal cell size was reduced significantly at the sides ofThe CTLSS code has been highly modularized so that its
the rod to properly resolve the thin vanes. The agreement faultiple functions can share common utilities between mod-
phase velocity with experimental data is good (note the comles. CTLSS itself functions as a module in the modeling and
pressed range on theaxis). The agreement with the CHRIS-simulation tool suite, which includes MICHELLE and CHRIS-
TINE codes (for the sheath helix and, more accurate, tape helbNE, and shares postprocessing, visualization, and gridding
models) is also very good, provided that the “effective” dieledools with those programs. Future development is aimed at tight-
tric constant in CHRISTINE is adjusted as indicated. ening the integration of these codes.

Fig. 10 also shows the coupling impedance obtained for thisThe current release version of CTLSS consists of the electro-
structure from the calculated field, which describes the interagnetic eigenvalue solver on a single-block orthogonal struc-
grated coupling to the RF electric field experienced by electronged mesh, a graphical user interface (GUI), a postprocessor to
passing along the axis. The effect of the vanes is to reduce tmnpute phase velocity and impedance for specified modes, a
coupling impedance slightly, but to permit interaction acrossvésualization tool and interface for 3-D structure and vector field
very wide bandwidth. The calculated impedance across the fpdets, and a data link to CHRISTINE. The design methodology

VI. CTLSS CobE
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Fig. 13. CTLSS solution viewer.

for vacuum electronic devices (currently helix-TWT configuraboundary conditions) largely written in Fortran for efficiency,
tions) integrated into CTLSS is the following. whereas the controllers for the Jacobi—-Davidson and QMR rou-
1) CHRISTINE is employed as a stand-alone code to corfines and overall data structures are written fiCClasses are
pute an optimum helix-TWT configuration (which maydefined to encapsulate the problem description, coordinate sys-
consist of several helix sections with different paramdems, matrix operators, fields, and subspaces, with their associ-
ters.) ated operations. The underlying linear algebra libraries used for

2) The output of CHRISTINE for a specified helix sectiorvector and dense matrix operations, BLAS and LAPACK, are
is read into the GUI, where the user specifies additionalso either native Fortran routines or available optimized for a
parameters that are not needed by CHRISTINE, but aparticular platform.
required to run CTLSS. The GUI then calculates all re-
maining parameters, such as the dimensions of the sif- Modules
portrods, and generates a basic structure definition so thatrhe modular structure of CTLSS is illustrated in Fig. 11. The
a CTLSS *cti input file can be created. The GUI alsoyser constructs a text input filé. ¢i), either manually or with
writes a new CHRISTINE input file that can be executeghe help of a GUI, and runs a setup prograsi2cts, to create
after the CTLSS runs in step 3) are completed. a structure file {.cts). The eigenvalue solverts2ctv, reads

3) CTLSS is used to compute the dispersion and impedangisth thex.cti and.cts files to produce a file of solution field
data for the CHRISTINE configuration, including 3-Dvectors .ctv). Two postprocessorsts2g andctv2vtk, convert
effects, such as actual support rods and finite thicknegfe structure and field output files into formats that can be used
tape helix geometry, in place of the idealized smeared gy the visualization toolkit (VTK) to render 3-D images of the
electric, and the sheath helix or thin tape helix models fields and structures. Finally, a third postprocessor (not shown),
CHRISTINE. ctv2imp, reads the field output file and processes impedance

4) A new CHRISTINE run, using the computed cold-tesind phase velocity for a specified solution vector (mode.)
results from CTLSS, can assess the change in perfor-
mance of the helix TWT because of the effects included. GUI

. by CTLSS. ) A GUI has been created for CTLSS in Excel Visual Basic.
This cycle may be repeated to converge upon an optimal, reglis 5 general interface that governs structure input and grid
istic design. setup, as well as specification of all control parameters required

by the code, and provides the user with simple definitions of
A. Code Structure input quantities. The interface also includes a series of templates

The code is a hybrid of Fortran andr€ modules, with the designed to automate the definition of commonly used device
parts of the code specific to data input and the electromagnetanfigurations, such as the helix TWT, the coupled-cavity TWT,
operators (including setup routines, curl-operator routines, aadd the klystron. The output of the GUI is theti input file
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Cylindrical Geometry

Fig. 14. Helix TWT represented in cylindrical and Cartesian coordinates.

required to run CTLSS. The GUI can also read inthei file several options for the shape of the cavity nose structure. These
for editing, and it can invoke a setup run with visualization. templates automatically populate the general CTLSS GUI, so
The major sections of the CTLSS GUI “Setup” and “Eigenthat the user can modify the automatic setup, as needed, to
solver” controls. The Setup section includes General Setwgxecute a specific simulation.
Boundary Conditions, Structures, and Gridding, which are An additional template automatically sets up the link be-
required to run the setup module. The Eigensolver sectibmeen CTLSS and CHRISTINE for designing helix TWT
includes General Controls and Eigensolver sheets, which sgtuits, using the methodology described above.
up the eigensolver module.
The_ CTLSS templat(_as,_ |IIustrate_d in Elg. 12, allow t_he USe! \jisualization
to rapidly set up specialized configurations. The helix TWT
template, for example, includes several options for support rodCTLSS uses the VTK to create 3-D graphical renderings of
shapes (with user-specified dimensions). The coupled-cavibe discretized structures and field solutions. The VTK system is
TWT includes several options for the number and shape of thevgrammed in Tcl/Tk, to produce customized plots and to pro-
coupling slots between the cavities. The klystron template hasle a GUI specifically for viewing CTLSS output (see Fig. 13.)
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Fig. 15. CTLSS results for a helix TWT. Run times and memory requiremen
for several Cartesian and cylindrical setups are compared with measured ¢ |
from a Northrop Grumman Corporation X-Band TWT. B == [———
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The viewer for the current CTLSS code is being absorbed into a _ _ o o
postprocessor and viewer developed for all of the modeling aﬁlg. 16. Perturbation method for experimentally determining axial impedance.
simulation tools.

Impedance X-Band Input Circuit

E. Gridding 200
180 1 CTLSS
The current CTLSS release version supports both CartesicG 160 1 perturbation - r/r,=0.24

and cylindrical coordinate systems. The advantage of havin § 140 A
both options is that one or the other system will be more con§ 120
formal with the structure and, therefore, will require fewer cells & 100
and less run time. 80 A

Fig. 14 shows a comparison of Cartesian and cylindrical grid = 60 1
ding for a helix TWT. In this case, the cylindrical coordinate 40
system is better because it is important to resolve the tape hel 20
thickness, which need only be resolved in the radial directiot 0 T T T T T T T
in cylindrical geometry, but it requires fine gridding in bath 3 4 5 6 7 8 9 10 11
andy in Cartesian geometry. The eigenvalue solver is also re
markably tolerant of large changes in cell size from cell to cell.
Hence, it is permissible to arrange the azimuthal grid so thakig. 17. Coupling impedance as determined by direct calculation using 3-D
becomes much denser on the support rods than it is betweenGReSS fields, CTLSS simulation of a perturbation experiment wigfir, =
rods, thereby gaining better resolution and discretization of thé*: 2nd CTLSS simulation of a perturbation experiment witfir, = 0.33.
rods for a given total number of cells.

A comparison of the run time for a helix TWT in optimized The ability of electromagnetic simulation codes to accurately
cylindrical and Cartesian geometry was carried out at Northrgpmpute the axial impedance for TWT's has been an issue for
Grumman Corporation [44], with the results shown in Fig. 15everal years. Recently, that issue has been resolved in favor of
Computations were performed on a 450-MHz Pentium Il P@e simulation codes [44], [45]. The axial impedance is com-
having 384-Mb available RAM. The cylindrical mesh wasx  puted from first principles as
48 x 16 cells, whereas the Cartesian meshes \82re 32 x 16,

40 x 40 x 16,80 x 80 x 16, and160 x 60 x 16 cells. 7z, = 1200 = Ol

Fig. 15 shows that the cylindrical setup, requiring only 20 MB 2p2P

of memory and 1.5 h per data point, outperforms setups in Carte-

sian geometry using up to 306 MB and 4.3 h per data point whereF, is the lowest order Fourier component of the electric
' ' field on axis,3 = w/v, is the wavenumbety, is the phase

velocity, andP is the time-averaged RF power flow

CTLSS
perturbation - r/r,=0.33

CTLSS
direct calculation

coupling im

frequency (GHz)

F. Postprocessing

The CTLSS postprocessor computes the axialimpedance and P=1 Re(E X fI*).
the phase velocity for a specified eigenfield solution, as well as
field energy density. The driven-frequency module includes tii&perimentally, the axial impedance is determined by first mea-
calculation ofS parameters for specified ports. suring the phase velocity of the RF wave on the helix circuit, and
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Fig. 18. CTLSS migration to HPC environments.

theninserting a sapphire rod along the axis of the helix and mdiely yield a result closer to the direct calculation even if a

suring the resulting phase shift and phase velocity with the rethaller perturbing rod were used.

in place. The measured phase shift and the coupling impedance

are then related through a perturbation analysis. Fig. 16 dell. FUTURE ACTIVITIES—HIGH PERFORMANCE COMPUTING

picts a CTLSS setup for the experiment to determine the ax'i&ll

impedance. '
Northrop Grumman [44] simulated this experiment with The current single-block implementation of CTLSS is being

CTLSS to test the approximations in the perturbation meth&tended to multiblock for several reasons:

[46] used to compute coupling impedance from perturbed 1) Efficient gridding algorithms and commercial gridding

phase velocity measurements. These approximate perturbation tools for nonorthogonal structured grids generally require

expressions were used to evaluate the impedance from both the multiblock configurations.

experimental phase velocity shift as well as CTLSS predictions 2) Multiblock offers the possibility of avoiding wasted cells

of the phase velocity shift for the geometry shown in Fig. 16. in regions where there are no fields.

The goal was to determine whether the perturbation expressionsS) Multiblock offers a framework for the eventual paral-

are accurate and independent of rod size even for large values lelization of CTLSS.

of rq/r;., wherer, is the perturbing dielectric rod radius and The multiblock methodology consists of breaking up the sim-

71, is the helix radius. Two different rods with,/r;, = 0.24 ulation domain into subregions, or blocks, that are connected at

andryq/r, = 0.33 were used for these measurements andterfaces. The solution is carried outin each block volume with

simulations. The measurements were carried out using a nibw interfaces treated as boundary conditions. As the iterative

single-port measurement method that yielded results that wsmution proceeds, the interface data are updated from block to

strongly dependent on rod radius and required further verifdock, e.g., via message passing, so that the solutions in all the

cation with the standard two-port measurement. The CTL$$cks converge to a consistent global solution.

prediction, however, provided results that are independentHow often to update the interface data depends on the latency

of rod size. Fig. 17 shows the comparison between couplingsociated with the transfer of data between blocks. For some

impedance computed directly from the 3-D CTLSS fields argystems, with high latency, there may be an advantage in storing

the coupling impedance computed from perturbation theomyultiple layers of overlapped interface cells that are updated less

using the perturbed phase velocity predicted by CTLSS firequently, whereas on low-latency systems, minimal interface

the two rods mentioned above. It is seen that the perturbatiaverlap with more frequent updates will be more efficient.

results are independent of rod size and lie close to the direct

calculation even for rod sizes up#g/r;, = 0.33. The discrep- B- HPC

ancy between the direct calculation and the perturbed resultsthe future utilization and acceptance of CTLSS will depend

may be because of the approximate nature of the perturbatiafart on how quickly it will be able to solve large design prob-

expressions and given the curves shown in the figure would neins. The growing availability of high-performance computing

Multiblock Formulation
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(HPC) hardware and software is therefore of major interest 4]
the development of CTLSS. Fig. 18 summarizes the most likely
path for applications like CTLSS to migrate onto HPC envi-[ls]
ronments. The present code runs on multiprocessor Cray envi-
ronments at DoD HPC Major Shared Resource Centers. These
centers offer a shared-memory environment with no message
passing or segmentation requirements, but have limited scalé:6]
bility to large numbers of processors.

Future implementations will move into multiprocessor [17)
environments as improved software, such as Fortran 90, and
improved implementations of message-passing interface (MP[}S]
and local-area memory (LAM) protocols become available.

Currently, an inexpensive option for parallel processing is td19]
create a cluster of CPU’s linked, for example, by a fast eth-
ernet. SAIC has built an 80-CPU cluster of this type, consistingzo]
of 40 dual-CPU machines wth shared memory and a fast eth-
ernet back plane. This cluster has demonstrated peak perf 54
mance of 6-12 Gflops. An activity to port CTLSS to this cluster
is in progress. It will begin by porting and running CTLSS on
just one of the dual-CPU units. The next step will be to use th&?
multiblock structure being implemented in CTLSS as a means
of carrying out domain decomposition so that separate units cadf3l
work independently on each block during the iterative solution
process. Blocks will communicate between processors using4
MPI commands over the ethernet back plane.

(1]

(2]

(3]

(4
(5]

(el

(7]

(8]

El

(10]

(11]

[12]

(13]

REFERENCES

L. D. Merkle, R. E. Peterkin, Jr., L. Bowers, L. J. Chandler, S. Colella,
A. N. Gibbs, M. H. Frese, P. J. Helles, D. E. Lileikis, J. W. Luginsland,
D. T. McGrath, G. E. Sasser, and J. J. Watrous, “Virtual prototyping of
RF weapons: A DoD challenge project,” Rroc. 1998 DoD HPCMP
Users’ Group Conf.Rice Univ., Houston, TX, June 1-5, 1998, Session
Challenge 1D. [27]
J. J. Petillo, A. Mankofsky, W. A. Krueger, C. Kostas, A. A. Mondelli,

and A. T. Drobot, “Applications of the ARGUS code in accelerator [28]
physics,” inProc. 1993 Computat. Accelerator Phys. Conf., Am. Inst.
Phys, New York, 1994, pp. 303-312. [29]
T. Weiland, On the numerical solution of Maxwell’s equations and ap-
plications in the field of accelerator physics, in Particle Accelerators,[go]
vol. 15, pp. 245-292, 1984.

J. Tuckmantel, “An improved version of the eigenvalue processor SAP
applied to URMEL,”, CERN/RF 85-4, 1985. [31
R. W. Freund and N. M. Nachtigal, “QMR: A quasiminimal residual
method for non-Hermitian linear system&Jumer. Math, vol. 60, pp.
315-339, 1991.

G. L. G. Sleijpen and H. A. van der Vorst, “A Jacobi—Davidson iteration
method for linear eigenvalue problem&TAM J. Matrix Anal. Appl.
vol. 17, pp. 401-425, 1996. [
C. G. J. Jacobi, “Ueber ein leichtes Verfahren, die in der Theorie der
Sacularstérungen vorkommenden Gleichungen numerisch auflésen,”
Journal fur die reine und angewante Mathemapk. 51-94, 1846. [34]
E. R. Davidson, “The iterative calculation of a few of the lowest
eigenvalues and corresponding eigenvectors of large real symmetric
matrices,”J. Comput. Physvol. 17, pp. 87-94, 1975. [35]
S. J. Cooke and B. Levush, “Eigenmodes solution of 2-D and 3-D
electromagnetic cavities containing absorbing materials using the
Jacobi-Davidson algorithmJ. Comp. Phys.vol. 157, pp. 350-370, [36]
2000.

T. M. Antonsen, Jr. and B. Levush, “CHRISTINE: A multifrequency [37]
parametric simulation code for traveling wave amplifiers,”, Naval Res.
Lab. Rep. NRL/FR/6840-97-9845, 1997.

J. Eastwood, W. Arter, N. J. Brealey, and R. W. Hockney, “Body-fitted
electromagnetic PIC software for use on parallel comput&@srhput.
Phys. Communvol. 87, pp. 155-178, 1995.

E. L. Lindman, “Free Space’ boundary conditions for the time depen-
dent wave equation,J. Comp. Physvol. 18, pp. 66-78, 1975.

E. K. Miller, “A selective survey of computational electromagnetics,”
IEEE Trans. Antennas Propagatol. 36, pp. 1281-1305, 1988.

(25]

(26]

(32]

33]

(38]

(39]

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 28, NO. 3, JUNE 2000

T. Weiland, “On the numerical solution of Maxwell's equations and ap-
plications in the field of accelerator physic&art. Accel, vol. 15, pp.
245-292, 1984.

M. Bartsch, M. Dehler, M. Dohlus, F. Ebeling, P. Hahne, R. Klatt, F.
Krawczyk, M. Marx, Z. Min, T. Propper, D. Schmitt, P. Schitt, B.
Steffen, B. Wagner, T. Weiland, S. Wipf, and H. Wolter, “Solution of
Maxwell's equations,”Comp. Phys. Communvol. 72, pp. 22-39,
1992.

K. S. Yee, “Numerical solution of initial boundary value problems in-
volving Maxwell's equations in isotropic medid FEE Trans. Antennas
Propagat, vol. 14, pp. 302-307, 1966.

J. P. Berenger, “A perfectly matched layer for the absorption of electro-
magnetic-waves,J. Comput. Physvol. 114, pp. 185-200, 1994.

W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium
from modified Maxwell’'s equations with stratched coordinatedj”
crow. Opt. Technol. Lettvol. 17, pp. 599-604, 1994.

F. L. Teixeira and W. C. Chew, “General closed-form PML constitutive
tensors to match arbitrary bianisotropic and dispersive linear media,”
IEEE Microw. Guided Wave Letivol. 8, pp. 223-225, 1998.

N. Moiseyev and J. O. Hirschfelder, “Representation of several complex
coordinate methods by similarity transformation operatads,Chem.
Phys, vol. 88, pp. 1063-1065, 1988.

C. W. McCurdy and C. K. Stroud, “Eliminating wavepacket reflection
from grid boundaries using complex coordinate contou@gmput.
Phys. Communvol. 63, pp. 323-330, 1991.

C. W. McCurdy, C. K. Stroud, and M. K. Wisinski, “Solving the time-
dependent Schrddinger equation using complex-coordinate contours,”
Phys. Rev. Avol. 43, pp. 5980-5990, 1991.

K. Halbach, “Design of permanent multipole magnets with oriented rare
earth cobalt materials,” iNucl. Instrum. Methodsvol. 169, 1980, pp.
1-10.

M. Baird, C.-L. Chang, M. Czarnaski, R. Harper, and D. Holstein, “In-
vestigation of long period focusing for higher average power—Low cost
millimeter wave TWT’s,”, Star Microwave Inc. Final Report on Contract
F30602-87-C-0216, for RADC (AFSC), Sept. 28, 1989.

R. H. Jackson, “Off-Axis expansion solution of Laplace’s equation: Ap-
plication to accurate and rapid calculation of coil magnetic fieltBZE
Trans. Electron Deyvol. 46, pp. 1050-1062, 1999.

D. Chernin, T. M. Antonsen, Jr., and B. Levush, “Exact treatment of
the dispersion and beam interaction impedance of a thin tape helix sur-
rounded by a radially stratified dielectridEEE Trans. Electron Dey.
vol. 46, pp. 1472-1483, 1999.

J. R. PierceTraveling Wave Tubes Princeton: Van Nostrand, 1950, ch.

J. H. Wilkinson and C. Reinschjandbook for automatic computa-
tion. Heidelberg: Springer-Verlag, 1971, vol. 2, Linear Algebra.

O. Axelsson,lterative Solution Methods Cambridge, U.K.: Cam-
bridge Univ. Press, 1994.

R. W. Freund and N. M. Nachtigal, “An implementation of the QMR
method based on coupled two-term recurrenc8M J. Sci. Comput.
vol. 15, pp. 313-337, 1994.

] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systemSJAM J. Sci. Stat.
Comput, vol. 7, 1986.

R. W. Freund, “A transpose-free quasiminimal residual algorithm for
non-Hermitian linear systems3IAM J. Sci. Comput.vol. 14, pp.
470-482, 1993.

D. C. Sorensen, “Implicit application of polynomial filters in a k-step
Arnoldi method,”SIAM J. Matrix Anal. Applicat.vol. 13, pp. 357-385,
1992.

A. Booten, D. Fokkema, G. Sleijpen, and H. A. van der Vorst, “Ja-
cobi—-Davidson methods for generalized MHD-eigenvalue problezns,”
Angew. Math. Mechvol. 96, pp. 131-134, 1996.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannisi,
merical Recipes in FORTRAN: The Art of Scientific Compyt2r

ed. Cambridge, U.K.: Cambridge Univ. Press, 1992, ch. 11.

J. Cullum, W. Kerner, and R. Willoughby, “A generalized nonsymmetric
Lanczos procedureComput. Phys. Commuynwol. 53, pp. 19-48, 1989.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D.
Sorensenl APACK Users’ Guide3rd ed. Philadelphia, PA: Soc. Ind.
Appl. Math., 1999.

S. J. Cooke and B. Levush, “Eigenmode solution of 2-D and 3-D elec-
tromagnetic cavities containing absorbing materials using the Jacobi-
Davidson algorithm,J. Comp. Physvol. 157, pp. 350-370, Jan. 2000.
J. Descloux, J.-L. Fattebert, and F. Gygi, “Rayleigh quotient iteration,
an old recipe for solving modern large-scale eigenvalue problems,”
Comput. Physwvol. 12, pp. 22-27, 1998.



COOKEget al: CTLSS—ELECTROMAGNETIC SIMULATION TOOL 865

[40] E.R.Davidson, “Super-matrix method§bdmput. Phys. Commuywol. Thomas M. Antonsen, Jr. (M'87) was born in
53, pp. 49-60, 1989. Hackensack, NJ in 1950. He received the Bachelor's
[41] R.W. Freund, M. H. Gutknecht, and N. M. Nactigal, “An implementa- degree in electrical engineering in 1973, and his

tion of the look-ahead Lanczos algorithm for nonhermitian matrices
SIAM J. Sci. Computvol. 14, pp. 137-158, 1993.

G. L. G. Sleijpen, H. A. van der Vorst, S. Peodts, and J. P. Goedbloe
“Efficient expansion of subspaces in the Jacobi-Davidson method f =
standard and generalized eigenproblenl&ctron. Trans. Numer. |
Anal, vol. 7, pp. 75-89, 1998. 1
R. L. Gluckstern and E. N. Opp, “Calculation of dispersion curves iz
periodic structures,JEEE Trans. Magnetigsvol. 21, pp. 2344-2346, joined the faculty of the departments of Electrical
Nov. 1985. Engineering and Physics in 1984. He is currently a Professor of Physics and
D. R. Whaley, C. M. Armstrong, and S. J. Cooke, “Initial validation ofElectrical Engineering. He has held visiting appointments at the Institute for
the CTLSS eigenmode solver in helix geometry,Piroc. 26th Int. Conf.  Theoretical Physics (U.C.S.B.), the Ecole Polytechnique Federale de Lausanne,
Plasma Scj.Monterey, CA, June 20-24, 1999. Switzerland, and the Institute de Physique Theorique, Ecole Polytechnique,
C. L. Kory and J. A. Dayton, Jr., “Computational investigation of exPalaiseau, France. He was selected as a Fellow of the Division of Plasma
perimental interaction impedance obtained by perturbation for helicBhysics of the American Physical Society in 1986.

traveling-wave tube structuredEEE Trans. Electron Dewol. 45, pp. Prof. Antonsen’s research interests include the theory of magnetically con-
2063-2071, Sept. 1998. fined plasmas, the theory and design of high power sources of coherent radia-
R. P. Lagerstrom, “Interaction impedance measurements by perturbattmm, nonlinear dynamics in fluids, and the theory of the interaction of intense
of traveling waves,” Stanford Electron. Lab., Stanford Univ., Stanfordaser pulses and plasmas. He is the author and coauthor of more than 180 journal
CA, Tech. Rep. 7, 1957. articles and coauthor of the bod¥inciples of Free-electron Lasersle has

J. H. Billen and L. M. Young, “POISSON/SUPERFISH on PC comserved on the editorial board of Physical Review Letters. The Physics of Fluids,
patibles,” inProc. 1993 Particle Accelerator Confvol. 2, 1993, pp. and Comments on Plasma Physics.

790-792.

Master's and Ph.D. degrees in 1976 and 1977,
all from Cornell University. He was a National

Research Council Post Doctoral Fellow at the
Naval Research Laboratory in 1976-1977, and a
Research Scientist in the Research Laboratory of
Electronics at MIT from 1977 to 1980. In 1980,

he moved to the University of Maryland where he

[42]

[43]
[44]

[45]

[46]

[47]

Simon J. Cooke(M'98) was born in Glasgow, U.K., on July 12, 1967. He re-
ceived the B.Sc. (hons.) degree in physics from the University of Strathclyde
in 1988, and the D.Phil. degree from the University of Oxford, in 1992. His _

doctoral research involved experimental and theoretical analysis of the opti
properties of nanoscale organic thin films.

His recent research involves numerical modeling in the area of electron be
and high power microwave physics, at the University of Strathclyde (199
1995), the University of Maryland (1995-1998), and with Science Applicatior
International Corporation since 1998.

David P. Chernin received the A.B. (1971) and

Ph.D. (1976) degrees in applied mathematics from
Harvard University. From 1976 to 1978, he was
a Member of the Institute for Advanced Study, in
Princeton, NJ, where he worked on problems in
magnetic confinement fusion. Since 1984, he has

been at Science Applications International Corpo-
ration in McLean, VA where he has contributed to
multiple research efforts in the theory and simulation
L of beam-wave interactions in particle accelerators
Alfred A. Mondelli was born in New York, NY in 1945. He received the Bach- and microwave tubes. Dr. Chernin presently serves
elor's degree in physics from Princeton University, Princeton, NJ, in 1967, aad the Manager of the Division of Electromagnetic Science and Engineering at
the Ph.D. degree from Cornell University, Ithaca, NY, in 1972. SAIC. He is a Member of the American Physical Society and the Society for
He was a Postdoctoral Research Associate at the Cornell University Labdradustrial and Applied Mathematics.
tory of Plasma Studies in 1972 and 1973, and a Senior Staff Scientist at Maxwell
Laboratories, Inc. from 1973 to 1978. From 1978 to 1980, he worked in the
Laser Enrichment Division, Process Physics Group, Exxon Nuclear Company.
Since 1980, he has worked at Science Applications International Corporation
(SAIC), McLean, VA, where he is currently the Chief Scientist of the Advanced
Technology Group. His research interests are centered on the applications of nu-
merical simulation codes for simulation-based design. He was the Manager of
the team at SAIC that developed the ARGUS code, a three-dimensional electro-
magnetic simulation code, and he was active in the MMACE program. His rehomas H. McClure received the Bachelor's degree from Georgia Tech. and
search has included applications of simulation tools in laser isotope separatibe, Master’'s degree in mechanical engineering from the University of Dayton.
ion source development, electromagnetics, ion-projection lithography, vacust® has more than 15 years experience in analysis, evaluating and testing of
electron devices, and photonics devices. He is currently collaborating with #yeacecraft, aircraft, and launch vehicles. His expertise is in modeling and
Naval Research Laboratory on the development of a new generation of simagsessing aerospace vehicle performance characteristics. He is proficient with
tion tools for vacuum electron devices. FAST, GRIDGEN, ICEMCFD, Chemkin, RJPA, GRID3D, IMSL, PVM, F77,
F90, FEM's and UNIX codes, and has developed grid generation strategies for
NRL electromagnetic analysis and design codes. Mr. McClure is the Technical
Lead for the DARPA Next Generation Internet program to explore wireless
and high-bandwidth technologies to support Tele-maintenance and Chem-Bio
Baruch Levush (M’88-SM’90) received the M.Sc. degree in physics from Latincident response. He designed and built an 80 CPU, 8 Gigaflop “Beowulf”
vian University, Riga, and the Ph.D. degree in physics from Tel-Aviv Universitglass super computer. He has reviewed multidisciplinary design, analysis, and
Tel-Aviv, Israel. system test activities for NASA projects, as well as national mission model
In 1985, he joined the University of Maryland, College Park, where his reequirements for launch vehicle performance capabilities focusing on need
search has focussed on the physics of coherent Radiation sources and théodespacecraft design detail. He has influenced ground system requirements
sign of high power microwave sources, such as gyrotrons, TWT's, BWO's, addfinition for testing spacecraft fault tolerant avionics systems, and has
free-electron lasers. In 1995, he joined the Naval Research Laboratory (NRLpasessed operational impact of spacecraft main engine chugging on Cassini
head of the Theory and Design Section of the Vacuum Electronics Branch. Heisssion. He validated Computational Fluid Dynamics codes for application
actively involved in developing theoretical models and computational tools fon Ballistic Missle Office and F-117 programs and validated recentry heat
analyzing the operation of existing microwave vacuum devices and in inventitignsfer test data for BMO High Performance Maneuvering Reentry vehicle.
new concepts for high-power, high frequency coherent radiation sources. Héles developed and executed test procedures for spacecraft unique tracking and
the author and coauthor of more than 100 journal articles. telemetry data system, and benchmarked hypersonic and combusting flow with
Dr. Levush is a Member of the American Physical Society. GASP, Mercury, and HYLDA and CFD codes.




866

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 28, NO. 3, JUNE 2000

David R. Whaley (M'96) received the B.S., M.S., Mark Basten has over ten years experience in the design, development, and
and Ph.D. degrees from the Department of Nucleaesting of high power microwave and millimeter-wave devices. Before joining
Engineering at the University of Michigan, Ann Northrop Grumman in 1996, Dr. Basten obtained a Ph.D. degree in electrical en-
Arbor in 1984, 1985, and 1989. His work during thisgineering at the University of Wisconsin-Madison where he specialized in the
time was focused on the production and characterdevelopment of novel slow-wave microwave devices utilizing high-perveance
zation of heavy ion charge state distributions in ECRsheet electron beams. Dr. Basten also has extensive experience in the develop-
and ICR-heated plasmas in magnetic mirror devicesnent of high power millimeter-wave gyrotron tubes, including the development
From 1989-1995, he worked in collaboration with aof a tunable 130-145 GHz gryo-BWO, the design of a 94 GHz gyro-TWT, and
large international community at the Swiss Federahas conducted experimental studies of parasitic modes in MW-level gyrotrons
Institute of Technology in Lausanne, Switzerlandand beam diagnostics. At Northrop Grumman, Dr. Basten has been responsible
developing and testing high-power high-frequencyfor the development of a number of moderate-power, multi-octave TWT's as

gyrotron oscillators, developing analytical and computational models wfell as introducing improved simulation tools for helix TWT circuit and col-
electron beam/RF interactions and performing experiments on RF heatindeaftor design. Dr. Basten also leads internal R&D efforts to investigate advanced
tokamak plasmas. Dr. Whaley joined Northrop Grumman Corporation in 1986lid state emitters and novel submillimeter-wave devices.

and is responsible for simulation, design, and test of TWT’s for the C-Band and

X-Band Microwave Power Module as well as for code development for general

vacuum electronics microwave device research. He is also responsible for the

technical development of the Northrop Grumman cold cathode electron gun

program. Dr. Whaley has authored more than 40 publications on these subjects.



