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Abstract—Simulation-based-design (SBD) techniques to achieve
“first-pass design success” depend on the development of fast, ac-
curate, realistic models that can handle material properties, geom-
etry, and appropriate boundary conditions. This paper describes
a new three-dimensional (3-D) electromagnetic and large-signal
simulation tool, Cold-Test and Large-Signal Simulator (CTLSS),
which has been developed as part of an SBD tool suite for vacuum
electron devices.

Computational electromagnetic codes are essential for applying
the SBD methodology to the design of vacuum electron devices
and components. CTLSS offers the unique advantage that its
computational electromagnetics model is linked intimately with
a large-signal simulation tool for computing the electron-wave
interaction in the radiating structure. Currently, this link has
been implemented for helix traveling-wave tubes (TWT’s) only,
using the CHRISTINE code as the large-signal model, but a new,
general, large-signal model is under development and is described
in this paper.

The electromagnetic simulation engine in CTLSS has been de-
signed and implemented as a volumetric frequency-domain model
that can handle both resonant eigenvalue problems, using the
Jacobi–Davidson algorithm, and nonresonant driven-frequency
problems, using the quasi-minimal residual (QMR) technique
to invert the non-Hermitian matrices that often occur in real
problems.

The features and advantages of this code relative to other models
and results from the code for several classes of microwave devices
are presented.

Index Terms—CHRISTINE, computational electromagnetics,
CTLSS, high power microwaves, large signal models, modeling
and simulation, simulation-based design, vacuum electron devices.

I. INTRODUCTION

A. Simulation Codes for HPM

H IGH-POWER microwave (HPM) research has focused on
the development of microwave sources, output windows,

and advanced cathodes. An overall goal of HPM research is
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to increase device efficiencies and to reduce their weight and
volume. Prospective HPM sources include vircators, klystrons,
relativistic magnetrons, high-efficiency backward-wave os-
cillators, and fast-wave gyrodevices. Research continues on
new sources, based on plasma-filled devices, ultrawideband
technology, and transit-time oscillators. In addition, there are
on-going research efforts on advanced cathodes, ferroelectric
cathodes, microwave vacuum and window breakdown, and
multipactor phenomena to increase the RF vacuum strength
of cavities and windows to produce higher energy density and
longer pulse devices.

The simulation and virtual prototyping of HPM devices [1]
traditionally has fallen into three areas:

1) Pulsed power sources. These devices create the high-
power electrical pulses needed to drive HPM sources.
They may be based on very rapid magnetic flux com-
pression by explosively driven liners, for example, and
are often modeled with magnetohydrodynamics (MHD)
simulation codes.

2) HPM sources. Particle-in-cell (PIC) simulation codes
have been used in the HPM research community to model
the interaction of a high-power electron beam with the
cavity structure and applied fields in the source.

3) Antennas. Computational electromagnetics software has
been used to model the antenna structure with particular
emphasis on mode control to avoid “hot spots,” which
lead to RF breakdown and plasma formation.

The development of general electromagnetic and large-signal
models, like the Cold-Test and Large-Signal Simulator
(CTLSS), will offer the potential to greatly accelerate the
development of HPM devices by allowing integrated design
calculations of the HPM source, the output coupler, and the
antenna, with fast-running large-signal analyzes of the inter-
action region. The current use of time-consuming PIC models
is required because faster parametric models and large-signal
models based on averaging over the highest frequencies in the
particle motion have not been implemented for novel or exotic
HPM sources.

Other electromagnetic eigenvalue codes, such as ARGUS [2]
and MAFIA [3], that are used in the vacuum electron device
community are based on the Tückmantel algorithm [4], which
was formulated for Hermitian systems. Although these codes
have been extended to treat lossy materials, they do not converge
for loss tangents greater than about 10%. The CTLSS code, de-
scribed below, has been specifically formulated to handle com-
plex material properties.

0093–3813/00$10.00 © 2000 IEEE
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B. CTLSS Code Overview

CTLSS has been designed as a state-of-the-art three-dimen-
sional (3-D) simulation model for the electromagnetic and large-
signal behavior of vacuum electron devices. It builds on years
of development of electromagnetic and large-signal simulation
codes, and it has been designed to remedy many shortcomings in
existing codes when treating realistic problems involving lossy
materials and complex geometry.

The CTLSS model offers many useful features as follows.

1) Meshing. CTLSS currently uses a 3-D structured,
single-block mesh, and it supports orthogonal coordinate
systems in both Cartesian and cylindrical geometry. The
mesh includes special models to impose sharp-corner
corrections on material boundaries. New development
in progress will incorporate multiblock, nonorthogonal
structured mesh for conformal representation of 3-D
structures.

2) Materials. CTLSS supports inhomogeneous material
parameters, with structures mapped to mesh cells.
Anisotropic materials with diagonal tensor properties are
permitted, and the formulation extends to full tensor ma-
terial properties. Absorbing materials are included using
complex-valued material parameters to represent losses.
The CTLSS eigenvalue algorithm successfully operates,
even with very large loss tangents has
been used successfully.) New algorithms for advanced
material properties are under development to handle
nonlinear and dispersive materials.

3) Boundary conditions. Block boundary conditions, in-
cluding perfect electric conductor, perfect magnetic
conductor, symmetry wall, periodic, and Floquet peri-
odic with specified phase advance are supported on all
three axes. New development is incorporating perfectly
matched layers (PML’s), ports, and outgoing-wave
boundary conditions.

CTLSS can be employed for solving diverse practical
problems, such as the computation of electromagnetic fields
developing in components for high-power microwave gen-
eration [e.g., klystrons, coupled-cavity and helix traveling
wave tubes (TWT’s), and gyroklystrons], including absorbing
materials commonly used to control modeand to suppress
spurious oscillations. Applications to particle accelerators
include the simulation of microwave accelerator cavities,
couplers, etc. Cavity eigenmode solutions provide mode
frequencies, ’s and eigenfields, as well as dispersion and cou-
pling impedance. CTLSS has the capability for simultaneous
extraction of all eigenmodes in a given band. Fig. 1 depicts
several configurations to which CTLSS has been applied.

The electromagnetic solver in CTLSS has been designed to
handle two separate classes of problems, resonant and nonres-
onant frequency-domain simulations. The nonresonant solver
uses the “quasi-minimal residual” (QMR) method [5] to invert
the linear matrix equation

where is a very large matrix, and the problem therefore may
best be solved using iterative methods. The QMR method offers

Fig. 1. Some electromagnetic applications of the CTLSS code.

the advantage that it works very well whenis non-Hermitian
and, therefore, can handle problems with lossy materials.

The resonant eigenvalue problem involves the solution of the
generalized eigenvalue equation

where both and are large matrices. CTLSS uses the
Jacobi–Davidson method [6] to solve these problems. Ja-
cobi–Davidson is a purely iterative method related to the
Rayleigh quotient iteration (RQI) Method, and it uses a
Block–Galerkin procedure for the estimation of eigenvalues.
The subspace is updated via an approximate (iterative) linear
solution [7], followed by subspace augmentation [8]. The
original formulation of the Jacobi–Davidson algorithm [6] cal-
culates a set of solutions in a given range, ,
and therefore can exclude static solutions automatically. It also
obtains high-order mode solutions efficiently. The subspace
update step uses the QMR algorithm to ensure stable behavior
with lossy materials.

The Jacobi–Davidson model offers several advantages over
other eigenvalue models as follows.

1) It handles lossy materials with high loss tangent (complex
eigenvalues).

2) All modes are ensured to converge to the same specified
level of accuracy—the unnecessary use of resources in
converging additional modes is avoided.

3) The algorithm can start or restart with an approximate
solution.

4) The algorithm can be accelerated using multilevel
methods.

These features are described in the remainder of this paper.
During the development of CTLSS, the Jacobi–Davidson algo-
rithm was modified [9] to control the growth of the subspace
during the solution. Additional modifications to accelerate con-
vergence are described in Section V.

The large-signal model in CTLSS is currently based on
the one-dimensional (1-D) CHRISTINE code [10] that was
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developed for modeling helix TWT’s. This model has been
generalized first to provide a three-dimensional model, CHRIS-
TINE-3D, for the helix TWT. The current development activity
is aimed at the development of a general three-dimensional
large-signal model, described in Section III.

II. ELECTROMAGNETIC THEORY AND NUMERICAL

FORMULATION

CTLSS solves Maxwell’s equations in three dimensions to
obtain full electromagnetic solutions in the frequency domain
for either the resonant eigenmodes or the driven-frequency re-
sponse of an electromagnetic structure.

A. Maxwell’s Equations—Continuum Theory

Maxwell’s equations provide a continuum model, based on
partial differential equations for the electric and magnetic fields
in space and time. The equations describe the relationships of
these fields to each other and their interaction with materials
through a set of constitutive relations.

1) Frequency Domain and Time Domain:In the time do-
main, Maxwell’scurl equations are written as

curl

curl

in terms of the electric field and displacement vectors
and , the magnetic field and flux density vectors
and , and the electric current density vector .

The linear constitutive relations

express the relationships betweenand and between and
that are required to solve Maxwell’s equations in either the

time domain or the frequency domain. Bulk material properties
are described by the permittivity and permeability tensors,and

.
To derive the frequency domain equations, the electric and

magnetic fields and sources are assumed to be harmonic func-
tions of time, using the convention

Re

Substitution into Maxwell’s equations then yields the frequency
domain equations

curl

curl

Using the curl operation and the constitutive relations to elimi-
nate all fields but and , these equations give the second-order
vector differential equation

curl curl

For a driven-frequency problem, a prescribed spatial distri-
bution of at a specified value of drives the electric field
solution. Then, these equations define a standard linear operator
problem of the form that can be solved with appropriate
boundary conditions to obtain the spatial profiles that
describe the electric field response to this source at the given
frequency. If the system is driven on a resonance, very large
amplitude solutions will be driven. The driven amplitude is pro-
portional to the of the resonant mode. Solutions of this type
are discussed in Section IV.

With no source field, , this equation takes the stan-
dard form of a generalized eigenvalue problem of the form

, which describes the resonant modes of the
structure

curl curl

where normal-mode frequency squaredis the eigenvalue of
the system, associated with the electric field eigenvector. Eigen-
value solutions are discussed in Section V.

To handle arbitrary coordinate systems, we express
Maxwell’s equations in tensor form

in terms of a set of global logical coordinates, . The
global physical Cartesian coordinates
are expressed as a mapping from the logical coordinates from
which the metric is obtained, i.e., where

for cyclic indexes
with repeated index
for anticyclic indexes

The logical coordinate domain chosen for our discretization is a
3-D grid of unit, cubic cells, for which the numerical computa-
tion is greatly simplified, mapped to a physical domain that may
be nonuniform, curvilinear, and even nonorthogonal.

The equations may be transformed into a simpler, metric-free
form by a volumetric scaling of parameters [11]

where

This prescription permits the metric information to be amal-
gamated with the anisotropic, continuum materials parameters
when the physical problem is mapped into logical coordinates.
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Although the tensor constitutive relations in the physical space
are written as

they may be expressed in the logical space as

where

In the dimensionless logical coordinate system, the tensors
and have units of capacitance and inductance, respectively,

has units of voltage, has units of charge,has units of mag-
netic flux, and has units of current. The simple form of the
continuum equations obtained makes the discretization proce-
dure required for a numerical solution particularly straightfor-
ward. This procedure is detailed in Section II-B.

2) Material Properties: The model described above readily
includes ideal materials, such as loss-free dielectrics and perfect
metals. The modeling of vacuum electron devices requires the
inclusion of real materials that often are employed to control
the device behavior. Material properties currently implemented
in CTLSS include the following.

a) Complex (lossy) materials:These materials have com-
plex values of and , which are required for simulating energy
losses in the material. In the equations above, when the mate-
rials can have complex properties, the field solutions also be-
come complex. The major complication that develops is that the
resulting operator is non-Hermitian, in general, and common so-
lution methods fail. Algorithms for handling such operators are
described in Sections IV and V.

b) Resistive materials:The equations above generalize to
include Ohmic losses by writing the current density as

, and expressing the Ohmic current density as to
obtain

curl curl

which yields an operator that is quadratic in.
An approximate treatment of this equation is usually em-

ployed, in which a complex permittivity

is defined, and then assumed to be independent of, so that the
operator again becomes linear in

curl curl

This approximation usually can be justified over a narrow range
of frequencies.

c) Anisotropic materials:The formulation above permits
treatment of the full tensor equations for materials having

tensor material properties and . At present, the
discretization method implemented in CTLSS supports only
diagonal tensor material properties, although this is not an
inherent limitation of the method. Diagonal tensor properties
are simpler because each of the diagonal tensor components is
associated with a single field component (e.g., ),
and the resulting matrix equations are simplified.

It is sometimes impractical or impossible to align the co-
ordinate system in a simulation with the principal axes of the
anisotropic material, and the ability to treat the full tensor
is therefore required in such cases. As described above, the
permittivity tensor can be combined with the metric tensor
describing a nonorthogonal grid to include both effects without
requiring additional storage. Using this feature, anisotropic di-
electrics can be automatically included within a nonorthogonal
grid formulation. This capability is presently under develop-
ment.

d) Dispersive materials:These are materials having fre-
quency-dependent materials properties and . All lossy
materials must be dispersive because the imaginary part of
and must be odd functions of frequency whenever the real
part is an even function.

A model for dispersive materials that is valid for several ce-
ramic materials and for cold plasma is based on writing the per-
mittivity as

where depends on position and yields the modified operator

curl curl

3) Boundary Conditions:Boundary conditions (BC’s) typ-
ically define or limit the efficacy of simulation tools. The fol-
lowing types of boundary conditions are particularly useful in
electromagnetic simulation codes.

a) Electric wall: This BC represents a type of symmetry
plane in which the wall acts as a perfect conductor. In this case,
the tangential electric field and the normal magnetic field at the
wall are zero.

b) Magnetic wall: This BC is the complement of the elec-
tric wall, with the tangential magnetic field and normal electric
field components zero.

c) Floquet boundary:The Floquet BC is a periodic
boundary condition having a specified phase advance across
the period. To impose a phase advanceacross a period in ,
the boundary condition is

It is used to simulate many periodic field solutions using only
a well-resolved period of the structure. As special cases, phase-
angles of and require only the real-valued factors .

d) Impedance wall:This type of BC allows surface im-
pedances to be used in place of modeling the actual volume of
a lossy material. Typically, such boundaries are used to simu-
late thin coatings on metallic surfaces or as a model for open
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absorbing boundaries. The form of the impedance function de-
pends on the material and structure that it represents. Typically,
the impedance is dispersive; i.e., it is a function of frequency.

The impedance wall BC is most often used in two situa-
tions: 1) to model a resistive metal whose thickness is many skin
depths, and 2) to model a thin resistive coating (with thickness
less than a skin depth) on a perfectly conducting substrate. The
boundary condition is founded on Ohm’s law

where is the surface impedance andis the surface normal.
This expression is used to update the tangential electric field
from at the boundary.

e) Radiating or open boundary:This BC matches elec-
tromagnetic waves at the boundary to outgoing radiation fields
so that the boundary acts as though it were not there and gener-
ates no reflected waves. Lindman [12] has described the imple-
mentation of open, radiating BC’s for the discrete wave equa-
tion by using projection operators to simulate an infinite region
of free space in contact with the computational region.

f) Ports: A variation of the open BC is the “port.” Port
BC’s are models that match outgoing waves into an aperture as
though that aperture is the entrance to an infinitely long wave-
guide. The fields in the aperture are decomposed into waveguide
modes, and each component is matched to waveguide modes
having the same phase velocity as the incident wave.

g) Perfectly matched layer (PML):The PML is a method
of using impedance boundaries to simulate the impedance of
free space. It is an alternative to the open BC described above.
In practice, a single-layer impedance BC can match perfectly
only for waves over a narrow band of incident angles. By
constructing the impedance from multiple layers, however, the
boundary can be designed to match outgoing waves over a
broad range of angles. The PML is usually implemented as a
volumetric resistive layer, extending over 4–30 cells for good
matching, and it is therefore not strictly a boundary condition.
The PML implementation is described in Section II-B5.

h) Far-field transform: This boundary condition trans-
forms the near-field solution at a radiating boundary into the
far field so that radiation patterns can be computed without
carrying out large simulations. This capability is particularly
important for radiating elements such as antennas. By decom-
posing the outgoing waves on a close-in surface into spherical
multipole components, we can analytically carry the solution
to the far field.

i) External circuit: Another specialization of the surface
impedance BC is the external circuit BC. In this case, the
impedance condition is set from an external model, typically
a lumped circuit or a transmission line model, relating the
electric and magnetic fields at the boundary.

B. Maxwell’s Equations—Discrete Theory

Numerous numerical methods [13] have been developed
to approximate the solution of the continuum Maxwell’s
equations. These methods divide approximately into two broad
classes: surface methods and volume methods. In surface

methods, the boundaries of all surfaces in the problem are
discretized, and a superposition of Green’s function solutions
from each surface element is used to compute the electromag-
netic fields everywhere in the enclosed volume. This method
works well when there are few embedded structures or volume
materials and when the scale of the simulation is no more than
a few wavelengths. Volume methods, which are the focus of
this paper, involve gridding the entire volume of the simulation
and discretizing Maxwell’s equations throughout the solution
domain.

1) Finite Integration Theory (FIT):The discretization of
Maxwell’s equations is based on an orthogonal, structured grid
model, which has been implemented in the CTLSS code. The
methodology generalizes readily to a nonorthogonal, structured
grid model, which is planned in a future CTLSS release, and
which will allow embedded structures to be treated with con-
formal coordinates. In the current implementation, a continuous
mapping is used to include non-Cartesian coordinates, such
as cylindrical coordinates, which allow certain problems to be
executed with greater accuracy and fewer computational cells.

Before discretizing, we construct a grid
of cubic cells as the logical coordinate system, with coordi-
nates , and define a continuous, piecewise-linear
mapping to the physical space by interpolating among sets of
control points. For cylindrical geometry, the mapping is made
first to global cylindrical coordinates, . Then, a contin-
uous transformation is used to map to Cartesian coordi-
nates, , with special attention to handle on-axis singular
points.

The physical model is cast in the logical space, where each
cell is a simple unit cube. In the logical coordinate system,
the metric-free differential equations are used, the continuous
electric field vector has dimensions of voltage, and the other
field quantities are expressed similarly as their analogous cir-
cuit quantities, defined earlier.

The discretization procedure is similar to that of the finite in-
tegration technique (FIT) [14], [15]. Field quantities are asso-
ciated with the edges and faces of the grid cells, using the now
standard Yee-cell arrangement [16]. This arrangement actually
consists of two interleaved grids. On one grid, the components
of the vector are defined on the cell edges parallel to that
component, and the components of thevector are defined at
the centers of the cell faces orthogonal to that component. In
the FIT, the discrete fields are stored as cell voltageson each
edge of the cell and magnetic fluxesthrough each cell face.
The cell currents are stored on the dual-cell edges, and the
electric displacement fluxes through the dual-cell faces. The
constitutive relations then relate and through the cell ca-
pacitance matrix and and through the cell inductance
matrix .

The inductance and capacitance matrices account for the cell
geometry as well as the average permittivity and permeability
tensors for that field component. If the permittivity and perme-
ability tensors are diagonal and the coordinate system is orthog-
onal, and are diagonal matrices.

The differential operators derive from the integral forms of
Maxwell’s equation and involve directed summations of adja-
cent field quantities. Thecurl operator evaluated for the face of
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a grid cell is a simple, directed sum corresponding to the line in-
egral around the face edges. This operator may be represented
as a matrix operator, though this matrix is never formed ex-
plicitly. The matrix representation for the curl on the dual grid
cell is simply the transpose [15].

The FIT technique provides a means to create a discrete ma-
trix equation from the continuum field equations. It offers the
following advantages:

a) The method is readily generalized to a related finite ele-
ment (FE) method.

b) Maxwell’s equations and field variables map to familiar
electrical circuit quantities.

c) Differential operators translate to very sparse matrices,
having only element values, 0 and , that are fast to
compute.

d) The structured grid permits fast matrix-vector products.
e) All differential operator identities are satisfied.
f) The coordinate metric is incorporated with material pa-

rameters.
g) Symmetries in the original equations are retained.
2) Treatment of Materials:Materials are treated through the

inductance and capacitance tensors, described above. These ten-
sors include all of the geometry and materials data for each cell,
and for orthogonal grids, the discrete diagonal matrix elements
are defined as integrals over the relevant tensor component

where integration is over the face and edge, respectively,and
, of the logical dual grid at the location of the corresponding

field element , having direction . Each integral is calculated
by numerical integration, summing contributions from each ad-
jacent cell.

Maxwell’s equations and the constitutive relations then carry
over to circuit equations

curl

curl

and

where quantities on the dual grid have been denoted by “.”
3) Matrix Formulation: The linear eigenvalue operator

equation

curl curl

is implemented in CTLSS as the matrix equation

The matrix size, , where , can be enor-
mous in 3-D problems. Typically, is – , but the ma-
trices are usually sparse, requiring storage of elements.

CTLSS solves the matrix equation iteratively, using an operator
function to compute the differential operator matrix elements
“on the fly,” as needed. It does not store the matrix explicitly.
Where possible, matrix symmetry can be employed to reduce
the calculations by half.

This matrix equation takes the form of a generalized matrix
eigenvalue problem

Several distinct classes of problems emerge as follows.

a) Without Ohmic losses, and using only electric-wall, mag-
netic-wall, or Floquet BC’s, the problem is Hermitian;
i.e., and . In this case, the eigenvalues
are real and the eigenvectors are orthogonal.

b) With Ohmic losses, and using only electric-wall, mag-
netic-wall, or simple periodic BC’s, the problem is com-
plex symmetric; i.e., and . In this case,
the eigenvalues are complex and the eigenvectors are lin-
early dependent.

c) With both Ohmic losses and Floquet BC’s, the problem is
both non-Hermitian and nonsymmetric.

The eigenvalue problem has the troublesome property that it
admits static solutions, havingcurl-free eigenvectors and zero
eigenvalue, . Such solutions must be carefully avoided or
eliminated. CTLSS avoids static solutions by forcing the solver
to seek solutions within a prescribed frequency band. Other
codes employ a “penalty function” to constrain the operator
away from zero-curl solutions.

4) Treatment of Simple Boundary Conditions:A particular
problem is completely defined by the material parameters over a
domain, the domain shape, and the field boundary conditions at
the domain boundary. The solution is then obtained in some co-
ordinate system, either orthogonal (e.g., Cartesian, cylindrical,
etc.) or nonorthogonal (having a nondiagonal metric).

At present, the CTLSS model for orthogonal coordinates in-
cludes the most commonly used, and useful, boundary condi-
tions, as follows.

a) Electric wall (or metal wall)

Electric fields on the boundary of a metallic cell are set to
zero.

b) Magnetic wall (or symmetry)

This is the natural boundary condition, and it requires that
the capacitance and inductance integrals be restricted to
the solution domain.

c) Floquet (or periodic with phase advance)

Electric fields at one face of the solution domain are set
to equal those at the opposite face, scaled by the complex
exponential phase factor.

5) Perfectly Matched Layer (PML):For an outgoing wave
boundary condition, CTLSS implements a PML [17]. In this
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model, the boundary surface is extended to a volumetric layer
containing an artificial absorbing material having a particular
inhomogeneous distribution of anisotropic material parameters.
The parameters are chosen such that the transition for an inci-
dent wave is well matched and waves are almost perfectly ab-
sorbed over a wide range of frequencies and incident angles. Our
implementation is related to the stretched coordinate formula-
tion of that method [18], [19], but it is derived by a generalized
metric tensor. This technique derives from the complex-coordi-
nate method [20] usingexterior scaling[21], [22], extended to
apply to vector fields in three dimensions.

The complex-coordinate method expresses a set of differen-
tial equations over a domain in which the coordinates are not
constrained to be real valued, but may follow a continuous tra-
jectory in the complex plane. The solution of the equations may
be found on this domain, and related to the solution over the real
domain by analytic continuation. Typically, the complex-coor-
dinate trajectories are chosen to follow the real axis over most
of the solution volume of interest, but they deviate increasingly
once outside of this region. Such a domain may be open, in the
sense that the complex-coordinate trajectory is infinite in extent,
but for numerical computation, it will be terminated at a finite
distance.

The differential equations take their usual form where the
coordinates are real, and they are therefore modified only in
the bounding region, such that they represent a modified volu-
metric boundary condition. The effective properties of this com-
plex-coordinate boundary region are such that a propagating
wave gradually transforms into an exponentially decaying wave.
Therefore, if the numerical grid extends sufficiently far into the
complex-coordinate region, the outgoing wave will effectively
vanish, and termination of the numerical grid will have no sig-
nificant influence on the solution in the region of interest. It
therefore acts as an effective outgoing wave boundary condi-
tion.

In our implementation, the components of the metric tensor
are derived assuming only that the mapping from the logical co-
ordinates to the global coordinates is to the complex-coordinate
system. PML regions correspond to zones where one or more
coordinates have a nonzero imaginary component. This gives
us a uniform treatment that allows us to include the PML into
the complex capacitance and inductance matrices without mod-
ifying the actual material properties. Properties such as loss or
anisotropy are therefore carried over directly into our PML for-
mulation automatically without additional consideration.

III. L ARGE-SIGNAL THEORY FORMULATION

A full 3-D treatment of the beam-wave interaction is essential
if we need to compute quantities like circuit interception current
or transverse beam exit distributions that are unavailable from a
1-D code for linear beam tubes. The CTLSS code will be able
to analyze the 3-D interactions of an electron beam with an ar-
bitrary surrounding structure. In order to do so, the code must
take into account three distinct types of fields when computing
the motion of the beam and the evolution of the RF signals of
interest. These are 1) the externally applied focusing field, 2)
the structure field, and 3) the space charge field.

The focusing field is generally a DC magnetic field pro-
duced by coils or permanent magnets positioned near the
beam. 1-D treatments of beam-wave interactions assume that
the transverse focusing strength of these fields is so large
that transverse beam motion may be neglected. Such codes,
therefore, do not need any quantitative information about the
focusing fields—they are assumed to be “infinitely strong.”
Full 3-D codes, like CTLSS, however, must import some
representation of the actual fields, generally from another code
like POISSON/PANDIRA [23], [47], MAXWELL (product of
Ansoft Corporation), mPPM [24], or lesPPM [25]. Below, we
will assume that these fields are available in some form to the
simulation and we will not say much more about them.

The structure fields are produced by charges moving on the
surfaces of the metallic structure surrounding the beam. These
fields are solutions to Maxwell’s equations in vacuum, with the
appropriate boundary conditions on the surface of the circuit.
There are two basic types of structure used in linear beam tubes.
One is a traveling-wave structure, composed of a series of many,
nearly identical unit cells, as in TWT’s or backward wave os-
cillators. The other is composed of a series of a small number
of generally nonidentical resonant cavities that do not share en-
ergy, except as carried by the beam, as in klystrons.

The large-signal model currently linked to CTLSS is the
CHRISTINE code [10], a 1-D large-signal code for helix
TWT’s. CHRISTINE 3-D is an extension of CHRISTINE to
handle 3-D helix TWT configurations, and it will be linked to
CTLSS in the near future. A generalization of CHRISTINE
3-D to handle devices other than helix TWT’s is “future
development” work. The large signal algorithm in CTLSS will
be designed initially to treat the interactions of an electron
beam with traveling waves supported by a periodic, slow-wave
structure. The interaction may be with either forward or
backward waves, as described below.

Traveling waves are characterized by their dispersion rela-
tion (relation between frequency and wavelength) and by their
interaction impedance (field strength per unit power). In one di-
mension, when the only structure field of interest is the longi-
tudinal electric field, it suffices to specify only phase velocity
and interaction impedance for each signal frequency. In three
dimensions, as we shall see, when all components of both the
RF electric and magnetic fields must be included, additional in-
formation is required to compute the full set of structure fields
in the interaction region.

The space charge fields, produced by the neighboring charges
in the beam, are generally the most difficult to treat, because
the full set of Maxwell’s equations must be solved, using the
beam current and charge density as the source terms, subject to
suitable boundary conditions on the circuit surface. Care must
be taken not to double count the structure fields, whose strength
is also proportional to beam current, when computing the space
charge fields.

The large signal algorithm under development for CTLSS is
a generalization of the one used in the 3-D helix TWT code,
CHRISTINE 3-D, which uses analytical models for the sheath
and tape [26] helix. CHRISTINE 3-D is, and CTLSS will ini-
tially be, a multifrequency, steady-state code, in which all quan-
tities are assumed to oscillate at a set of specified, real-valued
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signal frequencies. These frequencies must all be integer mul-
tiples of some lowest frequency, in order that certain time av-
erages may be calculated. There is no other explicit time de-
pendence, however. All quantities, including particle location
(phase) and momentum and field amplitudes and phases, are in-
tegrated along the direction of beam propagation. The full set of
equations governing the evolution of the particles and the fields
is derived below.

A. The Structure Fields and Their Evolution

We consider the waves supported by an arbitrary periodic
structure composed of metal and dielectric. As in [10], hereafter
referred to as A-L, where the analysis is specialized to a helix
circuit, the solutions to Maxwell’s equations may be written in
the generalized Floquet form

c.c. (1)

c.c. (2)

where and are the electric and magnetic
fields and and are dimensionless solutions to
Maxwell’s equations for frequency and propagation constant

. We will take to be real; circuit attenuation will be
accounted for separately; see below. To allow for slow axial
variation (tapering) of the slow-wave structure, the propagation
constant is taken to vary slowly with axial distance. The
functions and are periodic with the local structure
period; these are obtained from the solutions by the CTLSS
cold test module. is the field amplitude; it has units of
vector potential (gauss-cm). In the presence of the beam it too
will be taken to vary slowly with . The sums in (1) and (2)
are over a discrete set of real frequencies, all of which are
assumed to be integer multiples of a lowest frequency. CGS
units are used.

For a specified frequency, which we take to be a positive
real number, is determined by the CTLSS code test module.
If is a root of the dispersion relation, so are ,
where is the wavenumber corresponding to the
structure period and is any integer. Without loss of gener-
ality, we take .

According to common convention, all periodic structures are
classified as either forward wave or backward wave, according
to whether the slope of the relation in the region

is positive or negative, respectively. Examples are
shown in Figs. 2 and 3. In each case, spatial harmonics with
positive group velocity (energy flow in the direction) are
shown as solid lines and spatial harmonics with negative group
velocity are shown as dashed lines. A signal injected at
and propagated toward a load at has positive group
velocity by this definition; it is composed of a superposition of
all spatial harmonics shown as solid lines in Fig. 2. If we always
define the direction of beam propagation to be, in forward

Fig. 2. Dispersion relation for a forward wave structure.

Fig. 3. Dispersion relation for a backward wave structure.

wave structures, the group velocity of the injected signal must
also be in the direction and in backward wave structures,
the group velocity must be in the direction. Note that if in a
forward wave structure the injected signal is partially reflected
from a circuit termination or imperfection, the reflected wave
will have negative group velocity; a spatial harmonic of the re-
flected wave (dashed lines of Fig. 2) may also interact with the
beam.

The power flowing along the structure may be obtained by
substituting (1) and (2) into the expression for the Poynting flux.
The result is

(3)

where the normalized wave amplitude has been defined as

(4)

and

ergs/s

W (5)

An effective area of the mode has been defined in (4) as

(6)

The integral in (6) is over the entire plane transverse to the
-axis. In (4) and (5), are are the electron charge and mass,

and is the speed of light in vacuum. In the following, we will
drop the subscript .

If we consider the fields within an imaginary cylinder
centered on the -axis, but not intersecting any part of the
slow-wave structure (See Fig. 4), the functional forms of
and may be simply expressed in cylindrical coordinates.
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Fig. 4. Equations (7a) and (b) hold in cylindrical region bounded by the “simulation boundary,” the cylinder of largest radius that does not intersectthe structure.

In particular, if we write the -components of the normalized
fields as

(7a)

(7b)

where is the wavenumber corresponding to the
structure period, , then the transverse components follow
from Maxwell’s equations:

(8a)

(8b)

(8c)

(8d)

where

(9)

and the radial propagation factor is defined by

(10)

The axial components of the fields have simple representations
in any region containing the origin. These are

(11a)

(11b)

where and are constants and is the modified
Bessel function of order . may be expressed by the inter-
action impedance of the mode defined at some reference radius

, defined as

(12)

still in CGS units. The extra factor of 2 in the numerator is from
the definition of the fields as a sum of a quantity and its complex
conjugate in (1) and (2). It follows that

(13)

These impedances are simply calculated by the CTLSS code test
module. Once it is known, the axial normalized electric field

is known for all , using (11a).
In order to obtain the transverse fields from (8d), for use in

the 3-D equations of motion, it is necessary to know the axial
magnetic field as well. To this end, it is convenient to define a
quantity analogous to for the magnetic field

(14)

where we have introduced the factor to give the
dimensions of admittance. The may also be simply calcu-
lated by the CTLSS code test module. It follows that

(15)

which, with (1), (7), (8), (12)–(14), give the structure fields ev-
erywhere in the beam.

It remains only to find the equation governing the evolution of
the normalized mode amplitude as the wave interacts with
the beam. The development of this equation follows the standard
derivation of Poynting’s theorem, as shown in A-L. The general
result is

(16)

where is the attenuation per unit length, is the Alfven
current , is the beam current density, and the
angular brackets denote averages over the temporal period of
the radiation and the spatial period of the structure.
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We now write the current density as a sum over particles (in-
stead of a sum over disks, as in A-L),

(17)

where is the charge, is the position
at time , and is the velocity of particle at time . Substi-
tuting (17) into (16) and performing the integrals over and
gives, for the right hand side of (16)

(18)

where the sum is now over all particles that enter during an RF
period, , is the current associated with “beamlet”

, and all particle positions and velocities are now functions of
; is the arrival time of particle at . In order to perform

the remaining average in, over a structure period , we ex-
pand the electric field as in (7), to obtain

(19)

If we assume that the transverse particle position and velocity
do not change much within a structure period, the only term in
the sum over in (19) that will survive the averaging process
over is a term for which

(20)

for some value of . This clearly means just that the beam is
synchronous with theth spatial harmonic of the wave. Linear
beam tubes are generally designed to satisfy (20) for or
1, because the interaction impedance typically decreases
with increasing values of .

We denote the index of the synchronous spatial harmonic as
and write

(21)

We define two slowly varying functions , and

(22)

(23)

Note that the quantity is the same for all particles. It may
therefore be computed and stored at initialization time and used

as the simulation proceeds. The final result for the field equation
is written as

(24)

The equations of motion that are integrated together with the
field equation are most simply expressed, and numerically inte-
grated, in Cartesian coordinates

(25)

(26)

Equations (24)–(26) are a complete description of the steady-
state, large-signal model for arbitrary traveling-wave structures,
once the space charge fields are included in (25).

B. The Space Charge Field of an Arbitrary Current

To compute the space charge field of an arbitrary beam cur-
rent flowing in an arbitrary periodic structure, we have gener-
alized the approach used in A-L for a uniform beam traveling
in the interior of a helix. The total fields from an arbitrary, spa-
tially periodic current are shown to consist of a pole term, which
is identified as the structure field treated in the previous section,
and a remainder, which is identified as the space charge field.
A similar technique was used by Pierce [27], in one dimension,
for the special case of a helix.

The calculation proceeds by computing the response of the
structure to a current of the form

c.c. (27)

where here is not the solution of the cold structure dispersion
relation, but it is arbitrary. The electric and magnetic fields are
similarly represented

c.c. (28a)

c.c. (28b)

where , , and are periodic in with the structure period.
Inside the simulation boundary (Fig. 4), we write the fields as a
sum of a particular and a homogeneous solution to Maxwell’s
equations

(29a)

(29b)

where we will choose the particular solution to satisfy the con-
dition that the tangential components of on the (cylin-
drical) simulation boundary. This boundary condition is easily
implemented in a tridiagonal solver and the particular solution
is therefore easily obtained numerically. In order to obtain the
homogeneous solution, we proceed as follows.
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We first expand the homogeneous solution in a complete set
of cold structure modes

(30a)

(30b)

where is the amplitude of mode . Manipulation of
Maxwell’s equations then gives

(31)

where the integral on the left side of (31) is over the volume of
the simulation region and the integral on the right side is over its
surface. In (31) and are any solutions to Maxwell’s equa-
tions; is the unit outward normal to the surface of the simula-
tion region. If we take and to be the particular solution, the

term on the right-hand side of (31) drops out and we have the
important relation

(32)

Next, we consider the fields in the region outside the simula-
tion boundary, in the region of the slow-wave circuit. The fields
in this region are complicated and must generally be solved for
using the CTLSS cold-test solver, but when they are evaluated
on the simulation boundary, the tangential components must
obey a relation of the form

(33)

where the integral is over the surface of the simulation boundary
of area and is an admittance matrix that may be calcu-
lated by the cold-test module. contains information about the
structure. Because the tangential fields must be continuous on
the simulation boundary, we may use the fields from inside the
simulation region, evaluated on the boundary, in (33). Writing
the tangential field components as sums of particular and homo-
geneous parts, as in (29), expanding the homogeneous solutions
as in (30), and operating on both sides of (33) with the operator

(34)

gives an equation for the mode amplitudes

(35)

where the matrix is given by

(36)

Note that involves only quantities that may be determined by
the cold-test module. Once is found, the total electric field is
given by

(37)

This field contains both the structure field and the space charge
field. In order to isolate the space charge field (we already
treated the structure field in Section III-A, above), we must find
a way to subtract out the structure field. To do this, we first note
that if we substitute the current (27) in (16) and solve for the
structure field amplitude, the resulting expression has a pole as
a function of , for the cold structure propagation
constant. This suggests that if we can isolate the singular part of
(37) as a function of , the remaining (i.e., nonsingular) part
is the space charge field we are after. Note that the particular
solution has no singular part, because from its definition, it
must vanish as the beam current tends to zero; this means that

cannot be supported by the structure alone.
It follows from (35) that the dispersion relation for the cold

structure may be written as . Considered
as a function of , therefore, must become singular when

. If is close to , this fact may be used to obtain
an approximate expression for . To do so, we rewrite (35)
as

(38)

To solve (35) for the amplitudes , we expand around the cold
structure solution

(39)

where is the cold structure eigenfunction andis a coeffi-
cient to be determined. Substituting in (38) and expanding the
matrix , we obtain to first order in

(40)

where we have used

(41)

It follows that

(42)

and

(43)
where is finite (no pole) as . In practice,
the space charge field may be obtained by evaluating (37) for
(at least) two values of and calculating a best fit to the func-
tional form obtained by substituting (43) into (37). The finite
(nonpole) part is then the required space charge field.

IV. DRIVEN-FREQUENCYELECTROMAGNETICSOLVER

The CTLSS driven-frequency solver provides a natural means
of connecting electromagnetic and large-signal models, where
the driving frequency is specified. The solver handles electro-
magnetic problems in which a driving sinusoidal current source
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excites fields in a cavity. The source may be an electron beam,
coupling antenna, or waveguide port. In each case, the method
of solution for the discretized problem is identical. If the solver
is driven with an axial current source at a fixed frequency and
axial wavenumber, it can be embedded in an exterior iterative
solver to extract the resonant axial wavenumber associated with
the specified driven frequency.

A. Solution of the Driven Frequency Problem

The driven-frequency problem implemented by CTLSS
solves the discrete form of the linear field equation

curl curl

given a frequency and source current distribution that in-
cludes boundary current sources such as develop in the imple-
mentation of waveguide ports. The discrete form of this operator
equation is a matrix equation of the standard form

where represents the matrix form of the operator,is pro-
portional to the known discretized source current vector, and
is the unknown discretized electric field (voltage) vector to be
solved. The operator matrix is not stored explicitly, but its action
is implemented via a sequence of functions that may be applied
to a given field vector, and that satisfy the requirements of lin-
earity and symmetry that the equivalent matrix would possess.
Methods of linear algebraic analysis are therefore equally appli-
cable, and matrix methods may be applied.

Numerous methods and algorithms are available for the solu-
tion of large, sparse, linear systems, including both direct [28]
and iterative [29] solution methods. For our operator, where only
the action of the matrix on a field vector is available, iterative
algorithms are the most appropriate.

B. CTLSS Matrix Properties

The properties of the matrix operator that develops in the
frequency domain formulation are determined by the physical
properties of the problem. There are four significant cases, as
follows.

1) If there are no losses, and if any periodic boundaries have
phase advances of 0or 180 , the matrix that results is
purely real and symmetric and, therefore, Hermitian. The
eigenvalues are all real and nonnegative, so that the matrix
is positive semidefinite.

2) If there are no losses, but periodic boundaries exist with
arbitrary phase advance angles, elements of the matrix at
the periodic boundaries become complex. Provided that
the elements are correctly scaled, however, the matrix is
still Hermitian and positive semidefinite.

3) If there are losses, and if all periodic boundaries have
phase advance angles of 0or 180 , the matrix is complex
symmetric. The eigenvalues are no longer real, though for
small losses, they lie close to the positive real axis.

4) If there are both losses and periodic boundaries having
arbitrary phase advance, the resulting matrix has no useful
symmetry.

C. QMR—Iterative Matrix Inversion

To solve the system of linear equations, we use the QMR
method [5], [30]. This method has some particularly attractive
properties for our purpose—it converges almost monoton-
ically even when the matrix is non-Hermitian, yet requires
only a small number of workspace vectors. Non-Hermitian
matrices frequently cause iterative methods to fail altogether
or to diverge periodically from the solution as search vectors
become linearly dependent and near-singularities occur in the
iterative procedure. The small set of working vectors makes
this algorithm attractive in comparison to robust methods, such
as GMRES [31], which typically require that a significant size
of subspace must be stored.

Advantage may be taken of the matrix symmetry when per-
forming the iterative solution. If the matrix is either Hermitian
or symmetric, the computation required at each iteration may be
significantly reduced, as pairs of workspace vectors used in the
computation become either equal or related by simple complex
conjugation of the elements.

When there is no matrix symmetry [(case 4) above], the
standard QMR method requires that the transpose of the matrix
is available. In CTLSS, the transpose operator may be obtained
from the original operator by only a change of sign of the
phase advance angles at the Floquet boundaries. Alternatively,
it is possible to use a transpose-free variant of the algorithm,
TFQMR [32]; however, this algorithm exhibits poorer conver-
gence properties than does the standard QMR algorithm. In
each case, convergence of the algorithm is determined based
on a relative error defined as the ratio of the Euclidean norms
of the residual error and source vectors

where and are the field solution and source current vectors,
respectively. The target convergence tolerance is set as a user-
defined input parameter.

D. Example

Fig. 5 shows a driven-frequency solution of a simple problem
geometry that has a wedge of lossy dielectric material ,

) in the closed end of a rectangular WR10 wave-
guide, in cross section. A PML boundary region
is introduced to attenuate outgoing waves before they reach the
end of the solution domain. The driving source is a current sheet
that couples selectively to the TE-mode of the waveguide at a
frequency of 68.4 GHz, producing both forward and backward
propagating waves inside the waveguide. The forward waves are
incident on the wedge and (partially) reflected back to the PML,
whereas the backward waves are absorbed directly by the PML
region. The problem was discretised on a cell
uniformly spaced grid, with 201 600 complex unknown field
values. Convergence to a residual error took just over
2 h on a 400 MHz Pentium II PC. The reflection coefficient
was calculated to be dB, which compares well with a cal-
culation from the HFSS code (Ansoft Corporation) of16.9 dB.
The PML layer was implemented with a thickness of ten cells,
and the observed reflection coefficient was57.6 dB.
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Fig. 5. Contours of electric field energy density inside a rectangular waveguide, terminated by a wedge of lossy dielectric and excited by a TEplanar current
source at the position shown. The right-hand end of the solution domain represents a PML region for the outgoing wave boundary condition.

The intensity distribution inside the waveguide and dielectric
regions is apparent in the figure. Field concentrations are visible
at the apex of the wedge, where strong coupling leads to high
absorption in “hotspots” localized at the sides of the waveguide.
Standing waves are observed both vertically in the dielectric and
axially in the waveguide. The wave is also clearly attenuated in-
side the PML region well before the end of the solution domain,
as suggested by the low observed PML reflection coefficient.
The combination of the mode-selective current source and PML
layer therefore provides an effective waveguide port boundary
condition.

V. RESONANT ELECTROMAGNETIC MODE SOLVER

The resonant eigenmode solver in CTLSS was developed to
address the specific requirements encountered in modeling com-
plex electromagnetic structures. The particular issues relating to
our discretized operator are the following:

1) Problem size—each numerical field vector may hold
– complex elements.

2) Complex eigenvalues—lossy materials lead to non-Her-
mitian operators.

3) Zero eigenvalues—the operator has a large null-space that
is not of interest to the present computation.

4) Conditioning—the matrix may have a large condition
number originating from the presence of cells that are
small compared with the total computational volume.
This typically leads to poor convergence of iterative
numerical methods.

Large problem sizes make necessary the use of algorithms
with a low workspace overhead, whereas the distribution of the
eigenvalues requires that an algorithm is very selective to ob-
tain only the desired solutions. The specific features of the algo-
rithms used and their development are described in this section.

A. Numerical Methods

To obtain the modes of the discretized eigenvalue equa-
tion, we choose to use a purely iterative algorithm, so that
the matrix need not be expressed or manipulated explicitly.

Iterative methods for the solution of large linear generalized
eigenvalue problems fall into a number of categories, including
inverse power iteration methods (e.g., inverse power iteration,
Rayleigh quotient iteration) and subspace iteration methods
(e.g., Arnoldi, Davidson, Jacobi–Davidson, and Lanczos),
with variations possible using spectral transformations. The
effectiveness of each method depends on the nature of the
eigenproblem, particularly the location of the eigenvalues that
are to be determined with respect to the overall eigenvalue
distribution. With each method, the number of vectors that
must be stored during the solution procedure is critical, and it
may become a major limitation when problem size exceeds of
the order of – complex unknown field values.

Subspace projection methods represent a general class
of methods for the solution of large eigensystems. Such
techniques generate and iteratively refine a vector subspace,
represented by a small set of basis vectors, such that the
converged subspace contains the eigenvectors corresponding
to the eigenvalues of interest. The implicitly restarted Arnoldi
method [33] is an algorithm of this type that has been applied
to many large-scale eigenproblems. It is the basis for the sub-
routine library ARPACK. We chose to implement an algorithm
based on the Jacobi–Davidson procedure [6], without spectral
transformations, which offered many attractive features for
our purpose and enabled us to tailor the implementation to
our specific needs. This algorithm has been applied to large
problems in fields of quantum chemistry, acoustics, and mag-
netohydrodynamics [34].

Although our discrete electromagnetic eigenequation may be
analyzed purely as a matrix eigenequation, without reference
to its physical derivation, it is useful in practice to take advan-
tage of our knowledge of the structure imposed on the matrix
because of its physical origin. This knowledge may be used to
accelerate convergence through use of different levels of dis-
cretization. Initial solution estimates may be made on coarse
grids and used as the starting point of refined estimates. This
can significantly improve the algorithm convergence, particu-
larly for fine meshes. In the following sections, the simple ma-
trix eigenproblem is detailed, and then specific adaptations to
accelerate our particular problem are outlined.
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B. Formulation of the Eigenvalue Problem

The most general type of eigenproblem that we must solve
is the complex, nonsymmetric, generalized eigenproblem. To
obtain a convergent iterative algorithm for obtaining solutions
to this type of matrix problem requires a careful analysis of the
properties of the eigenequation [35].

1) Nonsymmetric Generalized Eigenproblems:The gener-
alized eigenvalue equation takes the standard form

For the general case when eitheror may be non-Hermitian,
it is necessary to consider the associated eigenvalue equation

for the left-hand eigenvectors. The eigenvalues of this
system are identical to those of the right-hand system, and
corresponding right- and left-hand eigenvectors satisfy a
bi-orthogonality relation

If degenerate solutions exist, the associated invariant sub-
spaces may be represented by sets of vectors that span that sub-
space, chosen such that they satisfy the above relation.

To solve non-Hermitian eigenvalue problems, it is useful to
consider the right- and left-hand sides of the matrix eigenfor-
mulation equally. This has been suggested in connection with
the original Davidson method for use with nonnormal matrices
[40], whereas a generalized Lanczos solver for nonsymmetric
systems was introduced by Cullumet al. [36] using a two-sided
approach to represent the left and right eigenvector solutions.

2) Subspace Projection Methods:The Jacobi–Davidson
method makes use of subspace projection to obtain estimates
of a few eigenvalues of a large matrix eigenproblem. Here, we
summarize this procedure, taking into account the two-sided
nature of the nonsymmetric eigenproblem.

Any small, -dimensional subspace of the full solution space
may be represented by a set ofbasis vectors in that space.
Each vector corresponds to a discretized electric field and may
be stored numerically as a column vector of coefficients. A
subspace may be represented by a matrix composed ofsuch
columns, so that right and left subspaces,and , respec-
tively, may be written as

Using a Ritz–Galerkin procedure, we may obtain an estimate
of the eigensolution projected on these subspaces. Assuming
right-hand eigenvector estimates are constrained to lie
within , and left-hand eigenvector estimates in , we
may write

where vectors and of length are to be determined.
We can express the right and left residual error vectors for the
eigenequation

and require that the projection of this error onto the other sub-
space is zero

This is equivalent to the projected pair of right and left
eigenequations

having right and left solution vectors and , respectively,
where the small projected matrix operators are defined as

By obtaining solution eigenvectors to the projected eigen-
problem using a solver for dense matrices, we may obtain
their representations in the full solution space and
corresponding to each value , termed the right and left Ritz
vectors and Ritz value, respectively. The dense, generalized
eigensolver routine used to solve the projected eigenproblem
was taken from the LAPACK library [37].

The subspace projection step forms part of the nonsymmetric
Jacobi–Davidson algorithm [38]. The other main component
is the modification of the subspacesand to ensure their
convergence to subspaces that contain the solution eigenvectors
of interest. The Hermitian and complex-symmetric cases may
be recovered straightforwardly from the nonsymmetric case by
fixing or , respectively, in the following de-
scription.

C. Jacobi–Davidson Method

The Jacobi–Davidson algorithm is depicted in Fig. 6. As de-
scribed by Sleijpenet al. [6], a single subspace is used to span
the subspace of right eigenvectors, and either the same subspace
or one derived from it is used for the left-subspace projection. A
theory for the generalized eigenproblem using a single subspace
is outlined by Bootenet al.[34]. Here, we describe the algorithm
for the general, nonsymmetric case using two subspaces and a
combined subspace refinement procedure.

Beginning with an initial seed subspace, or pair of subspaces
for the nonsymmetric case, iterations of the outer loop modify
the subspaces by first estimating eigensolutions by subspace
projection, and then selectively applying an orthogonal correc-
tion procedure to correct or extend the subspaces. The correc-
tion step is related to that of the block Galerkin inverse iteration
(BGII) method [39], but the correction vectors are determined
only approximately, and they are used to extend the subspaces,
as in the Davidson method [8], [40], to promote an improved
solution estimate at the next iteration.
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Fig. 6. Flow diagram of the Jacobi–Davidson algorithm.

To limit the maximum subspace size that must be stored, this
procedure is typically restarted after some fixed number of it-
erations, at which time the subspace is contracted to include
only a few of the solution estimates that lie closest to the de-
sired eigensolutions. The process of subspace expansion then
recommences.

In place of this approach, we describe in Section V-D a sub-
space management strategy that minimizes the use of computa-
tional resources. There is no explicit restart step, as the subspace
size is carefully managed at each iteration. A similar procedure
has been suggested for the Arnoldi method [33]. In addition, for
very poorly converged eigenvalues, we use approximate inverse
iteration in place of orthogonal correction to enhance the initial
convergence to the desired frequency range.

The following sections detail the steps of the algorithm.
1) Subspace Convergence:At the beginning of each outer

iteration, the Ritz vectors and residual error vectors are deter-
mined for the current subspaces by subspace projection. The
Ritz vectors represent the best approximation within the sub-
spaces to the eigenvector solutions, whereas the residuals con-
tain information in the full solution space, orthogonal to the cur-
rent subspaces.

To determine convergence of the Ritz vectors to eigenvectors,
we evaluate a measure of the error based on the Euclidean norm
of the residual vector. We define the normalized convergence
parameter for each Ritz vector

and compare this value at each iteration of the outer loop with
a specified tolerance, typically, – , perfoming cor-
rection steps only on remaining unconverged vectors, so that all
solutions are finally converged to the same specified level. The
eigenvalue converges at a faster rate, typically, .

To generate new subspace vectors, the Jacobi–Davidson
method searches for a correction vector orthogonal to the
current Ritz vector that reduces the norm of the residual. It is
not necessary to obtain the minimum value, as in any case the
residual is calculated using only the approximate Ritz value.

A moderate improvement is sufficient, and it may be obtained
using a number of iterations of an iterative procedure. As the
Ritz value estimate improves, it becomes increasingly effective
to iterate closer to the optimal correction. In the following
sections, we outline the orthogonal correction step for the
nonsymmetric case.

2) Orthogonal Projection:The right and left eigenvectors
of the solution to the projected eigensystem possess the same
biorthogonality relation as do those of the full eigensystem. For
the simplest case in which eigenvalues are distinct, pairs of non-
degenerate eigensolutions satisfy

From this relation, a similar biorthogonality relation is retained
for the Ritz vectors

and therefore pairs of distinct right and left Ritz-vectors are
biorthogonal with respect to .

To improve each eigenvector estimate, we search for a cor-
rection vector orthogonal to the current Ritz vector that brings
our estimate closer to the solution vector. To implement this step
in the following section, we will require operators that perform
this projection. We define orthogonal projection operators

that project orthogonally to the given Ritz vectors to the right
and left, respectively.

3) Jacobi Orthogonal Component Correction:The Ja-
cobi–Davidson algorithm for a single subspace uses each
right-hand residual vector to generate a new vector that is
orthogonal to the corresponding Ritz vector by obtaining an
approximate solution to a projected linear system of equations.
Typically, this is performed using a few iterations of an iterative
linear solver. Because we are using separate left and right
subspaces, we generate for each Ritz value of interest a pair
of correction vectors and that satisfy a biorthogonality
relationship to the current right and left Ritz vectors. We solve,
approximately, for correction vectors and in the two
independent systems of linear equations

In principle, the search could be made completely orthogonal to
the current subspace, over which the residuals are already op-
timal following the Ritz–Galerkin procedure. This would intro-
duce products of projection operators, computed using a mod-
ified Gram–Schmidt procedure. The single projection step was
found to be sufficient in practice, and further projection only
added unnecessary computation.

Because the above equations contain the same product of op-
erators, they may be solved in a single procedure using an itera-
tive algorithm such as QMR or the biconjugate gradient method.
In our implementation, we used the QMR method, which even
for nonsymmetric matrices reduces the residual error almost
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Fig. 7. Three resolutions of grid representation for a helix TWT structure.

monotonically with only a small set of workspace vectors. Using
to generate the left-hand correction andfor the right-hand

correction, we may use QMR directly to solve both sets of equa-
tions simultaneously.

The convergence of the iterative QMR algorithm is controlled
based on a relative convergence parameter, defined for theth
(inner) iteration,

QMR terminates when either the error criterion is reached,
or if numerical breakdown occurs in the underlying Lanczos
process. The occurrence of premature termination caused by
numerical breakdown is not catastrophic here, because the
resulting approximate solution is adequate for continuation of
the Jacobi–Davidson method, and convergence will be resumed
at the next outer iteration. Therefore, to avoid the additional
storage necessary, no look-ahead procedure [41] is performed.

Ideally, if the update equations are solved exactly, the Ja-
cobi–Davidson method can achieve cubic convergence for sym-
metric matrices (quadratic convergence for the nonsymmetric
case), requiring very few outer iterations. However, a balance
exists between solving the equations to full precision a min-
imal number of times and solving approximately over a greater
number of iterations. Typically, the overall cost was found to
be reduced using approximate solutions, though the eigenvalue
convergence deviates from being cubic (quadratic). In principle,
the rate of convergence of the Jacobi–Davidson algorithm may
be greatly accelerated if a good preconditioner is available to
improve conditioning of the linear solution step [42]. Simple
preconditioning is applied by symmetrically scaling the oper-
ators by the diagonal matrix and solution field vectors
by , which leads, for orthogonal coordinate systems, to a
standard type of eigenproblem. If a more complex precondi-
tioner were available, the preconditioned variant of the QMR
algorithm could be applied.

D. Subspace Update Strategy

To begin, a set of subspace vectors is initialized either ran-
domly, effectively populating all component eigenmodes with
random amplitudes, or from a seed subspace if an approximate
field solution is available. Each pass of the algorithm acts to se-
lectively filter out unwanted frequencies from this initial field.
Because all subsequent vectors are derived systematically from
this initial set by successive application of the operators, the

multiplicity of degenerate solutions that can be determined is
limited by the number of linearly independent initial vectors that
are defined. A single vector is sufficient to seed the solution in
the absence of degeneracy.

At each step, following subspace projection, we first filter the
subspace on the basis of the determined Ritz values by speci-
fying a desired range of eigenvalues (or circle in the complex
plane) or a limit on the number of solutions to be determined.
Ritz vectors having Ritz values outside the target region are se-
lected for removal from the subspace, subject to two restrictions:
1) sufficient vectors are kept to maintain the initial level of linear
independence for degenerate solutions, and 2) an upper limit to
the number kept is set at the number of solutions requested. In
each case, values closest to the center frequency are retained
preferentially, and the subspace vectors are ordered accordingly.

For each remaining Ritz vector, the error termis calculated
and compared with the specified convergence tolerance. Those
that have not yet reached the specified convergence level are
next updated in turn, whereas converged solutions are simply
kept in the subspace. For Ritz values inside the target range,
approximate corrections are obtained using orthogonal projec-
tion with QMR, as for the original Jacobi–Davidson algorithm,
using the Ritz value as the shift in the operator. The default
target for convergence is , a value selected to minimize
the overall convergence time. The resulting correction vector is
used to extend the subspace, though the number of extensions
in any iteration is limited to typically one or two vectors to min-
imize memory usage. Remaining corrections, and in particular
corrections for well-converged solutions having residual errors

, are added to the corresponding Ritz vectors di-
rectly, as in the BGII method [40]. It is observed that for mod-
erately well converged vectors, the errorin the next iteration
is smaller by a factor .

Ritz values outside the target range are updated using approx-
imate inverse iteration, with the center frequency of the target
range as the shift in the operator. The approximate solution re-
places the Ritz vector in the subspace. This acts to enhance
the components of the desired eigenvectors before reasonable
eigenvalue approximations are available. A target convergence

– is found to be effective.
The above procedure maximizes the retention of informa-

tion in a subspace that is only a few vectors larger than is the
number of solutions sought. The update steps, the most compu-
tationally intensive phase of the solution, provide an inherent
coarse-grained parallelism. In principle, each update may be
performed independently.
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Fig. 8. View of klystron simulation region (1/16th of cavity), showing electric
field vectors (arrows) and contours of electric energy density, spaced at 2%
intervals, visible in the ceramic load and gap regions. Mode frequency 3.097
GHz,Q = 40:7.

TABLE I
CALCULATED EIGENFREQUENCY VERSUS. PHASE ADVANCE PERCELL (IN

DEGREES) FOR A COUPLED-CAVITY TWT CIRCUIT

E. Multilevel Solution

When the problem size increases, the condition number of
the matrix becomes very large, and iterative methods converge
very slowly. Multigrid solutions are applicable to this type
of problem and take advantage of the known structure of the
physical problem. Integration of full multigrid (FMG) with the
CTLSS eigensolver has not yet been performed; however, a
hierarchy of grids is used in the solution of the eigenproblem.

Once the problem has been defined on the finest level of grid,
an averaging procedure is applied to the capacitance and induc-
tance terms to generate a related problem having half the number
of cells in each dimension. The number of field values is thereby
reduced by a factor of eight for a 3-D problem, and the solution
at the coarser level is much faster than is the full solution. A so-

Fig. 9. Vaned TWT circuit. Metallic vanes strongly couple to the operating
mode. Parameters are selected to achieve a flat dispersion curve.

Fig. 10. Mode dispersion and coupling impedance for a vaned helix-TWT
circuit (data courtesy of Northrop Grumman).

lution subspace obtained at this level is interpolated to the finer
grid as an initial subspace for the larger problem. By this proce-
dure, much of the effort required to approach the desired solu-
tion at the finest grid is circumvented. At the finest level, only
a few refinement steps are necessary. This method was found to
be very effective, and typically, two levels of approximation are
applied to further accelerate the process.

Fig. 7 shows an example of three successive levels of solution
for helix TWT geometry at high resolution. During the CTLSS
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Fig. 11. CTLSS modules.

validation phase of the program, the multigridding function was
evaluated and determined to provide significant reduction in ex-
ecution times over systems that did not use the multigridding
function. For a case that employed the optimum gridding for
helix TWT geometry, providing the best balance between solu-
tion accuracy and execution times, two levels of multigridding
were used on a grid, and resulted in a reduction in
run times of approximately . In this case, nearly identical
eigenfrequencies were computed with and without the multi-
gridding function, whereas execution times were reduced from
4.9 h to 2.0 h. Larger simulations, such as the one depicted in
Fig. 7, would benefit even more from use of this function.

F. Examples

To illustrate the present capabilities of the CTLSS code, we
present a number of examples taken from real devices.

1) Example 1: Klystron Cavity:A klystron cavity, depicted
in Fig. 1, was modeled using a cylindrical coordinate mesh, with
nonuniform spacing of cells. The cavity consists of a cylindrical
pill-box, with coaxial, cutoff cylindrical waveguides protruding
into the volume and having the noses radiused and separated
by a small gap. Eight absorbing ceramic buttons surround each
waveguide on the flat end-walls of the pill-box to control the
cavity .

Using a combination of symmetry and metal wall boundary
conditions, solving only 1/16th of the cavity was sufficient to
determine the lowest, TM -mode. This sector was discretized
using a cell mesh, having 371 712 complex un-
known field values. Convergence of the eigenmode solution to
a residual error took 6 h on a 600-MHz Pentium II
PC. The eigenfrequency of 3.097 GHz andof 40.7 agree well
with experimentally determined values, 3.140 GHz, ,
given the estimated uncertainty in the ceramic dielectric con-
stant of 5%. The long run-time for this example may be at-
tributed to the large dielectric constant, , and high

loss, , of the ceramic load used in the simulation
that leads to poor conditioning of the problem.

The TM -mode of the cavity is shown in Fig. 8. The electric
field is concentrated across the gap region, whereas a significant
energy density inside the ceramic buttons causes strong absorp-
tion, leading to the low observed.

2) Example 2: Coupled Cavity TWT:A section of a coupled
cavity TWT circuit is also shown in Fig. 1. The structure of
this device is periodic, with the unit cell shown. Approximating
the finite circuit structure by an infinite structure, its dispersion
characteristics may be obtained by applying a Floquet boundary
condition parameterized by the phase advance angle [43]. In this
case, the full unit-cell structure was modeled to obtain all types
of mode symmetry. It would be possible to reduce the computa-
tion time significantly by applying either electric-wall or mag-
netic-wall boundary conditions at the two planes of reflection
symmetry that exist.

The simulation was performed on a cell mesh
(491 520 complex unknowns). Convergence of all four eigen-
modes to a residual error took 40 min per phase
angle, on a 400-MHz Pentium II PC.

Table I shows the frequency dispersion of each of the first four
modes, determined by CTLSS. Modes 3 and 4 are degenerate.

3) Example 3: Helix TWT Circuit, with Vanes:To control
the dispersion properties of a helix traveling wave interaction
circuit, metallic vanes are introduced as coatings on the dielec-
tric supports as shown in Fig. 9. A careful choice of dimensions
allows an almost constant phase velocity to be achieved over a
very wide frequency band.

Using CTLSS, the dispersion characteristics were obtained
using a mesh with cells, in a cylindrical geometry.
The structure is doubly periodic, in the azimuthal and axial co-
ordinates. Using a Floquet boundary condition axially, the dis-
persion was calculated for the vaned circuit, as shown in Fig. 10.
The effect of the vanes is in flattening the wave phase velocity,
and the flatness predicted by CTLSS agrees very well with the
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Fig. 12. CTLSS templates.

experimental data. The CHRISTINE dispersion curves are cal-
culated from the semianalytic sheath and tape helix models,
using an arbitrary effective permittivity parameter chosen to fit
to an average of experimentally determined values.

Comparisons between CTLSS and measured phase velocity
data were obtained for an unvaned circuit and three separate
vaned circuits. The grid size used in Fig. 10 was ,
though a case with also showed good convergence.
The azimuthal cell size was reduced significantly at the sides of
the rod to properly resolve the thin vanes. The agreement for
phase velocity with experimental data is good (note the com-
pressed range on the-axis). The agreement with the CHRIS-
TINE codes (for the sheath helix and, more accurate, tape helix
models) is also very good, provided that the “effective” dielec-
tric constant in CHRISTINE is adjusted as indicated.

Fig. 10 also shows the coupling impedance obtained for this
structure from the calculated field, which describes the inte-
grated coupling to the RF electric field experienced by electrons
passing along the axis. The effect of the vanes is to reduce the
coupling impedance slightly, but to permit interaction across a
very wide bandwidth. The calculated impedance across the fre-

quency range with a tape helix shows a large impedance drop
at the high end of the band, confirmed by the CTLSS data. The
cause of this impedance drop is still not resolved, and measure-
ments on cold-test circuits are in progress to try to gain a better
understanding.

VI. CTLSS CODE

The CTLSS code has been highly modularized so that its
multiple functions can share common utilities between mod-
ules. CTLSS itself functions as a module in the modeling and
simulation tool suite, which includes MICHELLE and CHRIS-
TINE, and shares postprocessing, visualization, and gridding
tools with those programs. Future development is aimed at tight-
ening the integration of these codes.

The current release version of CTLSS consists of the electro-
magnetic eigenvalue solver on a single-block orthogonal struc-
tured mesh, a graphical user interface (GUI), a postprocessor to
compute phase velocity and impedance for specified modes, a
visualization tool and interface for 3-D structure and vector field
plots, and a data link to CHRISTINE. The design methodology
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Fig. 13. CTLSS solution viewer.

for vacuum electronic devices (currently helix-TWT configura-
tions) integrated into CTLSS is the following.

1) CHRISTINE is employed as a stand-alone code to com-
pute an optimum helix-TWT configuration (which may
consist of several helix sections with different parame-
ters.)

2) The output of CHRISTINE for a specified helix section
is read into the GUI, where the user specifies additional
parameters that are not needed by CHRISTINE, but are
required to run CTLSS. The GUI then calculates all re-
maining parameters, such as the dimensions of the sup-
port rods, and generates a basic structure definition so that
a CTLSS *.cti input file can be created. The GUI also
writes a new CHRISTINE input file that can be executed
after the CTLSS runs in step 3) are completed.

3) CTLSS is used to compute the dispersion and impedance
data for the CHRISTINE configuration, including 3-D
effects, such as actual support rods and finite thickness
tape helix geometry, in place of the idealized smeared di-
electric, and the sheath helix or thin tape helix models in
CHRISTINE.

4) A new CHRISTINE run, using the computed cold-test
results from CTLSS, can assess the change in perfor-
mance of the helix TWT because of the effects included
by CTLSS.

This cycle may be repeated to converge upon an optimal, real-
istic design.

A. Code Structure

The code is a hybrid of Fortran and C modules, with the
parts of the code specific to data input and the electromagnetic
operators (including setup routines, curl-operator routines, and

boundary conditions) largely written in Fortran for efficiency,
whereas the controllers for the Jacobi–Davidson and QMR rou-
tines and overall data structures are written in C. Classes are
defined to encapsulate the problem description, coordinate sys-
tems, matrix operators, fields, and subspaces, with their associ-
ated operations. The underlying linear algebra libraries used for
vector and dense matrix operations, BLAS and LAPACK, are
also either native Fortran routines or available optimized for a
particular platform.

B. Modules

The modular structure of CTLSS is illustrated in Fig. 11. The
user constructs a text input file ( ), either manually or with
the help of a GUI, and runs a setup program, , to create
a structure file ( ). The eigenvalue solver, , reads
both the and files to produce a file of solution field
vectors ( ). Two postprocessors, and , convert
the structure and field output files into formats that can be used
by the visualization toolkit (VTK) to render 3-D images of the
fields and structures. Finally, a third postprocessor (not shown),

, reads the field output file and processes impedance
and phase velocity for a specified solution vector (mode.)

C. GUI

A GUI has been created for CTLSS in Excel Visual Basic.
It is a general interface that governs structure input and grid
setup, as well as specification of all control parameters required
by the code, and provides the user with simple definitions of
input quantities. The interface also includes a series of templates
designed to automate the definition of commonly used device
configurations, such as the helix TWT, the coupled-cavity TWT,
and the klystron. The output of the GUI is the input file
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Fig. 14. Helix TWT represented in cylindrical and Cartesian coordinates.

required to run CTLSS. The GUI can also read in the file
for editing, and it can invoke a setup run with visualization.

The major sections of the CTLSS GUI “Setup” and “Eigen-
solver” controls. The Setup section includes General Setup,
Boundary Conditions, Structures, and Gridding, which are
required to run the setup module. The Eigensolver section
includes General Controls and Eigensolver sheets, which set
up the eigensolver module.

The CTLSS templates, illustrated in Fig. 12, allow the user
to rapidly set up specialized configurations. The helix TWT
template, for example, includes several options for support rod
shapes (with user-specified dimensions). The coupled-cavity
TWT includes several options for the number and shape of the
coupling slots between the cavities. The klystron template has

several options for the shape of the cavity nose structure. These
templates automatically populate the general CTLSS GUI, so
that the user can modify the automatic setup, as needed, to
execute a specific simulation.

An additional template automatically sets up the link be-
tween CTLSS and CHRISTINE for designing helix TWT
circuits, using the methodology described above.

D. Visualization

CTLSS uses the VTK to create 3-D graphical renderings of
the discretized structures and field solutions. The VTK system is
programmed in Tcl/Tk, to produce customized plots and to pro-
vide a GUI specifically for viewing CTLSS output (see Fig. 13.)
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Fig. 15. CTLSS results for a helix TWT. Run times and memory requirements
for several Cartesian and cylindrical setups are compared with measured data
from a Northrop Grumman Corporation X-Band TWT.

The viewer for the current CTLSS code is being absorbed into a
postprocessor and viewer developed for all of the modeling and
simulation tools.

E. Gridding

The current CTLSS release version supports both Cartesian
and cylindrical coordinate systems. The advantage of having
both options is that one or the other system will be more con-
formal with the structure and, therefore, will require fewer cells
and less run time.

Fig. 14 shows a comparison of Cartesian and cylindrical grid-
ding for a helix TWT. In this case, the cylindrical coordinate
system is better because it is important to resolve the tape helix
thickness, which need only be resolved in the radial direction
in cylindrical geometry, but it requires fine gridding in both
and in Cartesian geometry. The eigenvalue solver is also re-
markably tolerant of large changes in cell size from cell to cell.
Hence, it is permissible to arrange the azimuthal grid so that it
becomes much denser on the support rods than it is between the
rods, thereby gaining better resolution and discretization of the
rods for a given total number of cells.

A comparison of the run time for a helix TWT in optimized
cylindrical and Cartesian geometry was carried out at Northrop
Grumman Corporation [44], with the results shown in Fig. 15.
Computations were performed on a 450-MHz Pentium II PC,
having 384-Mb available RAM. The cylindrical mesh was

cells, whereas the Cartesian meshes were ,
, , and cells.

Fig. 15 shows that the cylindrical setup, requiring only 20 MB
of memory and 1.5 h per data point, outperforms setups in Carte-
sian geometry using up to 306 MB and 4.3 h per data point.

F. Postprocessing

The CTLSS postprocessor computes the axial impedance and
the phase velocity for a specified eigenfield solution, as well as
field energy density. The driven-frequency module includes the
calculation of parameters for specified ports.

Fig. 16. Perturbation method for experimentally determining axial impedance.

Fig. 17. Coupling impedance as determined by direct calculation using 3-D
CTLSS fields, CTLSS simulation of a perturbation experiment withr =r =

0:24, and CTLSS simulation of a perturbation experiment withr =r = 0:33.

The ability of electromagnetic simulation codes to accurately
compute the axial impedance for TWT’s has been an issue for
several years. Recently, that issue has been resolved in favor of
the simulation codes [44], [45]. The axial impedance is com-
puted from first principles as

where is the lowest order Fourier component of the electric
field on axis, is the wavenumber, is the phase
velocity, and is the time-averaged RF power flow

Re

Experimentally, the axial impedance is determined by first mea-
suring the phase velocity of the RF wave on the helix circuit, and
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Fig. 18. CTLSS migration to HPC environments.

then inserting a sapphire rod along the axis of the helix and mea-
suring the resulting phase shift and phase velocity with the rod
in place. The measured phase shift and the coupling impedance
are then related through a perturbation analysis. Fig. 16 de-
picts a CTLSS setup for the experiment to determine the axial
impedance.

Northrop Grumman [44] simulated this experiment with
CTLSS to test the approximations in the perturbation method
[46] used to compute coupling impedance from perturbed
phase velocity measurements. These approximate perturbation
expressions were used to evaluate the impedance from both the
experimental phase velocity shift as well as CTLSS predictions
of the phase velocity shift for the geometry shown in Fig. 16.
The goal was to determine whether the perturbation expressions
are accurate and independent of rod size even for large values
of , where is the perturbing dielectric rod radius and

is the helix radius. Two different rods with
and were used for these measurements and
simulations. The measurements were carried out using a new
single-port measurement method that yielded results that were
strongly dependent on rod radius and required further verifi-
cation with the standard two-port measurement. The CTLSS
prediction, however, provided results that are independent
of rod size. Fig. 17 shows the comparison between coupling
impedance computed directly from the 3-D CTLSS fields and
the coupling impedance computed from perturbation theory
using the perturbed phase velocity predicted by CTLSS for
the two rods mentioned above. It is seen that the perturbation
results are independent of rod size and lie close to the direct
calculation even for rod sizes up to . The discrep-
ancy between the direct calculation and the perturbed results
may be because of the approximate nature of the perturbation
expressions and given the curves shown in the figure would not

likely yield a result closer to the direct calculation even if a
smaller perturbing rod were used.

VII. FUTURE ACTIVITIES—HIGH PERFORMANCECOMPUTING

A. Multiblock Formulation

The current single-block implementation of CTLSS is being
extended to multiblock for several reasons:

1) Efficient gridding algorithms and commercial gridding
tools for nonorthogonal structured grids generally require
multiblock configurations.

2) Multiblock offers the possibility of avoiding wasted cells
in regions where there are no fields.

3) Multiblock offers a framework for the eventual paral-
lelization of CTLSS.

The multiblock methodology consists of breaking up the sim-
ulation domain into subregions, or blocks, that are connected at
interfaces. The solution is carried out in each block volume with
the interfaces treated as boundary conditions. As the iterative
solution proceeds, the interface data are updated from block to
block, e.g., via message passing, so that the solutions in all the
blocks converge to a consistent global solution.

How often to update the interface data depends on the latency
associated with the transfer of data between blocks. For some
systems, with high latency, there may be an advantage in storing
multiple layers of overlapped interface cells that are updated less
frequently, whereas on low-latency systems, minimal interface
overlap with more frequent updates will be more efficient.

B. HPC

The future utilization and acceptance of CTLSS will depend
in part on how quickly it will be able to solve large design prob-
lems. The growing availability of high-performance computing
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(HPC) hardware and software is therefore of major interest in
the development of CTLSS. Fig. 18 summarizes the most likely
path for applications like CTLSS to migrate onto HPC envi-
ronments. The present code runs on multiprocessor Cray envi-
ronments at DoD HPC Major Shared Resource Centers. These
centers offer a shared-memory environment with no message
passing or segmentation requirements, but have limited scala-
bility to large numbers of processors.

Future implementations will move into multiprocessor
environments as improved software, such as Fortran 90, and
improved implementations of message-passing interface (MPI)
and local-area memory (LAM) protocols become available.

Currently, an inexpensive option for parallel processing is to
create a cluster of CPU’s linked, for example, by a fast eth-
ernet. SAIC has built an 80-CPU cluster of this type, consisting
of 40 dual-CPU machines wth shared memory and a fast eth-
ernet back plane. This cluster has demonstrated peak perfor-
mance of 6–12 Gflops. An activity to port CTLSS to this cluster
is in progress. It will begin by porting and running CTLSS on
just one of the dual-CPU units. The next step will be to use the
multiblock structure being implemented in CTLSS as a means
of carrying out domain decomposition so that separate units can
work independently on each block during the iterative solution
process. Blocks will communicate between processors using
MPI commands over the ethernet back plane.
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