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Liquid metal flow encasing a magnetic cavity
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A stationary equilibrium of a liquid metal flowing past a cylindrical magnetic cavity is presented.
The cavity has an azimuthal magnetic field and can also have an axial field. The liquid metal flow
can be maintained by a sufficiently high pressure head. The scheme could be used to support a
flowing liquid wall for systems producing high heat fluxes. Z000 American Institute of Physics.
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A thermonuclear fusion plasma affords an example of &Since the vorticity is zero at infinity, we havB2¢=0
system where the first wall may be exposed to unacceptablgverywhere. The general solutionds-r=™e'™?  Finally, at
high heat fluxes. Conventional cooling techniques and matethe interface, we must have
rials appear to not be viable. Flowing liquid walls have been . oo
proposed as a means to extract the heat rapitiifor a p(interfacg = B*(interfacg /8, 2)
flowing liquid metal wall, one must consider the magnetohy-wherep is the liquid pressure, neglecting surface-tension.
drodynamics(MHD) of a flowing, conducting fluid in the To obtain an analytic solution, we adopt the ordering
presence of strong magnetic fields. In this paper, we present
an analytic MHD equilibrium solution for a liquid metal
flowing past a cylindrical magnetic cavity. In essence, wei.e., the magnetic field is strong and the liquid pressure builds
envision a flow fast enough that the poloidal magnetic fieldup to balance the magnetic pressure to lowest order. The
of the cavity is excluded from the liquid metal, thus obviat- inertial and gravitational forces are also assumed weak.
ing the constraints of the frozen-in theorem and allowing forThus, to lowest order, we have a cylindrically circular mag-
a steady statéhe axial field in the cavity is convected along netic bubble
in frozen-in fashion _

Consider the system shown in Fig. 1. The system is two- Yo=Boaln(r/a),
dimensional, i.e., the direction into the pag® (s a symme- the liquid pressur@, must be such that it balances the mag-
try direction. Liquid metal(LM) coats an outer wall and netic pressure of the bubble, viz.,
encases a magnetic cavity. The shape of the LM-cavity in- Po=B2/87 @)
terface is arbitrary, given by=R(6). The shape of the outer oo
wall will be specified later. LM flows in from the top and and the flow stream function is given by
emerges from the bottom. Gravigypoints downward. In the
zero-resistivity theory, the magnetic field is zero in the LM. do=Upa
For simplicity, we assume that there is a current carrying
wire going into the page that accounts for the magnetic fielctorresponding to LM flow past a smooth cylindrical obstacle.
in the cavity. The interface is specified ay(68)=a. To this order,pg

The equations governing the systems are as follows. Iimust equalp.., the pressure applied to the LM at infinity.
the simplest case, the magnetic field is representeB-by For a given current in the cavity,, determines, the radius
X Vi, where s is the magnetic flux function. The incom- of the cavity. Alternatively, for a given current and a given
pressible LM flow is writteru=2x V ¢ where¢ is the flow ~ volume of LM in a closed cavityp.. is the pressure that the
stream function. The magnetic flux function in the cavity LM is placed under by the magnetic field.

forces cause a distortion of the bubble. We assume i#hat

distorts according to Eq1). Accordingly, the surface/=0
yIBo=aln(r/a)— eyr cosf+ e(r*/a)cos 20, (1) (correct to first orderis given by the equation

pus~pga<p~B3/8,

a

sing

rla=1+ e, COSH— €, COS 2. (4)

where (,0) coordinates are centered at the wire, the WireWe must now satisfy the pressure balance condition(Ex.

current! 0=Boac/2, ande, ande, are small parameters to k_)e at the distorted surface. We first calcul@# at this surface.
determined later. In the LM, we assume that the poI0|daL|-here we hav«BZ/BZ—|Vz/;|2/BZ~(a/r)z—Zel(a/r)cose
’ 0 0o

flux, ¢, is zero in the limit that the resistivity —0. This will

be justified subsequently. In this limit, the LM flow satisfies
u-VVv2¢p=0, where ¢(|x|— ) —uqr sin@ consistent with
U— —UpX at large|x|. We have also neglected the viscosity. ~ B/B(interface=1—4e, cosf+6e, cos 29. (5)

+4e,cos . When evaluated at the surface given by &,
we find
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u, shift upward is due to buoyancy—the cavity is indeed a
bubble and will tend to float up. This can be checked by
v r=R(0) calculating the force on the central wire due to the magnetic
field. This upward force, all of which comes from the @bs
term in Eq.(5), exactly equals £a?)pg, the weight of the
displaced fluid.

In our case, the central wire prevents the cavity from
lodging on to the top wall; in a real system, one may have to
add “stabilizer fields” as discussed further below. The ellip-
tical distention is from the Bernoulli effect — the flow has
top and bottom stagnation points, resulting in Bernoulli pres-

\ sure highs top and bottoicompared to left and right This
leads to an elliptical distention.

An arbitrary constant axial field,, can now easily be
added to the above solution. To see this, one needs to exam-
ine the complete force balance equation and Faraday’s Law
to conclude immediately that a constaBj preserves the
solution above. In effect, the axial flux does not change the
pressure jump condition, being the same on both sides, and is
convected along by the incompressible LM flow, entering
and exiting with the flow.

Also, it can be readily shown that if plasma with pres-
surep;, is added to the magnetic cavity, the only effect is to

r modify Eq. (3) to readpy=B2/87+p;,, and a term—p;,,
is added to the right hand side of E®).
6 A physical wall may be placed to coincide with one of
the streamlines, in the simple analytically tractable case. Of
y course, a more realistic placement of the outer wall would
\Luo necessitate using a more complete set of the flow eigenfunc-

2

tions but would not change the essential physics of our
' o _ ~ solution.
EIG. 1. Schematic deplcthn of LM flow pa_st magnetic bubble. The dlsto_r— The above theory is valid provided the LM flows on a
tions of the bubble are slight but otherwise as expected. A central wire. | h d with the ti le h
prevents the bubble from floating up. In this schematic, the outer wall is“m? S_Ca e_ S _Ort compare wit _t e Ume_ sca e_ or the mag-
placed to be coincident with the flow streamline for the simplest case. ~ netic field inside the cavity to resistively diffuse into the LM.

This condition may be expressed quantitatively as

Up 7
The B%/8x in the above must be equal pfinterface). The E> —

hydrodynamic pressure in the LM is given by the equation w

pu-Vu=—Vp+pg. Dotting with u- and integrating along  \herew is the width of the LM layer. The zero-resistivity

a streamline, we obtain Bernoulli's law as a condition at theqheory presented above includes a current sheet at the
bubble-surfacep+(1/2)pu?+ pgx=P... Thus, the liquid  cayity/LM interface. Allowing resistivity broadens this sheet.

pressure(correct to first orderis As a result, some poloidal magnetic field penetrates the LM;
p~ Pm—(1/2)pu§—pgx this penetration is count.ered by the _rapid flow that., in effect,
convects the flux back into the cavity. The resulting steady
=P.,—(1/2)pu3(1+a?/r?)?sir? §— pgr cosh state gives a penetration depshgiven by
from which A?= mran/uy<w?.
H 2
p(interface=P.,—pugy(1—cos 20) —pgacosd.  (6)  |ngroduction of resistivity breaks the top—bottom symmetry
Matching Eqs.(5) and (6), we find of the ideal probleni.The incoming fluid at the top tends to
) 22 convect flux back into the cavity whereas the outgoing fluid
€1=(4mpgal2B;), €= (4mpuy/3By), (7) " at the bottom tends to pull the flux further into the LM. The
53/877: poo—(1/2)pu3+pgh, ®) resulting flux i_n thg boundary layer is expected have the
_ _ _ _ shape shown in Fig. 2.
whereh is the height at which the flow speed is equaligp An analytic solution in the boundary layer is difficult.
and the pressure in the LM [s. . Because of the orderingu3<B3, the flow in the layer is

We note that botle; ande, are positive. From Eq4),  expected to be sub-Alfvic close to the interface but transits
we conclude that the magnetic cavity shifts upward and disto super-Alfvanic through the layer. The layer ordering is
tends to an ellipse with the major axis in thelirection. The thenpu§~82, possibly leading to an Alfueresonance. The
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FIG. 2. Conjectured depiction of the magnetic surfaces in the boundary O
layer between the bubble surface and the (éMaggerated The asymmet-
ric stretching out of the field is based on the findings of Ref. 3. O

FIG. 3. Schematic depiction of placement of the external “guide” magnetic

TR : ; ; 1 field. This might mitigate the buoyancy and any Bernoulli instabilities. Note
resistivity is an order unity effect in the Iayer’ pOSSIny mit that an X-point is introduced &2=0 but might be benign given the large

gating any highly reactive resonances. In any case, the lay@g rates.
equations can be written

pu-VV2¢p=B-VVZ?y, 9
T T2 test the above scenario by a small sized experiment. As rep-
u-vy=nv:y. (10 resentative numbers, considgg=3 kG, a=20 cm,w=10
As we move away from the layer, the above set reduces tem, L =10 cm. HereB, is the poloidal field at the interface,
pu-VV2¢—0, u-Vy—0, which are the correct “outer” ais the radius of the interface; is the width of the LM layer
equations. In the layer, no terms can be neglected. This syshout the cavityL is the length of the cylinder. For these
tem is difficult to solve. The second equation, Et0), may  parameters, the relevant dimensionless numbers are
be scaled:u;B,~7(B,/A). Using u,~upA/a (since u,  8mpga/B5=1/18, 8mpv3/Bi=1/2, where we define, to
—0 at the interfacewe have be given byv,/ma= n/w?, and =830 cnt/s for liquid so-
dium. Thus, the flow speed would have to excegd For
Yo 1, the above numbers,,=6 m/s. The ohmic power dissipated
a A? in the boundary layer works out 8=8000 W. The mag-
netic field is 3 kG at the interface which corresponds to a
wire current ofl ;=300 kA. To maintain the flowing wall, a
sufficiently large pressure head is all that is required: this is
. different from other proposed methods wherein an external
pga, pus<Bgy/8w voltage is required to maintain the wall.
Various uncertainties remain that may adversely impact
the LM scheme.
(1) The appearance of an upward @oshift in the solu-
U 7 tion indicates buoyancy. In our calculation, the central cur-
ma v? rent coil will prevent an unchecked buoyant rise; in a
tokamak-like plasma, such rise can continue until the plasma
is met. We have also assumed that an inviscid solution igavity lodges against the top wall, possibly plugging the flow
valid since the viscosity is much smaller than the resistivity.inlet.
Surface-tension is also neglected. To devise an experimentto (2) The equilibrium calculation we describe is likely to
test this, all of the three inequalities must be satisfied. Irbe unstable to up—down or left—right “Bernoulli Shifts.”
addition, the heat generated from the current sheet at theor example, a leftward shift constricts the flow channel,
interface must not overheat the LM. The generated power ighich speeds up the flow, in turn, leading to a Bernoulli
cBy |2 pressure drop, thus accentuating the leftward shift.
P:"(MTA) (2ma)LA. (11 Both shifts (1) and (2) could possibly be cured by the
addition of a vertical field, depicted in Fig. 3. This externally
This does not include the power required to overcome visimposed vertical field is small compared Bg since it sim-
cous stresses in likely turbulent flow. It may be possible toply counters first order gravitational and Bernoulli effects. It

the expected scaling fak.
In summary, our solution of a mildly distorted cavity has
been obtained if the assumptions

are made. In addition, the LM flows relatively freely past the
“obstacle” in a channel of widthw provided the condition
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can readily be added to our calculation above: it can bée reported elsewhere.

shown that the sole effect is to shift the definition of the (6) How the system should be started up to get to the
Bernoulli parameter according @ — e,[1—BZ/(4mpu3)],  steady state needs addressing. We have investigated some
whereB, is the size of the vertical field at infinity; although Scenarios. A possible, first-step experiment might consist of
in a finite-sized vessel, we expect this term to also modijfy @ geometry as in Fig. 1 with all the LM in @ossibly pres-

(as a function of the central wire’s height in the vegsahd ~ surized tank initially poised at the top. A spigot is now
thus modify the force on the central wire, thereby halting thePPened and LM blows down, rapidly enough to ensure
buoyancy at a particular height of the bubble in the vesselffozen-in conditions. Flux is swept out with the flow until

An X-point is necessarily introduced into the boundary layerSUch @ point at which the ram pressure equals the magnetic
but should not lead to deleterious behavior on account of thgressur'e(akl'n to the solar wmd/magnetosphere interagtion
rapid flow. After this point, the flow naturally diverts around the bubble,

(3) This flow is at a high viscous Reynolds’ number amdsweeping out the remaining field. This s_ituation can obvi-
significant bulk-disturbances and surface turbulent WavefhUSIy be made steady-state by appropriately recycling the
can be expected. We have not addressed these issues.

e’ . o . .
possibility of bubbles ripping from the cavity and advected (7) The Ohmic power dissipated in the boundary layer is

. . -—a concern. While this power is quite reasonable for a small

downstream at the lower hyperbolic point cannot be dls'experiment, as discussed above, it comes to represent signifi-

counted. - . ) cant circulating power when scaled to, say, a tokamak reac-
(4) The resistive boundary layer calculation remains o, \yhile this is a concern, we note that the power scaling

be done. This calculation must be done to settle two OUty4ries strongly wittB, possinyB3, so that extrapolations to

standing, possibly deleterious effects: first, there is an Alfve reactor regimes, especially given future innovations and ad-
resonance, as pointed out already, and, second, it is not poganced fusion schemes, may be premature.

sible to rule out a solution that involves a slow, cylindrically A flowing LM wall would, as already mentioned, greatly
symmetric diffusion of cavity magnetic flux into the LM, mitigate the “first wall” problem of fusion reactors. In ad-
thus eroding the LM coating widttv. In particular, one out-  dition, LM walls could also work to ameliorate the tokamak
standing question is whether this erosion will occur until thedisrup’[ion problem. In a tokamak disruption, magnetic en-
magnetic energy density at the new flowing-LM/static-LM ergy is released very rapidly, resulting in large mechanical
boundary just equals the kinetic energy of the flowing LM. stresses from eddy currents excited in the support structures.
This would imply that the required LM speed is governedIf there were a LM wall, a significant part of the energy
not only by the resistive rate but also by the Alfvepeed. would be dumped into splashing the LM, in effect putting a
These issues probably will have to be resolved via a 20damper on the rapid energy release.
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