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Liquid metal flow encasing a magnetic cavity
A. B. Hassam,a) J. F. Drake, Deepak Goel, and D. P. Lathrop
Institute for Plasma Research, University of Maryland, College Park, Maryland 20742
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A stationary equilibrium of a liquid metal flowing past a cylindrical magnetic cavity is presented.
The cavity has an azimuthal magnetic field and can also have an axial field. The liquid metal flow
can be maintained by a sufficiently high pressure head. The scheme could be used to support a
flowing liquid wall for systems producing high heat fluxes. ©2000 American Institute of Physics.
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A thermonuclear fusion plasma affords an example o
system where the first wall may be exposed to unaccept
high heat fluxes. Conventional cooling techniques and m
rials appear to not be viable. Flowing liquid walls have be
proposed as a means to extract the heat rapidly.1,2 For a
flowing liquid metal wall, one must consider the magnetoh
drodynamics~MHD! of a flowing, conducting fluid in the
presence of strong magnetic fields. In this paper, we pre
an analytic MHD equilibrium solution for a liquid meta
flowing past a cylindrical magnetic cavity. In essence,
envision a flow fast enough that the poloidal magnetic fi
of the cavity is excluded from the liquid metal, thus obvia
ing the constraints of the frozen-in theorem and allowing
a steady state~the axial field in the cavity is convected alon
in frozen-in fashion!.

Consider the system shown in Fig. 1. The system is tw
dimensional, i.e., the direction into the page (ẑ) is a symme-
try direction. Liquid metal~LM ! coats an outer wall and
encases a magnetic cavity. The shape of the LM-cavity
terface is arbitrary, given byr 5R(u). The shape of the oute
wall will be specified later. LM flows in from the top an
emerges from the bottom. Gravityg points downward. In the
zero-resistivity theory, the magnetic field is zero in the L
For simplicity, we assume that there is a current carry
wire going into the page that accounts for the magnetic fi
in the cavity.

The equations governing the systems are as follows
the simplest case, the magnetic field is represented byB5 ẑ
3“c, wherec is the magnetic flux function. The incom
pressible LM flow is writtenu5 ẑ3“f wheref is the flow
stream function. The magnetic flux function in the cav
satisfies¹2c50. Accordingly, we letc be of the form

c/B05a ln~r /a!2e1r cosu1e2~r 2/a!cos 2u, ~1!

where (r ,u) coordinates are centered at the wire, the w
currentI 0[B0ac/2, ande1 ande2 are small parameters to b
determined later. In the LM, we assume that the poloi
flux, c, is zero in the limit that the resistivityh →0. This will
be justified subsequently. In this limit, the LM flow satisfi
u•“¹2f50, wheref(uxu→`)→u0r sinu consistent with
u→2u0x̂ at largeuxu. We have also neglected the viscosi
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Since the vorticity is zero at infinity, we have¹2f50
everywhere. The general solution isf;r 6meimu . Finally, at
the interface, we must have

p~ interface!5B2~ interface!/8p, ~2!

wherep is the liquid pressure, neglecting surface-tension
To obtain an analytic solution, we adopt the ordering

ru0
2;rga!p;B0

2/8p,

i.e., the magnetic field is strong and the liquid pressure bu
up to balance the magnetic pressure to lowest order.
inertial and gravitational forces are also assumed we
Thus, to lowest order, we have a cylindrically circular ma
netic bubble

c05B0a ln~r /a!,

the liquid pressurep0 must be such that it balances the ma
netic pressure of the bubble, viz.,

p05B0
2/8p, ~3!

and the flow stream function is given by

f05u0aS r

a
2

a

r D sinu

corresponding to LM flow past a smooth cylindrical obstac
The interface is specified asR0(u)5a. To this order,p0

must equalp` , the pressure applied to the LM at infinity
For a given current in the cavity,p` determinesa, the radius
of the cavity. Alternatively, for a given current and a give
volume of LM in a closed cavity,p` is the pressure that th
LM is placed under by the magnetic field.

To first order, the gravitational field and the Bernou
forces cause a distortion of the bubble. We assume thac
distorts according to Eq.~1!. Accordingly, the surfacec50
~correct to first order! is given by the equation

r /a511e1 cosu2e2 cos 2u. ~4!

We must now satisfy the pressure balance condition Eq.~2!
at the distorted surface. We first calculateB2 at this surface.
There, we haveB2/B0

25u“cu2/B0
2.(a/r )222e1(a/r )cosu

14e2 cos 2u. When evaluated at the surface given by Eq.~4!,
we find

B2/B0
2~ interface!.124e1 cosu16e2 cos 2u. ~5!
1 © 2000 American Institute of Physics
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The B2/8p in the above must be equal top(interface). The
hydrodynamic pressure in the LM is given by the equat
ru•“u52“p1rg. Dotting with u• and integrating along
a streamline, we obtain Bernoulli’s law as a condition at
bubble-surface:p1(1/2)ru21rgx5P` . Thus, the liquid
pressure~correct to first order! is

p'P`2~1/2!ruu
22rgx

5P`2~1/2!ru0
2~11a2/r 2!2 sin2 u2rgr cosu

from which

p~ interface!.P`2ru0
2~12cos 2u!2rga cosu. ~6!

Matching Eqs.~5! and ~6!, we find

e15~4prga/2B0
2!, e25~4pru0

2/3B0
2!, ~7!

B0
2/8p5p`2~1/2!ru0

21rgh, ~8!

whereh is the height at which the flow speed is equal tou0

and the pressure in the LM isp` .
We note that bothe1 ande2 are positive. From Eq.~4!,

we conclude that the magnetic cavity shifts upward and
tends to an ellipse with the major axis in theŷ direction. The

FIG. 1. Schematic depiction of LM flow past magnetic bubble. The dis
tions of the bubble are slight but otherwise as expected. A central
prevents the bubble from floating up. In this schematic, the outer wa
placed to be coincident with the flow streamline for the simplest case.
n
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shift upward is due to buoyancy—the cavity is indeed
bubble and will tend to float up. This can be checked
calculating the force on the central wire due to the magn
field. This upward force, all of which comes from the cosu
term in Eq.~5!, exactly equals (pa2)rg, the weight of the
displaced fluid.

In our case, the central wire prevents the cavity fro
lodging on to the top wall; in a real system, one may have
add ‘‘stabilizer fields’’ as discussed further below. The elli
tical distention is from the Bernoulli effect — the flow ha
top and bottom stagnation points, resulting in Bernoulli pr
sure highs top and bottom~compared to left and right!. This
leads to an elliptical distention.

An arbitrary constant axial field,Bz , can now easily be
added to the above solution. To see this, one needs to ex
ine the complete force balance equation and Faraday’s
to conclude immediately that a constantBz preserves the
solution above. In effect, the axial flux does not change
pressure jump condition, being the same on both sides, an
convected along by the incompressible LM flow, enteri
and exiting with the flow.

Also, it can be readily shown that if plasma with pre
surepin is added to the magnetic cavity, the only effect is
modify Eq. ~3! to readp05B0

2/8p1pin , and a term2pin ,
is added to the right hand side of Eq.~8!.

A physical wall may be placed to coincide with one
the streamlines, in the simple analytically tractable case.
course, a more realistic placement of the outer wall wo
necessitate using a more complete set of the flow eigenfu
tions but would not change the essential physics of
solution.

The above theory is valid provided the LM flows on
time scale short compared with the time scale for the m
netic field inside the cavity to resistively diffuse into the LM
This condition may be expressed quantitatively as

u0

pa
@

h

w2
,

wherew is the width of the LM layer. The zero-resistivit
theory presented above includes a current sheet at
cavity/LM interface. Allowing resistivity broadens this shee
As a result, some poloidal magnetic field penetrates the L
this penetration is countered by the rapid flow that, in effe
convects the flux back into the cavity. The resulting stea
state gives a penetration depthD given by

D25pah/u0!w2.

Introduction of resistivity breaks the top–bottom symme
of the ideal problem.3 The incoming fluid at the top tends t
convect flux back into the cavity whereas the outgoing flu
at the bottom tends to pull the flux further into the LM. Th
resulting flux in the boundary layer is expected3 to have the
shape shown in Fig. 2.

An analytic solution in the boundary layer is difficul
Because of the orderingru0

2,B0
2, the flow in the layer is

expected to be sub-Alfve´nic close to the interface but transi
to super-Alfvénic through the layer. The layer ordering
thenru0

2;B2, possibly leading to an Alfve´n resonance. The
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resistivity is an order unity effect in the layer, possibly mi
gating any highly reactive resonances. In any case, the l
equations can be written

ru•“¹2f5B•“¹2c, ~9!

u•“c5h¹2c. ~10!

As we move away from the layer, the above set reduce
ru•“¹2f→0, u•“c→0, which are the correct ‘‘outer’’
equations. In the layer, no terms can be neglected. This
tem is difficult to solve. The second equation, Eq.~10!, may
be scaled:urBu;h (Bu /D). Using ur;u0D/a ~since ur

→0 at the interface! we have

u0

a
;

h

D2
,

the expected scaling forD.
In summary, our solution of a mildly distorted cavity ha

been obtained if the assumptions

rga, ru0
2!B0

2/8p

are made. In addition, the LM flows relatively freely past t
‘‘obstacle’’ in a channel of widthw provided the condition

u0

pa
@

h

w2

is met. We have also assumed that an inviscid solution
valid since the viscosity is much smaller than the resistiv
Surface-tension is also neglected. To devise an experime
test this, all of the three inequalities must be satisfied.
addition, the heat generated from the current sheet at
interface must not overheat the LM. The generated powe

P.hS cB0

4pD D 2

~2pa!LD. ~11!

This does not include the power required to overcome
cous stresses in likely turbulent flow. It may be possible

FIG. 2. Conjectured depiction of the magnetic surfaces in the boun
layer between the bubble surface and the LM~exaggerated!. The asymmet-
ric stretching out of the field is based on the findings of Ref. 3.
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test the above scenario by a small sized experiment. As
resentative numbers, considerB053 kG, a520 cm,w510
cm, L510 cm. Here,B0 is the poloidal field at the interface
a is the radius of the interface,w is the width of the LM layer
about the cavity,L is the length of the cylinder. For thes
parameters, the relevant dimensionless numbers
8prga/B0

2.1/18, 8prv0
2/B0

2.1/2, where we definev0 to
be given byv0 /pa5h/w2, andh5830 cm2/s for liquid so-
dium. Thus, the flow speed would have to exceedv0 . For
the above numbers,v0.6 m/s. The ohmic power dissipate
in the boundary layer works out toP58000 W. The mag-
netic field is 3 kG at the interface which corresponds to
wire current ofI 05300 kA. To maintain the flowing wall, a
sufficiently large pressure head is all that is required: this
different from other proposed methods wherein an exter
voltage is required to maintain the wall.4

Various uncertainties remain that may adversely imp
the LM scheme.

~1! The appearance of an upward cosu shift in the solu-
tion indicates buoyancy. In our calculation, the central c
rent coil will prevent an unchecked buoyant rise; in
tokamak-like plasma, such rise can continue until the plas
cavity lodges against the top wall, possibly plugging the flo
inlet.

~2! The equilibrium calculation we describe is likely t
be unstable to up–down or left–right ‘‘Bernoulli Shifts.
For example, a leftward shift constricts the flow chann
which speeds up the flow, in turn, leading to a Bernou
pressure drop, thus accentuating the leftward shift.

Both shifts ~1! and ~2! could possibly be cured by th
addition of a vertical field, depicted in Fig. 3. This externa
imposed vertical field is small compared toB0 since it sim-
ply counters first order gravitational and Bernoulli effects.

ry

FIG. 3. Schematic depiction of placement of the external ‘‘guide’’ magne
field. This might mitigate the buoyancy and any Bernoulli instabilities. No
that an X-point is introduced atu50 but might be benign given the larg
flow rates.



b
he

h

th
se
e
th

nd
ve
.
ed
is

to
u
e
p
lly
,

he
M
M
ed

2

ge
an
or
n

ld
in
il

the
some
t of

re
il
etic

n
le,
vi-
the

is
all
nifi-
ac-

ing

ad-

ly
-
k
n-
cal
res.
y
a

nd
ent

1084 Phys. Plasmas, Vol. 7, No. 4, April 2000 Hassam et al.
can readily be added to our calculation above: it can
shown that the sole effect is to shift the definition of t
Bernoulli parameter according toe2→e2@12Bv

2/(4pru0
2)#,

whereBv is the size of the vertical field at infinity; althoug
in a finite-sized vessel, we expect this term to also modifye1

~as a function of the central wire’s height in the vessel!, and
thus modify the force on the central wire, thereby halting
buoyancy at a particular height of the bubble in the ves
An X-point is necessarily introduced into the boundary lay
but should not lead to deleterious behavior on account of
rapid flow.

~3! This flow is at a high viscous Reynolds’ number a
significant bulk-disturbances and surface turbulent wa
can be expected. We have not addressed these issues
possibility of bubbles ripping from the cavity and advect
downstream at the lower hyperbolic point cannot be d
counted.

~4! The resistive boundary layer calculation remains
be done. This calculation must be done to settle two o
standing, possibly deleterious effects: first, there is an Alfv´n
resonance, as pointed out already, and, second, it is not
sible to rule out a solution that involves a slow, cylindrica
symmetric diffusion of cavity magnetic flux into the LM
thus eroding the LM coating widthw. In particular, one out-
standing question is whether this erosion will occur until t
magnetic energy density at the new flowing-LM/static-L
boundary just equals the kinetic energy of the flowing L
This would imply that the required LM speed is govern
not only by the resistive rate but also by the Alfve´n speed.
These issues probably will have to be resolved via a
numerical simulation.

~5! Our calculation needs to be extended to toroidal
ometry. While in the cylindrical geometry done here,
axial field leaves intact the conclusions of our paper, in t
oidal geometry the toroidal field enters in a nontrivial ma
ner. In particular, the 1/R drop off results in further skin
currents driven in the liquid metal to make the toroidal fie
convect consistently with an LM flowing incompressibly
toroidal geometry. Work in this area is in progress and w
e
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be reported elsewhere.
~6! How the system should be started up to get to

steady state needs addressing. We have investigated
scenarios. A possible, first-step experiment might consis
a geometry as in Fig. 1 with all the LM in a~possibly pres-
surized! tank initially poised at the top. A spigot is now
opened and LM blows down, rapidly enough to ensu
frozen-in conditions. Flux is swept out with the flow unt
such a point at which the ram pressure equals the magn
pressure~akin to the solar wind/magnetosphere interactio!.
After this point, the flow naturally diverts around the bubb
sweeping out the remaining field. This situation can ob
ously be made steady-state by appropriately recycling
LM.

~7! The Ohmic power dissipated in the boundary layer
a concern. While this power is quite reasonable for a sm
experiment, as discussed above, it comes to represent sig
cant circulating power when scaled to, say, a tokamak re
tor. While this is a concern, we note that the power scal
varies strongly withB, possiblyB3, so that extrapolations to
reactor regimes, especially given future innovations and
vanced fusion schemes, may be premature.

A flowing LM wall would, as already mentioned, great
mitigate the ‘‘first wall’’ problem of fusion reactors. In ad
dition, LM walls could also work to ameliorate the tokama
disruption problem. In a tokamak disruption, magnetic e
ergy is released very rapidly, resulting in large mechani
stresses from eddy currents excited in the support structu
If there were a LM wall, a significant part of the energ
would be dumped into splashing the LM, in effect putting
damper on the rapid energy release.
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