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Abstract

The Geospace Environment Modeling (GEM) Challenge Harris current sheet problem is
simulated in 2 1/2 dimensions using full particle, hybrid, and Hall MHD simulations. The same
gross reconnection rate is found in all of the simulations independent of the type of code used, as
long as the Hall term is included. In addition, the reconnection rate is independent of the
mechanism which breaks the frozen-in flux condition, whether it is electron inertia or grid scale
diffusion. The insensitivity to the mechanism which breaks the frozen-in condition is a
consequence of whistler waves, which control the plasma dynamics at the small scales where the
ions become unmagnetized. The dispersive character of whistlers, in which the phase velocity
increases with decreasing scale size, allows the flux of electrons flowing away from the dissipation
region to remain finite even as the strength of the dissipation approaches zero. As a consequence,
the throttling of the reconnection process as a result of the small scale size of the dissipation
region, which occurs in the magnetohydrodynamic model, no longer takes place. The important
consequence is that the minimum physical model necessary to produce physically correct
reconnection rates is a Hall MHD description which includes the Hall term in Ohm’s law. A
density depletion layer, which lies just downstream from the magnetic separatrix, is identified
and linked to the strong in-plane Hall currents which characterize kinetic models of magnetic
reconnection.



1. Introduction

Magnetic reconnection plays an important role in
the dynamics of the magnetosphere, the solar corona,
and laboratory experiments by allowing magnetic
energy to be released in the form of high-velocity
streams of electrons and ions. In a sufficiently col-
lisional plasma, resistive MHD theory is valid for
determining the reconnection rate. In this regime,
however, the dissipation region forms a macroscopic
Sweet-Parker current sheet which severely limits the
reconnection rate due to the Alfvén limit on the
outflowing ions region [Sweet, 1958; Parker, 1957;
Biskamp, 1986]. The inflow of ions into the dissi-
pation region scales like

Vin ~ %CA < ca, 1)
where § and L are, respectively, the width and length
of the dissipation region and c4 is the Alfvén speed.
As resistivity goes to zero, 6 — 0 and reconnection
proceeds only in the presence of anomalous resistiv-
ity [Biskamp and Bremer, 1993]. In physical systems
of interest, classical resistivity is too weak to explain
the observations, and anomalous resistivity remains
poorly understood.

In collisionless plasma the dissipation region devel-
ops a multiscale structure based on electron and ion
scale lengths [Biskamp et al., 1997; Shay et al., 1998].
These scales can be obtained from the kinetic Ohm’s
law [Vasyliunas, 1975):
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(2)
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where B, is the electron pressure tensor, n is the num-
ber density, and e and c are the elementary charge and
speed of light, respectively. Equation (2) is simply
the electron equation of motion rewritten in terms
of the traditional MHD terms (E and vxB) plus
the Hall (JxB), pressure and electron inertial terms.
At scale lengths greater than the ion inertial length,
0; = c/wp;, all of the terms in (2) except the MHD
terms can be neglected and MHD remains a valid de-
scription of the plasma dynamics. In the weak axial
field limit of interest here, within a distance from the
x line of the order of §;, the ion motion decouples from
that of the electrons as a result of the Hall term in (2)
[Sonnerup, 1979; Terasawa, 1983]. In this region of
scale-size d;, the ions are accelerated away from the x
line, eventually reaching the Alfvén velocity. Within
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this ion inertial region but outside of an electron iner-
tial region, the electrons remain frozen-in to the mag-
netic field, and the dynamics of the electron mag-
netofluid are described by a set of nonlinear whistler
equations [Mandt et al., 1994; Biskamp et al., 1997].
In this region the E and JxB terms dominate the
kinetic Ohm’s law. Finally, even closer to the x line,
the electrons decouple from the magnetic field owing
to their finite thermal velocity [Laval et al., 1966] or
their convective motion [Dungey, 1988; Burkhart et
al., 1990]. In a fluid description the mechanism for
breaking the electron frozen-in condition can be de-
scribed either as electron inertia (dJ/dt in (2)) or as

a nongyrotropic pressure (V-P, in (2)) [Vasyliunas,
1975] and has recently been the subject of intense
scrutiny [Lyons and Pridemore-Brown, 1990; Cai et
al., 1994; Biskamp et al., 1997; Horiuchi and Sato,
1997; Shay et al., 1998; Kuznetsova et al., 1998; Hesse
and Winske, 1998]. Studies examining the impact of
electron dynamics on the rate of reconnection have,
however, found that after reconnection has entered
the nonlinear regime, the process which breaks the
frozen-in constraint for the electrons has no effect on
the reconnection rate [Biskamp et al., 1997; Shay and
Drake, 1998; Hesse et al., 1999]. In particular, the
width of the region over which the frozen-in constraint
is broken no longer limits the reconnection rate as
it does in the resistive MHD case. The presence of
the Hall term proportional to JxB in the generalized
Ohm’s law and the associated dynamics of whistler
waves provide the essential physics required to obtain
this result.

At a phenomenological level, the acceleration of
plasma transverse to the magnetic field is limited
by the phase speed of the waves which character-
ize the acceleration process. In the case of MHD
this corresponds to the Alfven speed. At the small
scales where the electron frozen-in condition is bro-
ken, the electron and ion motion decouples, and the
waves which characterize the transverse dynamics of
electrons are whistler waves, with the quadratic dis-
persion character, w ~ k2. The wave speed of the
whistler and therefore the maximum outflow speed of
the electrons is given by v ~ k ~ 1/, where ¢ is the
transverse width of the current layer. The result is
that the electron flux out of the dissipation region,
proportional to vd, can remain independent of ¢ as
6 — 0. On a more quantitative level, the strongly
bent, newly reconnected field lines basically form a
standing whistler wave. As in a conventional whistler,
the self-consistent out-of-plane current rotates this



bent magnetic field out of the plane of the recon-
nection, producing the characteristic self-generated
quadrupole out-of-plane magnetic field which char-
acterizes kinetic reconnection. At the same time the
electron flow (current) driven at the x line owing to
the reconnection electric field rotates into the outflow
direction so that the electron outflow velocity vy is
given by

Vout ~ J/ne ~ cB/(4mned). (3)

Again, the flux dveyt can therefore remain finite even
in the limit that § becomes very small so that the
mechanism which breaks the frozen-in condition does
not limit the electron flux out from the dissipation
region.

Because the electron dissipative dynamics do not
constrain the rate of reconnection, the ions with their
much larger mass ultimately limit the rate. Again,
the Hall term plays a key role. The width of the
ion outflow channel from the region around the x line
scales like §;. Continuity of the flow of ions into and
out of the dissipation region then yields the ion inflow
velocity,

Vin ~ %c A (4)
The fact that the width of the ion outflow channel
greatly exceeds the width of the electron dissipation
scale already implies that kinetic reconnection rates
can greatly exceed the conventional MHD model. In
addition, however, the length L of the region down-
stream of the x line required to accelerate the ions up
to the Alfven speed, which is macroscopic in the MHD
system, remains microscopic in kinetic reconnection.
Again, it is the dynamics of the whistler which facili-
tates the strong acceleration of the ions. The standing
whistler, as it rotates the reconnected magnetic fields
out of the plane of reconnection, rotates the recon-
nection electric field into the plane of reconnection
and in particular toward the downstream direction.
This large electric field accelerates the ions up to the
Alfven speed over a distance of order ~ 104;. The
rate of reconnection given in (4) therefore remains
Alfvenic even in large systems where the system size
is much greater than c¢/wp; [Shay et al., 1999].

Therefore the inclusion of the Hall effect in the
kinetic Ohm’s law and the associated dynamics of
whistlers, which occurs at spatial scales at and be-
low ¢/wy; is the key to achieving fast reconnection in
collisionless plasmas. A fundamental question which
arises from these ideas is what is the minimal physics
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model required to simulate collisionless magnetic re-
connection in the space physics environment? Once
the minimum physics needed for a model to correctly
model magnetic reconnection is determined, the es-
sential physics can be incorporated into the next gen-
eration of large-scale models of space plasma systems
such as the magnetosphere and the Sun. To this end,
we have explored magnetic reconnection in a Harris
current sheet using a variety of 2 1/2 dimensional sim-
ulation models, including full particle, hybrid with
electron inertia, and Hall MHD with and without elec-
tron inertia. We find the following:

1. Full particle, hybrid, and even Hall MHD codes
with no electron inertia produce the essentially iden-
tical reconnection rates. Therefore two fluid simula-
tions with the Hall term may be adequate to produce
realistic reconnection rates in large-scale simulations
of magnetospheric phenomena.

2. During Alfvénic, whistler-mediated reconnec-
tion, the mechanism which breaks the frozen-in con-
dition does not control the rate of magnetic reconnec-
tion.

3. A spatially constant resistivity is insufficient to
balance the reconnection electric field in simulations
of whistler-mediated reconnection. As a consequence,
the electrons will become unmagnetized at the grid
scale, with numerical diffusion balancing the recon-
nection electric field. In order to resolve the inner
electron current sheet using a resistive model, a cur-
rent dependent resistivity or some other higher-order
resistivity is needed.

4. The loops of in-plane current which form dur-
ing whistler-mediated reconnection drag the magnetic
field in such a way that bands of increased magnetic
pressure form along the separatrices. This increased
magnetic pressure expels the unmagnetized ions and
creates a “density depletion layer” along the separa-
trices.

2. Models

2.1. Hall MHD Simulation Model

The equations used to complete the Hall MHD sim-
ulations are as follows:

on

5 =~V (5)
83; 1
5 =~V (JiJi/n) +IxB - V(P + F.), (6)
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5% = —VxE', 9)
E' = ixB' — ﬁxB - lVPe, (10)
n n n
B' = (1-62v%)B, J=VxB, (11)

where v = 5/3, J; = ion flux, u, = 2(J; = J) =
electron velocity, P, = electron pressure, P; = ion
pressure, and 0, = ¢/wpe. Time has been normalized
tot, = Q7' = (eB,/m;c)~!, with B, chosen as the
initial lobe magnetic field. Length has been normal-
ized to L, = c/wp; = c\/m;/(4mn,e?), with n, equal
to the initial current sheet density minus the lobe
density. The velocities therefore are normalized to
the Alfvén velocity. We also assume quasi-neutrality:
n; & ne. The above equations form a closed set. In
Ohm’s law in (10) the J/nxB' term produces the
Hall effect and introduces the scale length ¢/wy; into
the equations. This scale does not appear explic-
itly because it has been absorbed into the normal-
ization. This term as well as the VP, /n term is ab-
sent in MHD. The electron inertia, or electron mass,
in Ohm’s law manifests itself through the term pro-
portional to 42 in the definition of B’. In normalized
coordinates, d. = /m./m; and is treated as a spa-
tially constant free parameter. At the end of each
time step, B is unfolded from B’ using fast Fourier
transforms.

Because ¢/wpe in reality has a dependence on den-
sity, treating J. as a spatially constant parameter
leads to an artificial thinning of the electron current
sheet by a factor of 2 in the hybrid and Hall MHD
simulations compared with the full particle model.
Since this study is primarily focused on the minimum
physics necessary to get realistic reconnection rates,
this thinning can be considered a further test of the
hypothesis that the reconnection rate is unaffected by
the specifics of the electron dissipation.

A sixth-order k space diffusion is added to (9) to
prevent energy from piling up at the grid scale. Be-
cause of the high order of the operator, it is negligible
at the physical scales in the system. The strong de-
pletion of the density just downstream of the separa-
trix (associated with in-plane Hall currents) created
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numerical problems which required the addition of
second-order diffusion to (5), (7), and (8) to keep the
pressures and densities from going negative. The re-
sults were cross-checked to insure that this diffusion
did not affect the reconnection rates. The “density
depletion layer” will be defined and discussed later in
this paper.

2.2. Hybrid Simulation Model

The hybrid simulation model is very similar to
the Hall MHD model, except that the ions are now
treated as particles. The fluid equations that are
evolved are unchanged from those in (8)-(11).

The equations used to step forward the particles
are

dXz'

dt

=V, (12)

dV,’
dt

=E" + vixB, (13)

where x; and v; are the position and velocity of the
ith ion particle and E” = —u,xB — 1 VP,. Note that
we neglect the finite electron inertial correction to the
electric field which is used to step the ions forward in
time because this correction only becomes important
at spatial scales of ¢/wp.. Changes in the electric field
over a distance of ¢/wpe have very little effect on the
motion of the ions because of their large mass. Be-
cause whistler waves in the electron fluid have a much
higher velocity than waves associated with the ions,
the time step for the fluid is taken to be much smaller
than that of the ions [Mandt et al., 1994], the fluid
time step being typically 1/50 to 1/100 of the ion par-
ticle time step. At the end of each ion time step, the
ion moments on a grid cell are determined by adding
density and flux from each nearby particle.

2.3. Full Particle Model

The full particle model is fully electromagnetic;
that is, it includes light waves and plasma oscillations.
The field equations for this code are

-

5 = ~VxE, (14)

%—];3 = [VxB-J; +7J.], (15)



where J; and J, are the ion and electron bulk currents
which are determined by summing the individual par-
ticles onto the grid. The normalizations are the same
as for the hybrid and Hall MHD codes, and ¢ is the
normalized speed of light: ¢ = ¢/(L,/t,) = ¢/ca.
The individual particle equations of motion are

% = Vij (16)
%£i=[E+vuxBL (17)
Bl vy, (18)

d;:j =- me}m,- [E +ve;xB], (19)

where x; j and vi; are the position and velocity of
the jth ion particle. The particle electron positions
and velocities are denoted similarly. The values of
E and B at the location of each particle are interpo-
lated from nearby grid points. Because grid-scale elec-
tron plasma oscillations have a smaller frequency than
grid-scale light waves, the field can be sub-stepped.
For the simulations presented in this paper ¢ = 25,
and there are six field times steps for every particle
time step.

3. Initial Conditions

The initial conditions are described in detail in
the introductory paper of the Geospace Environ-
ment Modeling (GEM) challenge project. Briefly, this
study examines the dynamics of the reconnection of a
Harris current sheet with a background lobe density
of 0.2. The simulations are 2 1/2 dimensional and
the simulation size is 25.6 x 12.8 in normalized coor-
dinates. The boundary conditions are periodic along
the z direction, with conducting walls along the z di-
rection so that no flux can enter or leave through the z
direction. A small magnetic perturbation is included
in the initial conditions to form an initial magnetic
island. However, The perturbation is large enough
that random perturbations associated with the par-
ticle simulations will not change the location of the
x line significantly, allowing easy comparison between
Hall MHD, hybrid, and full particle simulations. The
intent is for the system to be in a nonlinear regime
from the outset so the differing growth rates of the
linear tearing mode in the various models do not ob-
scure the underlying common nonlinear physics.

4. Results

Figure 1 is a plot of the reconnected flux, that is,
the integrated magnetic flux ¢ between the x line and
the o line, versus time for the three types of simula-
tions done in this study: full particle, hybrid, and
Hall MHD. All three simulations have m,/m; = 1/25
on a 512 x 256 grid. The slope of these lines gives
the reconnection rate, which is equal to Ey. In all
three cases, the reconnection proceeds very slowly
until about ¢t ~ 10Q; ", when the reconnection rate
sharply accelerates. The sharp increase of the recon-
nection rate has been observed in other simulations of
reconnection [Horiuchi and Sato, 1997; Ma and Bhat-
tacharjee, 1996]. The reconnection then proceeds at
a relatively steady rate until the island saturates.
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Figure 1. Reconnected magnetic flux (¢/1,) versus
time for full particle, hybrid, and Hall MHD simu-
lations, where ¥, = B,L,, and B, and L, are the
normalization magnetic field and length scale.

All of the simulations in Figure 1 have the same
parameters and the electron inertia is the same. The
type of model used does not have a substantial impact
on the gross reconnection rates observed, although
there are some subtle differences. For example, the
full particle simulation takes longer for the onset of
reconnection, and the Hall MHD simulation recon-
nects more flux before saturating.

Figure 2 is a plot of various moments of a hybrid
run with m./m; = 1/100 on a 1024 x 512 grid at
t = 20Q;'. At this point in time, the amount of
normalized flux that has reconnected is 2.0%),, where



» = B,L,, and B, and L, are the normalization
magnetic field and length scale. The simulation do-
main actually extends to z = +6.4. The x line struc-
ture is clearly visible in Figure 2a, which is a contour
plot of magnetic flux v, whose contours are parallel
to the in-plane magnetic field lines. Here ¢ is defined
such that B, = yx V1), where the 1 denotes in-plane
components. Magnetic flux reconnects at the x line
near (z,z) = (0,0) and forms flux bubbles around
the o lines near (z,z) = (£12.8,0), which expand

|

LR RN BB

Figure 2. Results from a hybrid run with m./m; =
1/100: (a) Magnetic field lines, (b) ion in-plane flows,
(c) density, (d) ion out-of-plane current, (e) electron

out-of-plane current, and (f) out-of-plane magnetic
field.
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outward and compress the magnetic flux against the
reflecting walls at z = £6.4. The in-plane ion flow is
consistent with this motion of the fields lines, as seen
in Figure 2b. The ions flow inward toward the x lines
along the z direction and then are accelerated along
the outflow direction, which is along z. Not all of the
ions pass through the region close to the x line before
accelerating along z. Many are accelerated along x by
shock-like structures near the separatrices.

0.000174536 0.929192




Figure 2c is a plot of the density. At this time,
all of the flux associated with the initial high-density
current sheet has reconnected and flowed into the flux
bubbles around the o line. The reconnecting plasma
now has a much lower density. Almost all of the cur-
rent at the x line is carried by the electrons, as shown
in Figures 2d and Figures 2e, which are plots of the
ion and electron out-of-plane currents, respectively.
The only noticeable ion current is in the flux bub-
bles around the o line and is left over from the initial
conditions. The electron current near the x line has
very fine-scale structure at scales of the electron skin
depth, ¢/wy.. Very close to the x line, there is a very
thin electron current sheet slightly elongated along
the z direction. Farther away from the x line, this
current sheet splits into wings which basically map
out the separatrices. Owing to the Hall term, which
becomes important at scales < ¢/wy;, the physics of
whistlers become important in the region near the x
line. This whistler physics induces out-of-plane mag-
netic fields, which take on a quadrupole structure
as shown in Figure 2f [Sonnerup, 1979; Terasawa,
1983; Mandt et al., 1994].

5. Role of the Electrons

Although the ions become unmagnetized at scale
lengths below c¢/wp;, the electrons remain frozen-in
until much smaller scales because of their smaller
mass and thus smaller effective Larmor radius. In
a fluid description of the electrons with scalar pres-
sure and no large axial field, the frozen-in constraint
is finally broken and magnetic topology is allowed to
change when the scale sizes in the system approach
¢/wpe. Changing the electron mass therefore has the
effect of changing this scale size. However, owing to
the physics introduced with the Hall term in Ohm’s
law, neither the electron mass nor the physical model
used to describe the electron dissipation has any ef-
fect on the gross reconnection rate. Although the re-
connection rate stays the same, the dynamics of the
electrons can change significantly depending on the
physical model used, as will be shown in this section.
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Figure 3. Reconnected magnetic flux (¢/1,) versus
time for hybrid simulations with different values of
Me M.

Figure 3 is a plot of the reconnected flux versus
time for four different values of the electron mass. The
electron to ion mass ratio is varied from 1/9 to 1/100,
with little effect on the gross reconnection rate. This
change in the electron mass does have a large affect
on the electron dynamics at small scales, however, as
is shown in Figure 4, which contains plots of electron
out-of-plane current for two different electron masses.
Both of these plots are taken at a time when 2.0 9,
of magnetic flux has reconnected. Figure 4a is a hy-
brid simulation with me/m; = 1/100 (the same plot
as Figure 2e), and Figure 4b is a hybrid run with the
same parameters except m./m; = 1/9 on a 512 x 256
grid. The thin current sheet near the x line is signif-
icantly broader in both the x and z directions in the
case where m, is larger. The wings of current which
fan out from this current sheet also broaden when m,
is increased.



Figure 4. The electron out-of-plane current for hy-
brid simulations with (a) m./m; = 1/100 and (b)
me/m; =1/9.

In the limit of zero electron mass, the scale size of
the electron layer in these simulations is determined
by a hyper-resistivity (sixth-order dissipation in the
magnetic field equation). The reconnection rate, how-
ever, remains unchanged from the case with finite
electron mass. Figure 5 is a plot of the reconnected
flux versus time for two Hall MHD simulations, one
with m./m; = 1/25 and one with m./m; = 0. Both
simulations are on a 512 x 256 grid. Although the run
with m./m; = 0 requires more time before the sharp
onset of fast reconnection occurs, the two runs have
virtually identical maximum reconnection rates and
saturation values of reconnected flux.
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Figure 5. Reconnected magnetic flux (1/v,) versus
time for Hall MHD simulations: m./m; = 1/25 (solid
line) and m./m; = 0 (dotted line).

It was shown in section 4 that the type of simu-
lation used does not change the gross reconnection
rate significantly. The electron response at small
scales, however, can be very different depending on
the model. In Figure 6, the electron out-of-plane cur-
rent is plotted for the different types of simulations
in this study: (Figure 6a) hybrid m./m; = 1/25,
(Figure 6b) Hall MHD m./m; = 1/25, (Figure 6c)
Hall MHD m,/m; = 0, and (Figure 6d) full parti-
cle me/m; = 1/25. All plots are taken at times when
2.0¢p, of magnetic flux has reconnected and all the
simulations are on a 512 x 256 grid. The hybrid
and Hall MHD cases with nonzero electron mass, Fig-
ures 6a and 6b, have central electron current sheets
which are about the same size. The intensity of elec-
tron current density at the x line is also the same. In
Figure 6¢c where m, = 0, however, this current sheet
has collapsed down to the grid scale in both direc-
tions, and the current at the x line is much larger.
In addition, the small-scale fluctuations in the down-
stream region, present in all of the cases with finite
electron mass, are absent. These fluctuations are be-
lieved to be caused by the electron inertia convective
term in Ohm’s law, which introduces shear flow in-
stabilities into the problem [Drake et al., 1997].



Figure 6. The electron out-of-plane current for dif-
ferent types of simulations: (a) hybrid, (b) Hall MHD,
(c) Hall MHD with m, = 0, and (d) full particle.

The electron current sheet for the full particle case
in Figure 6d is broader than the other nonzero elec-
tron mass cases by about a factor of 2 in each di-
rection. This broadening is due to the way in which
¢/wpe effects in Ohm’s law are treated in the hybrid
and Hall MHD simulations. In the fluid electron sim-
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ulations, ¢/wpe = c(4mn,e?/m,)~1/? is a free parame-
ter which is constant in space with n, = 1 in normal-
ized units, where n, is defined as the initial current
sheet density minus the lobe density. In order to use
fast Fourier transforms to unfold B’ into B, where B’
is defined in (11), ¢/wpe must be a constant in space.
In reality, however, n varies in space and early into
the reconnection process, the initial current sheet is
eaten away, and lobe plasma with njpe = 0.2 be-
gins to reconnect. At this point in the full particle
simulation, ¢/wpe near the x line has increased from
its initial value by a factor of \/n,/niehe & 2, which
explains the difference in the electron current sheet.
However, even with this factor of 2 increase in ¢/wp.,
in the full particle simulation, the reconnection rate
differs only insignificantly from the Hall MHD and
hybrid simulations, as was shown in Figure 1.

6. Effect of Whistlers on Electron
Dynamics

From the section 5, it is clear that the process
which breaks the frozen-in constraint in the very nar-
row electron layer has no impact on the reconnection
rate, consistent with previous studies [Biskamp et al.,
1997; Shay and Drake, 1998; Hesse et al., 1999]. The
underlying physics is linked to the different disper-
sion character of the whistler and Alfvén waves. In
all of the simulations which include the Hall effect and
where there is no strong axial guide field, the struc-
ture of the electron dissipation region is controlled by
whistler rather than Alfvén dynamics because this re-
gion has an intrinsic-scale length which is well below
the ion inertial length, ¢/wy;. The electron dissipation
region is defined as the area close to the x line, where
the electrons are not frozen-in. The quadratic disper-
sion character of the whistler wave (w ~ k?) leads to
an increase in the phase speed with decreasing scale
size and therefore to an increase in the velocity at
which the electrons can be ejected from the x line as
the scale size of the electron dissipation region de-
creases. The consequence is that in contrast to the
resistive MHD scaling in (1), the whistler dynamics
lead to an inflow velocity which is independent of the
width of the electron dissipation region. This can be
shown by carrying out a Sweet-Parker-like analysis
of the electron dissipation region using the whistler
equations.

We take the width of the layer in the inflow (2)
direction, 4, to be controlled by an unspecified mech-
anism which breaks the electron frozen-in condition



and the length in the outflow (z) direction to be L.
In the whistler regime the electrons are frozen-in to
the magnetic field, and the ion motion can be ne-
glected. The resulting dynamical equations in a two-
dimensional(2-D) system are [Biskamp et al., 1997]

oY _ 0By _
E—I—VC-V’(ﬁ—O, W_B'vvey_o (20)
_ C N a2
Ve =~ (VByx§ +§V=1) (21)

where B = §xV9+B,§. The outflow velocity follows
from the z component of (21), ve; ~ cBy/(4mned).
The out-of-plane field B, arises from bending the in-
plane field. The source (~ Bgvey /L) acts for a time of
the order of the convection time out of the dissipation
region ~ L/vey 50 By ~ B,vey [ve;. Combining these
relations and eliminating v, using (21), we obtain
By ~ By, ey ~ ey and the electron outflow veloc-
ity vey ~ Q.02/3, which is the whistler analogue of
the Alfvén outflow condition in MHD. The important
point is that this outflow velocity scales inversely with
the width of the dissipation region. Applying conti-
nuity (vegd ~ v;L), the inflow velocity is given by

1
Vin ~ z&gﬂe. (22)

The reconnection rate is independent of § and there-
fore the mechanism by which the electron frozen-in
condition is broken. The reconnection rate remains
finite even as 6 — 0.

Velocity

-1.0 -0.5 0.0 0.5 1.0

Figure 7. A cut along z of the electron inflow veloc-
ity (solid line) and the electron ExB velocity (dashed
line). The electron dissipation region begins where the
two diverge.

We now use the above physical arguments to ex-
amine the electron dissipation region in the hybrid

10

runs in Figure 3. In these runs, the frozen-in con-
straint for the electrons is finally broken by electron
inertia, so the width of the dissipation region should
scale like ¢/wpe. The electron dissipation region, de-
fined as the region near the x line where the frozen-
in constraint for the electrons is finally broken, is
roughly coincident with the intense electron current
sheet, an example of which is shown in Figure 4a. In
this case the electron dissipation region has a width
along z of = 2 ¢/wpe and a length of ~ 10 ¢/wpe, with
¢/wpe = 0.1 in normalized units. The width along
z can be determined more precisely by comparing
the inflow electron velocity with the ExB drift speed
along z. When the two diverge, the electrons are no
longer frozen-in. Figure 7 is a cut along z of the elec-
tron inflow speed (solid line) and the ExB drift speed
(dashed line) for a hybrid run with m,/m; = 1/64 on
a 1024 x 512 grid. The ExB drift speed is defined as
vg. = E,/B, in normalized coordinates. In making
these plots, the values have been averaged over the
range z = [—0.25,0.25] in order to reduce noise. In
all of the hybrid simulations at this point in the recon-
nection process, Ey ~ 0.20. In this case, the electron
dissipation region extends from z = +0.16. Figure 8a
is a plot of & versus c/wpe from the four different hy-
brid simulations. The dashed line has a slope of 0.93.
Clearly, the width of the electron dissipation region
scales with ¢/wpe.
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Figure 8. The response of the inner electron layer to
changes in electron mass: (a) width along Z of the elec-
tron dissipation region versus ¢/wpe, (b) length along
% of the electron dissipation region versus ¢/wpe, (c)
electron Alfvén speed versus electron outflow speed,
and (d) B2/L versus ¢/wpe.

Along the outflow direction (%), the length of the
dissipation region is determined by the location of
maximum electron outflow. Assuming a rectangu-
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lar dissipation region, the electron outflow must be
a maximum at the outflow edge of the electron dis-
sipation region in order to conserve total mass. Be-
yond the electron dissipation region, the electron flow
diverges, decreasing the outflow speed. Figure 9 is
a cut along X of the electron outflow speed for the
largest and smallest electron mass runs in Figure 3.
These values have been averaged for three grid points
around z = 0 to reduce noise. Not only does the
length along %X of the electron dissipation region in-
crease significantly as the electron mass is increased,
but the maximum outflow speed decreases consider-
ably. In Figure 8b, this length along z is plotted
versus ¢/wpe, and there is clearly a strong correlation
between the two.
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Figure 9. Slices of electron outflow speeds along x for
two different electron masses: m./m; = 1/100 (solid
line) and m./m; = 1/9 (dotted line).

Setting § = ¢/wpe in the Sweet-Parker analysis of
the electron dissipation region, the electron outflow
speed is

B,
Vout = Vex ~ CAe = \/—7
4drnm,

where B, is the inflow magnetic field. That is, B,
is measured at the location in Figure 7 where the
electron ExB drift speed diverges from the electron
inflow speed. The density n inside the electron dissi-
pation region is 0.2 because at this point in time it is
lobe magnetic flux which is reconnecting. Figure 8c is
a plot of the maximum electron outflow (veyut) versus
cae- The electron outflow speed scales like the elec-
tron Alfvén speed, which is the primary reason that
the reconnection rate is independent of the electron
mass. As the electron mass decreases and the electron
dissipation region gets narrower, the electron outflow

(23)



speed increases and compensates. There is no elec-
tron bottleneck.

A final check of the scaling laws for the electron dis-
sipation region can be done by comparing the inflow
rate given by the geometry of the dissipation region
in (22) with the ExB drift speed, cE, /B,, where E,
is the measured reconnection electric field. Equating

the two yields,
B? 1
B, ~ B [ ] . (24)

L |4mne

All of the values in the bracket in the right-hand
side are unchanged between the simulations. Because
the reconnection electric field remains constant as the
electron mass is varied, B2/ L should also remain con-
stant. Figure 8d is a plot of B2/L versus c¢/wpe. The
best fit line (dashed line) is almost horizontal, con-
firming the basic scaling relations.

The involvement of whistler dynamics in kinetic
reconnection has further implications for modeling
high-temperature reconnection. Specifically, it im-
plies that during fast, whistler mediated reconnection,
resistivity is not adequate to balance the reconnection
electric field in the electron dissipation region unless
the resistivity is excessive. In other words, in a Hall
MHD or Hybrid simulation of reconnection where the
only mechanism to break the frozen-in constraint is a
relatively small value of constant resistivity, the elec-
tron dissipation region will collapse down to the grid
scale.

In order to illustrate the collapse, we examine the
conditions required for resistive drag to balance the
reconnection electric field, i.e.,

By ~nlJy. (25)

We will show that (25) cannot be satisfied during
whistler mediated reconnection unless 7 becomes ex-
tremely large. The reconnection electric field E, also
determines the inflow speed of the electrons into the
electron dissipation region due to their ExB motion:
where B, is the magnetic field at the inflow edge of the
electron dissipation region. The Sweet-Parker phys-
ical scaling arguments used to derive (22) are valid,
so that vy, ~ (§/L)(629,/6). In all of the simulations
in this study, § appears to scale roughly with L such
that §/L is of the order of 1/5. Substituting, we find
that

nct 1§20, 1

P R

(27)
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The left-hand side of the equation is the rate of dif-
fusion due to the constant resistivity, and the right-
hand side is the frequency associated with the whistler
waves which accelerate plasma away from the electron
dissipation region. Both sides of the equation scale
like 1/62, so even as § — 0, the resistive diffusion rate
will not be able to overpower the whistler frequency
unless nc?/(4n) ~ 1/582Q,, which can be rewritten
Vei ~ /5, using n = mv,;/(ne?). For such a value
of the electron collision rate, electrons are nearly un-
magnetized everywhere. In MHD, on the other hand,
the right-hand side of (27) scales at most like c4/d
so that as 0 becomes small the resistive diffusion will
always overpower the Alfvén wave and balance the
reconnection electric field.

In summation, the high-speed whistler waves
present at small scales render classical resistivity in-
effective at balancing the reconnection electric field
during whistler-mediated reconnection. In order to
balance this electric field with a resistive model, a
current dependent resistivity or a higher-order resis-
tivity (V™ with n > 4) is needed. This conclusion
is consistent with resistive Hall MHD simulations of
the GEM reconnection challenge problem [Birn and
Hesse, this issue].

7. Role of the Ions

The dynamics of the electrons in the inner electron
current sheet do not control the rate of reconnection.
This rate is instead determined by the larger-scale
ion dynamics [Shay et al., 1999]. Changing from fluid
to particle ions leads to substantial changes in the
structure of the ion acceleration region just down-
stream of the x line. The surprise is that these dif-
ferences are not reflected in differences between the
rates of magnetic reconnection in the two models.
Figure 10 compares flows and the particle density for
a hybrid simulation and a fluid simulation, both with
me/m; = 1/25 on a 512 x 256 grid. The Hall MHD
simulation is on the left and the hybrid simulation
is on the right, with plots of ion bulk flow velocities
(Figure 10a), ion out of plane current(Figure 10b),
and density(Figure 10c). In the fluid ion case, all of
the ion flows are much more intense and are gener-
ally more spatially localized. For example, the ion
outflow channel away from the dissipation region is
almost twice as wide in the hybrid case, with the
maximum ion outflow being about half that of the



fluid model. These two changes offset each other,
making the flux out about the same, which is why
the reconnection rate is unchanged between the two
simulations as was shown in Figure 1. Similarly, the
out-of-plane current in Figure 10 is less intense and
has less small-scale structure in the case with particle
ions. The scales for the particle ions are increased due

0.000349034 2.14758
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Figure 10. Comparison of fluid ions with particle
ions: A Hall MHD simulation (left) and a hybrid sim-
ulation (right): (a) ion in-plane velocities, (b) ion out-
of-plane current, and (c) density.

8. Density Depletion Layer

In simulations of reconnection which include Hall
physics, circular loops of current form near the sepa-
ratrices which create the quadrupole structure of the
out-of-plane magnetic field. These loops of current,
which are effectively electron flows, drag the mag-
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to orbit effects, which tend to mix the ions spatially
and generally smooth the ion moments [Laval et al.,
1966; Dungey, 1988; Burkhart et al., 1990; Shay et
al., 1998]. These finite orbit effects are of course not
present in the Hall MHD simulations which allow the
ion flows to contract down to smaller spatial scales.

0.00104598 1.00617
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netic field in such a way that the in-plane magnetic
field compresses at the separatrices, giving rise to a
band of increased magnetic pressure with a thickness
of about a c/wp;. Although at this scale the electrons
feel no magnetic pressure, the unmagnetized ions do,
and these ions are expelled perpendicular to the field



lines, causing a “density depletion layer.”

Figure 11. Density for a Hall MHD run with
me/m; = 1/25. Note the dark bands of low density.

Figure 11 is a plot of the density for the m./m; =
1/25 Hall MHD simulation. The color table has been
skewed to bring out variations in lower values of den-
sity. The black wings which follow the shape of the
separatrices are the region of interest. The density in
these bands is as low as 0.03, very much reduced from
the initial lobe density of 0.2. In the hybrid and full
particle simulations, these density depletion layers are
also present but are somewhat weaker due probably
to finite ion and electron larmor radius effects: In the
hybrid case, the density decreases to 0.1, and in the
full particle case, the density decreases to 0.15. Coin-
cident with this band of low density is an increase in
magnetic pressure, which is shown in Figure 12, whose
color table has also been skewed to highlight this re-
gion. This density depletion layer causes numerical
problems in fluid simulations because when the den-
sity becomes very small, it can easily become negative
due to the finite accuracy of the time-stepping scheme
for the density equation. Once the density becomes
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negative, the simulation soon crashes. This density
depletion layer does not pose a numerical problem in
the hybrid and full particle simulations because the
density cannot go negative in a particle-in-cell code.

Figure 12. Magnetic pressure for a Hall MHD run
with m./m; = 1/25. Note the white bands of high-
magnetic pressure.

The thickness of the density depletion layer is of
the order of ¢/wp;, which is the first clue that Hall
physics rather than MHD physics is responsible for
this phenomenon. In this region near the separa-
trix, the in-plane flows are dominated by high veloc-
ity electron streams along the field lines which are
part of the Hall current system. These Hall cur-
rents can be visualized by looking at contours of By,
which are stream functions of the in-plane currents
because J = ¢/47VxB. Figure 13 shows the contours
of By for the same run as Figure 11. Only the upper-
right quadrant of the simulation is shown. The very
thick black line is the separatrix, and the x line is at
(z,2) = (0,0). These Hall currents have been seen in
a large number of simulations of reconnection, begin-
ning with the work of Terasawa [ Terasawa, 1983].
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Figure 13. The contours of By, which are current
streamlines. The separatrix is the thick line. Note
the currents nearly parallel to B on either side of the
separatrix.

To elucidate the physics responsible for the in-
crease in magnetic pressure, we ignore the ion flow for
the time being and assume that these Hall currents
are actual electron flows; that is, we examine this sys-
tem in the context of electron MHD. Very close to the
x line, the electrons cross the separatrix and then turn
the corner and flow along field lines just inside of the
separatrix. Starting around z = 6, the electrons be-
gin to flow back toward the x line along the field lines,
forming a current loop which straddles the separatrix.
This circular flow pattern generates the quadrupole
By seen in Figure 2f. In the region, z > 6, the frozen-
in upward (along —z) flow of the electrons as they
turn around drags the magnetic field upward. These
outward moving magnetic field lines press up against
the magnetic field lines outside of the separatrix, caus-
ing an increase in the in-plane magnetic field and thus
an increase in magnetic pressure. In an MHD system,
such a local increase in magnetic pressure would be
impossible because magnetosonic waves would quickly
flatten out any increases in magnetic pressure. At the
small spatial scales associated with this Hall current
loop, however, the electrons experience no force as-
sociated with magnetic pressure, allowing the system
to remain in quasi-equilibrium even with a local in-
crease in magnetic pressure. In electron MHD sim-
ulations of reconnection where there is no magnetic
pressure force anywhere, this magnetic pressure spike
can become very large indeed, being equal to twice

the lobe magnetic pressure. In the context of electron
MHD, these current loops and the subsequent com-
pression of the in-plane magnetic field are generated
by whistler waves propagating almost perpendicular
to the magnetic field, which can be shown with a sim-
ple linear perturbation model. In the more realistic
case where the ion flows are not negligible, one ob-
tains essentially the same physics by jumping to the
local moving frame of the ions.

This magnetic pressure spike near the separatri-
ces is manifested as an electric field which expels the
ions. To see this, we examine Ohm’s law near the
separatrices where the electrons are frozen-in:

1 B2
E=-—YxB~x _V
c 4mne 2

+ B-VB] ,  (28)
where the ion flow has been ignored compared to the
electron flow. The local increase of magnetic pres-
sure is manifested as an electric field which points
away from the magnetic pressure peak, perpendicular
to the in-plane magnetic field. Because the ions are
not frozen-in in this narrow region which scales with
¢/wpi, they can respond to this electric field by flowing
away from the magnetic pressure peak, perpendicu-
lar to the magnetic field lines. This flow depletes the
density until force balance is achieved such that

B2
o TPt PO (29)



9. Comparison with Observations

The theory of fast, Hall reconnection examined in
this study raises two clear observational questions,
Are the reconnection rates comparable to those in-
ferred from magnetosphere observations and are there
any signatures of fast, Hall reconnection that would
be discernible from single satellite data? In this sec-
tion, we examine both of these issues.

The average electric field in these simulations is
= 0.25 in normalized units, which corresponds to an
inflow speed of v;, =~ 0.1ca, where c4 is the Alfven
speed in the region of inflowing plasma upstream of
the dissipation region. Is this reconnection rate large
enough to describe reconnection rates inferred from
magnetosphere observations?

If reconnection at the magnetopause is driving flow
across the polar cap, this 0.1c4 inflow speed should
be large enough to predict the cross polar cap po-
tential. The Alfvén velocity on the magnetosphere
side of the magnetopause can be 50 times larger than
c4 in the solar wind, so that the reconnection rate
at the magnetopause is almost assuredly limited by
the solar wind Alfvén speed. Taking B ~ 40 nT and
n ~ 10 cm™2, the Alfvén speed is 280 km s~!. Us-
ing vin/ca &~ 0.1, the reconnection electric field is
0.7 mV m~!, which is comparable to observational
estimates of the electric field tangential to the mag-
netopause [Sonnerup et al., 1990]. Taking the length
of the magnetic merging line to be around 12 Rpg
[Scurry et al., 1994], the cross-polar potential drop is
= 40 kV, which is of the same order as the measured
50 kV average polar cap potential drop [Reiff and
Luhmann, 1986].

The reconnection rates found are also consistent
with timescales associated with the release of mag-
netic energy stored in the lobes during the expan-
sion phase of substorms. Taking a lobe density of
0.05 cm™3,B ~ 15 nT, we calculate that cy =
1500 km s~! and that the inflow velocity into the x
line is of order 150 km s~!. In 10 min a significant
fraction of the lobe flux can be reconnected.

Are there any particular signatures, besides the
rate of reconnection which could be used to test the
validity of this theory? One of the most obvious is
the quadrupole out-of-plane magnetic field induced
by the reconnection process. This magnetic field
continues to manifest itself in more realistic mod-
els(B. N. Rogers, J. F. Drake, and M. A. Shay, The
onset of turbulence in three-dimensional collisionless
magnetic reconnection, submitted to Geophysical Re-
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search Letters, 2000)(hereinafter referred to as Rogers
et al., submitted manuscript, 2000). As only individ-
ual satellite data is available for the magnetic field, it
is very difficult to determine if a coherent quadrupole
structure has been established around a reconnection
point in the magnetosphere. However, large field-
aligned electron currents near the dissipation region
would be a good indication of whistler-mediated re-
connection. In addition, these field-aligned currents
should be coincident with a decrease in the density
associated with the density depletion layer. Such a
signature should be discernible with current satellite
data.

10. Conclusion

Recently, a model of collisionless reconnection has
emerged which relies on the dynamics of whistler
waves due to the Hall term in the kinetic Ohm’s law
(10) to facilitate fast reconnection. In order to test
this model and determine the minimum physics neces-
sary to produce realistic reconnection rates, a series of
simulations were performed using Hall MHD, hybrid,
and full particle codes. The results show conclusively
that the Hall term is the minimum physics necessary
to achieve realistic reconnection rates. As long as the
Hall term is included, the gross reconnection rates are
the same, whether the code is full particle, hybrid, or
Hall MHD.

In addition, the reconnection rate is shown to be
independent of electron mass. Owing to the quadratic
dispersion character of whistler waves, the outflow
speed of the electrons scales like the electron Alfvén
speed. As the electron mass is reduced, the electron
outflow merely increases to compensate, eliminating
any bottleneck of electrons which could limit the re-
connection rate. In fact, when m, = 0, the electron
dissipation region simply collapses down to the grid
scale, with no effect on the gross reconnection rate.

Also owing to whistler physics, a density deple-
tion layer forms just outside the separatrices where a
pile-up of magnetic flux due to the Hall current loops
expels unmagnetized ions. In simulations with fluid
ions, this decrease in density is quite strong and can
cause numerical problems. The observation of such
a depletion layer coincident with strong B-parallel
electron flows during satellite crossing of the outflow
region during magnetic reconnection in the magne-
tosphere would confirm the importance of non-MHD
physics during collisionless magnetic reconnection.

Although the results from this study are very



promising, there remain unanswered questions about
the generality of the results. Specifically, the effects
of a guide field along the y direction and the addition
of a third dimension need to be examined. When a
large, spatially constant guide field B, is added to
the reconnection configuration, whistlers are replaced
by kinetic Alfvén waves as the dominant dynamical
ingredient at the scales of the dissipation region. In
the kinetic Alfvén regime, ps; = \/Te/m;/(eBy/m;c)
replaces c/wp; as the relevant scale size of the dissi-
pation region [Kleva et al., 1995; Drake, 1995]. Al-
though initial results indicate that the presence of a
guide field does not slow the reconnection rate signif-
icantly [Kleva et al., 1995; Pritchett, this issue], a
thorough investigation needs to be done.

When a third dimension is added to reconnection
simulations, the intense electron current sheets be-
come electron kelvin-helmholtz unstable [Drake et
al., 1997]. The density variation at the separatrix can
also be unstable to the lower hybrid instability, and
the kinetic kink instability may cause large-scale per-
turbations to the current sheet [Zhu and Winglee,
1996; Pritchett et. al., 1996; Bichner and Kuska,
1997]. The perturbations associated with these insta-
bilities could widen the current sheet and wash out
small-scale effects such as the density depletion layer.
However, initial results indicate that even though tur-
bulence can develop in three dimensional(3-D) recon-
nection, whistlers remain fundamental to the recon-
nection process, and the gross reconnection rate is un-
changed. Therefore the quadrupole structure of the
induced B, remains, though turbulent flows strongly
modulate the crisp structures seen in 2-D (Rogers et
al., submitted manuscript, 2000). The density de-
pletion layer similarly survives, although it is shred-
ded by fluctuations associated with the lower hybrid
drift instability (Rogers et al., submitted manuscript,
2000).
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