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Power spectrum of passive scalars in two dimensional chaotic flows
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In this paper the power spectrum of passive scalars transported in two dimensional chaotic fluid
flows is studied theoretically. Using a wave-packet method introduced by Antonsenet al., several
model flows are investigated, and the fact that the power spectrum has thek21-scaling predicted by
Batchelor is confirmed. It is also observed that increased intermittency of the stretching tends to
make the roll-off of the power spectrum at the highk end of thek21 scaling range more gradual.
These results are discussed in light of recent experiments where ak21 scaling range was not
observed. ©2000 American Institute of Physics.@S1054-1500~00!00701-1#
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Transport of passive scalars„such as impurities… is im-
portant in a number of areas including geoscience,
weather prediction, and control of industrial pollutants.
When an external long wavelength source continually in-
jects passive scalars into a chaotic flow, small spatia
structures will develop due to the straining motion in the
flow. Thus the time asymptotic state contains a broad
range of length scales. In this paper we numerically in-
vestigate the wave number„k… power spectrum of a pas-
sive scalar field. Our results are in good agreement with
Batchelor’s theoretical prediction of the scaling of the
power spectrum as kÀ1 until a high k diffusive cutoff
region. We find that the k dependence of the spectrum in
the cutoff region depends on the properties of the flow„in
particular intermittency of the flow has an important ef-
fect…. A theory based on chaotic straining of wave packets
is employed to explain these observations.

I. INTRODUCTION

We consider passive advection of a weakly diffusi
scalar quantity~e.g., temperature or the concentration of
impurity! in an irregular, time varying fluid flow. Due to th
straining motion of the flow, small fluid regions are stretch
and eventually folded as time evolves. As a result, finer
finer spatial structure of the scalar can be created. At su
ciently small length scale microscopic diffusion is significa
and arrests the creation of smaller scale structures.

This process can be investigated by examining the w
number power spectrum of the passive scalar, which is
Fourier transform of the correlation function defined by

C~rW,t !5^f~xW1rW,t !f~xW ,t !&2^f~xW ,t !&2, ~1!

a!Also at Department of Electrical Engineering.
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wheref(xW ,t) is the passive scalar.
One can introduce the one dimensional power spect

by averaging over all directions, i.e.,

F~k,t !5E dDkW8

~2p!D d~k2ukW8u!C̄~kW8,t !, ~2!

whereD is the dimensionality of the integral domain and

C̄~kW8,t !5E dDrW C~rW,t !exp~2 ikW8•rW ! ~3!

is the D-dimensional power spectrum. Thef variance is
transported from small wave numbers to large wave numb
and dissipated at the upper end of thek spectrum. The cutoff
of the power spectrum is determined by diffusivity. We a
interested in the power spectrum that results when a tem
rally steady external source varying on some length scaL
continually injects scalar into the fluid.

For turbulent flows with high Schmidt number~n/k,
wheren is the kinematic viscosity, andk is the diffusivity of
the scalar!, there is a range of wave numbers for which t
flow energy has dissipated, while the diffusivity is still ne
ligible. Put another way, there is a range of scalar leng
over which the flow is smooth but the scalar has rapid va
tions. This range is called the viscous-convective range.
power spectrum in the viscous-convective range has b
predicted by Batchelor1 to have the formF(k);1/k. This
relation is widely known as the Batchelor’s law. We no
that Batchelor’s reasoning is not confined to high Reyno
number turbulent flows. In particular, the requisite stretch
is also present in low Reynolds number flows that are
grangian chaotic.

A number of experiments2 and numerical simulations3

have been carried out to check Batchelor’s law. Howev
the results were inconclusive. For example, recent exp
ments of Williamset al. 4 have found a significant deviatio
© 2000 American Institute of Physics
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40 Chaos, Vol. 10, No. 1, 2000 Yuan et al.
from Batchelor’s law. These experiments were performed
a pseudo two dimensional turbulent flow. In their da
Batchelor’s law holds, if at all, only at the very beginning
the viscous-convective range, where the flow can be e
sioned as resulting from localized vortices.

In this paper we study Batchelor’s law in two dime
sional incompressible chaotic flows, using a wave-pac
method introduced by Antonsenet al.5,6 Based on this
method we derive a simple form of the power spectrum@Eq.
~16!# for flows in which intermittency of stretching is no
negligible. To test our prediction we study three differe
model flows. The first model~Sec. III A! is a spatially peri-
odic temporally irregular flow whose velocity field consis
of a few sinusoids with wavelengthL. The second mode
~Sec. III B! is a flow generated by a small number of se
consistently evolving point vortices in a circular cylinde
Aref 7 noticed that chaotic flows can be generated by a
vortices. His observation makes it possible for us to us
simple Lagrangian representation to study chaotic flows.
vortex flow model is designed in the same spirit and is
tended to be more similar than the first model to the flows
the Williamset al. experiment. The two models differ in th
distribution of stretching for different areas of the fluid. Th
first model has a relatively uniform distribution of stretchin
whereas the flow generated by self-consistently evolv
vortices can have stretching that is intermittent, that is,
ferent regions of the flow have greatly different stretchi
rates. Thus, for those fluid elements that repeatedly visit
ferent regions, the rate of stretching varies greatly along t
trajectories. For both models, we observe thek21-scaling
range. For the third model~Sec. III C! we generate a velocity
field adjusted to be similar to that in the experiment of W
liams et al. by solving the initial value problem of the
Navier–Stokes equation. We then obtain the power spect
by taking the Fourier transform of the solution of the pass
scalar partial differential equation~PDE! for f(xW ,t). These
results are found to be in good agreement to results obta
for the same flow by use of the wave-packet method. Ag
we observe a cleark21 scaling range.

In the paper of Williamset al.,4 three possible reason
that might explain the observed absence of a cleark21 scal-
ing are mentioned:~1! intermittency of the flow;~2! residual
three dimensional variations in the passive scalar flow
their supposed two dimensional configuration;~3! the local-
ization of the scalar source and sink near the boundarie
the fluid. Our results strongly suggest that~1! is not a tenable
reason. Nevertheless we do find a significant effect of in
mittency. In particular, increased intermittency tends to m
the roll-off at the end of thek21 scaling range more gradua
This role of stretching intermittency has already been d
cussed by Kraichnan.8

II. WAVE-PACKET METHOD

In previous work a wave-packet method was introduc
for the study of passive scalar dynamics,5,6 and numerical
experiments with this method were shown to be in clo
agreement with full numerical solutions of the PDE gove
ing the passive scalar@Eq. ~4! below#. Since the wave-packe
n
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method is much less computationally costly and since
gives insight into the physical mechanisms controlling t
power spectrum, we use it as the basis of our study in
paper. ~Section III C contains a comparison of the wav
packet method and direct solution of the passive scalar
tial differential equation.!

We now review aspects of the wave-packet method t
are important for our current work. The transport equat
for a passive scalar fieldf(xW ,t) is

]f

]t
1vW ~xW ,t !•¹f5k¹2f1Sf~xW ,t !, ~4!

wherevW (xW ,t) is the velocity field, andSf(xW ,t) represents an
external source. We assume the fluid flow is incompressi
¹•vW [0. Neither the source nor the velocity field is affect
by f.

At a length scale that is much smaller than the variatio
of Sf , the distribution of the scalar can be treated as c
sisting of a large number of sinusoidal wave packets, wh
are themselves convected by the fluid flow and are affec
by diffusion. At a fixed time t, f5S jf j , where f j

5Aj sin(kW j•xW1uj) represents thef distribution on the j th
wave packet~Aj varies on a length scalel !L that is much
larger thanukW j u21 and localizesf j in space!. In these terms,
the power spectrum has the form of

F~k,t !5(
j

F j~k,t !5(
j

wj~ t !d l ~k2ukW j~ t !u!, ~5!

wherewj (t)5*f j
2 dDx, andd l (k2ukW j u) represents a func

tion of width l 21 in k centered atk5ukW j u with *d l dk[1.
The exact form ofd l and the value ofl are unimportant
providedL@l @k21. @Thus, in principles eachF j (k,t) is a
smooth function which concentrates in a neighborhood
ukW j u, andF(k,t) is also a smooth function. However, for th
purpose of making a histogram approximation toF(k,t), we
may sample over a large number of wave packets and t
d l as a delta function. The histogram made in this way
ymptotes to the true histogram as the number of sam
asymptotes to infinity.#

We are interested in applying Eq.~5! in two cases:~a!
There is no scalar source (Sf[0), but we assume that att
50 there is a distribution of scalar density with initial wav
number spectrum concentrated at lowk which we represent
as FI(k,t50)5S jwj (0)d l (k2ukW j (t50)u) ~here the sub-
script I denotes ‘‘initial value problem’’!. ~b! The scalar
source continually injects passive scalar density at lowk at a
constant rate, and we represent this by continually introd
ing wave packets at lowk into the sum in~5!. In case~a!, as
t increases and the wave numberkj evolves into the diffusive
range, the wave-packet variances decay andFI(k,t→`)
→0. In case~b!, the loss of wave packets through diffusio
at highk is balanced by the injection of wave packets~by the
source! at low k, and a time averaged steady state wa
number spectrumFS(k) results~here the subscriptSdenotes
‘‘steady state’’!.
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41Chaos, Vol. 10, No. 1, 2000 Scalars in chaotic flows
In the absence of a source and diffusivity,wj (t), the
variance of thej th wave packet, is constant in time. Th
evolution ofkW j can be determined as follows. Since the t
jectory of a fluid element is given by

djW

dt
5vW ~jW ,t !, ~6!

with initial condition jW (0)5xW , the separation of two ele
ments that are initially close to each other,djW (xW ,t), evolves
as

dd jW~xW ,t !

dt
5~djW~xW ,t !•¹!vW . ~7!

In the absence of a source and with zero diffusivity, Eq.~4!
says that the scalar field is constant along each traject
Thus the difference of the scalar fieldsdf between the two
trajectories separated bydjW is also constant in time. Sinc
df5djW•¹f, we haved(¹f•djW )/dt50. Thinking of f as
sinusoidal,¹f;kW jf, we haved(kW j•djW )/dt50. Using Eq.
~7! then yields the evolution of the wave number following
wave packet.

dkW j

dt
52¹~vW •kW j !. ~8!

When the diffusivity is small but nonzero, the varian
decays as

dwj

dt
522kwjkj

2 ~9!

with initial conditionwj (0), wherekj5ukW j u. In this case, Eq.
~8! still holds but extra arguments are needed~see the Ap-
pendix in Ref. 5!.

As previously discussed, in the case of a statistica
steady external sourceSf(xW ,t), we can think of the source a
continually launching wave packets at lowk which then
evolve by~8! to higherk. In this case, each small area co
tains many overlapping wave packets each created by
source at a different time. Since, appropriate to a cha
flow, we assume that correlations decay exponentially r
idly, the correlation between different wave packets can
neglected. Thus, rather than continually adding new lowk
wave number wave packets to~5!, it will also sometimes be
convenient to represent the power spectrum for the ste
stateFS(k) as the time integral of the power spectrum for t
initial value problemFI(k,t),9

FS~k!5E
0

`

FI~k,t !dt

5E
0

`

(
j

exp~22kt j~ t !kj
2~ t !!d l ~k2kj~ t !!dt, ~10a!

where we have takenwj (0)[1 ~i.e., each wave packet ha
the same initial variance!, and

t j~ t !5
*0

t kj
2~s!ds

kj
2~ t !

. ~10b!
-
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In general, a stretching direction may temporarily becom
contracting direction, hencekj (t) is not necessarily increas
ing at all times and may pass through a given fixed wa
numberk at several times. From Eq.~10! we obtain a con-
tribution from eachkj at each timet j i

(k) such thatkj (t j i
)

5k,

FS~k!'(
j

(
j i

exp~22kt j i
kj

2!

udkj i
/dtu U

t5t j i
~k!

5(
j

(
j i

exp~22kt j i
k2!

ukh j i
u

, ~11!

whereh j i
[(k21dk/dt)u t5t j i

gives the instantaneous rate

stretching.
If the flow has uniform stretching and the rate of stretc

ing is independent of time, as assumed by Batchelor, t
kj (t);exp(h̄t), where h5h̄ is the uniform rate of
stretching.10 So Eq.~10b! gives t5(2h̄)21@12exp(22h̄t)#,
for large t@1/h̄,

t'
1

2h̄
, ~12!

and Eq.~11! yields

FS~k!;
exp~2kk2/hW !

k
. ~13!

For smallk, Eq. ~13! gives thek21 scaling.
If the flow has substantial intermittency of stretchin

then t j i
has a nontrivial distribution. One model of th

phenomenon5 is that the valuest j i
(k) and h j i

(k) at a par-
ticular wave numberk can be considered to be random va
ables which are selected on the basis of a distribut
M (t,h) independent ofk. That is, if one integrates Eqs.~6!,
~8!, and~10b! for an ensemble of initial conditions and con
structs a histogram for the values (t j i

,h j i
) the fraction falling

in the range (dt,dh) centered at ~t,h! would be
M (t,h)dt dh. It was argued in Ref. 5 thatM (t,h) should
be independent oft for ht@1 since according to Eq.~10b!
the value oft j depends mostly on the rate of exponent
growth in the recent past. Similarly,M (t,h) should be in-
dependent ofk for k@1/L. With these assumptions th
power spectrumFS(k) given by ~11! can be expressed as

FS~k!;
1

k E
0

`

dtE
2`

`

dh
M ~t,h!

uhu
exp~22ktk2!. ~14!

Integrating overh gives another distribution

M* ~t!5E
2`

`

dh
M ~t,h!

uhu
, ~15!

which is the distribution oft weighted by the average of th
reciprocal of the stretching rate. Equation~14! then becomes

FS~k!;
1

k E
0

`

dt M* ~t!exp~22ktk2!. ~16!
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@In the case of uniform stretchingM (t,h)5d(t
2(2h̄)21)d(h2h̄) andM* (t)5d(h̄t2 1

2).#
The contribution of a small interval@t,t1dt# is given

by k21 exp(22ktk2)M* (t)dt. Using previous arguments
each contribution has thek21 scaling for smallk. Therefore,
there should be a range ofk where the power spectrum
should obey Batchelor’s law, although the exact location a
form of the cutoff wherek21 behavior begins to fail is in
general not given by~13!. In particular, Batchelor’s formula
~13! predicts a sharp roll-off when the variance starts to
cay. However, when the flow has considerable intermitte
of stretching, some wave packets remain unaffected by
fusion while others that were created at the same time m
have started to decay. Due to the contribution of these slo
decaying wave packets, the power spectrum should ha
smoother roll-off than is predicted by~13!. This will be nu-
merically confirmed in the next sections. Also, in the ne
section we will compare numerical results with~13! and
~16!.

III. NUMERICAL EXPERIMENTS

Equations~6!, ~8!, and ~10! allow us to evaluate the
power spectrum of the passive scalar numerically. For a fl
whose velocity fieldvW (xW ,t) is known, we can first simulta
neously integrate Eqs.~6!, ~8!, and~10b! to determinekW j (t)
andt j (t), and then sum over all wave packets and integr
over time@using Eq.~10a!# to getFS(k). We can also make
histograms ofM* (t) by using Eq.~15! and computeFS(k)
by using Eq.~16!.

A. Random-driven flow

In this and the following subsection, we takek51.25
31026. Consider the velocity field~see Ref. 5 for more
detailed properties of this flow! given by

vW ~xW ,t !5U@eW xf 1~ t !cos~2py/L1u1~ t !!

1eW yf 2~ t !cos~2px/L1u2~ t !!# ~17!

which is periodic inx andy with periodL. The functionsf 1

and f 2 are periodic in time with periodT @i.e., f 1,2(t6T)
5 f 1,2(t)# and are given by

f 1~ t !5 H 1 for 0<t,T/2
0 for T/2<t,T

and

f 2~ t !5 H 0 for 0<t,T/2
1 for T/2<t,T.

The flow is in thex direction during the first half of each
period and in they direction during the second half. To simu
late a temporally chaotic velocity field we choose the ang
u1(t) and u2(t) at random~with uniform distribution! in
@0,2p# at the beginning of each period and keep them c
stant during the whole period.

Equations~6! and~8! can be solved withvW given by Eq.
~17! for the evolution over one period,

xn115xn1
1

2
UT cosS 2p

L
yn1u1nD , ~18!
d

-
y

if-
y

ly
a

t

w

te

s,

-

yn115yn1
1

2
UT cosS 2p

L
xn111u2nD , ~19!

and

ky,n115ky,n1
pUT

L
sinS 2p

L
yn1u1nD kx,n , ~20!

kx,n115kx,n1
pUT

L
sinS 2p

L
xn111u2nD ky,n11 , ~21!

where the position of a wave packet and its wave number
calculated at timet5T,2T,3T, and so on.

Since the angles are randomly chosen between peri
there are no KAM surfaces. To see this we note that a KA
surface for a two-dimensional map is an invariant clos
curve for that map. Thus mapping every point on the cu
forward by one iteration~period! maps those points back o
the curve. In our case, the map changes randomly from
ate to iterate. Hence a curve invariant to the map at one t
will typically not be invariant to the map at a subseque
time. Thus there are no KAM surfaces, and we expect t
the fluid is totally mixed as time evolves.

Numerical experiments were performed using 1003100
initial conditions on a uniform grid andUT/L50.5. The
average rate of stretching after timet5100T is given by the
leading Lyapunov exponent of the flow, numerically dete
mined to be^h&'0.3060.01, where the average is take
over all initial conditions. Sincêh&.0, the flow is chaotic.
A finite time Lyapunov exponenth(xW0 ,t) for an initial con-
dition xW0 and a timet can be computed as follows. Start
time 0 with initial condition xW0 and an initial differential
displacementdjW0 from xW0 . Evolve the differential displace
ment forward in time following the orbit fromxW0 to obtain
the differential displacementdjW (t) at time t. The finite time
exponent is thenh(xW0 ,t)5t21 ln@udjW(t)u/udjW0u#. For two di-
mensional incompressible flows,h can also be evaluate
through

h~xW0 ,t !5t2 lnS ukW~ t !u

ukW0u
D . ~22!

In our numerical experiments, we computeh by using Eq.
~22!. For randomly chosenxW0 the quantityh(xW0 ,t) is ran-
dom, and we can define a corresponding probability den
function P(h,t) which we call the stretching distribution
The stretching distribution,P(h,t), for a realization of Eqs.
~18! and ~19!, is shown in Fig. 1~a! at different times. For
large t, P(h,t) can be approximated11 by ln P(h,t)52tG(h)
1o(t), or more informally

P~h,t !;exp@2tG~h!#, ~23!

whereG(ĥ)5G8(ĥ)50 at the minimumĥ of G. The utility
of the scaling form~23! is that it givesP(h,t), a function of
two variables~h,t!, in terms of a function of only one vari
able,G(h). For the case where there are no KAM surfac
earlier numerical experiments12 have yielded close agree
ment with this form. Figure 1~a! shows plots ofP(h,t) ob-
tained by use of histograms at different timet. As expected
from ~23!, P(h,t) narrows with increasing time. Plotting
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2t21 ln P(h,t)2K @choosingK to be the minimum overh of
2t21 ln P(h,t)#, we see from Fig. 1 that the data plotted
Fig. 1~b! collapses to a single curve, which we identify
G(h). @This collapse is essentially the content of Eq.~23!.#
The distributionM* (t) is discussed in the previous sectio
and can be computed for a givenk by first making a histo-
gram of M (t,h) and then using~15!. Figure 2 shows the
distributions M* (t) computed at several wave numbe
Note that theM* (t) determinations obtained at differen
times are in good agreement with each other as expecte

In Fig. 3 we plot the power spectrum computed usi
Eqs.~6!–~10a! along with the power spectrum given by Eq

FIG. 1. ~a! The distribution of the stretching factor at different times for t
randomly driven floŵ h&'0.3060.01.~b! The large deviation approxima
tion for the randomly driven flow, which is given byP(h,t)
;exp@2tG(h)#.

FIG. 2. The distributions ofM* (t) for the randomly driven flow, computed
at different wave numbers.
.

.

~13! ~based on uniform stretching! and~16! ~which accounts
for intermittency!. For the wave-packet method, we repla
~10a! by

FS~k!5(
i

(
j

exp@22kt j~ t i !kj
2~ t i !#d~k2kj~ t i !!Dt, ~24!

whereDt is the time step for the ODE solver andt i5 iDt.
Integrating~24! over a small interval@k,k1Dk# yields

FS~k!Dk5 (
k<kj ~ t i !<k1Dk

exp~22kt j~ t i !k
2!Dt. ~25!

Equation~25! allows us to make histograms ofkFS(k) ver-
susk. Equation~13! gives agreement with the wave-pack
method@Eqs. ~6!–~10a!# only before the cutoff of the spec
trum. On the other hand, Eq.~16! agrees with the wave
packet method in the whole displayed region. We obse
that the roll-off of the power spectrum is less sharp than
prediction of ~13!. This is because the flow has stretchin
intermittency, which is described by the distributionM* (t).
The cutoff for different wave packets with differentt’s, is
spread over a wide range ofk. In particular, the contribution
from the wave-packets that decay only at a largerk are sig-
nificant at the beginning of the roll-off. The number of su
wave packets decreases continuously ask increases. This
makes the roll-off less sharp.

B. Vortex flow

In this section we consider model flows for which th
vorticity is concentrated on a finite number of point vortic
located atxW1 ,xW2 ,...,xWn . The use of such vortex flows to
model physical velocity fields was introduced by Chorin13

and has been used extensively. The velocity field induced
the j th vortex is given by

vW j~xW !5F2
G j

2p S y2yj

r j
2 D ,

G j

2p S x2xj

r j
2 D G , ~26!

where r j5A(x2xj )
21(y2yj )

2, and G j is the strength of
vortex j located atxW j . Locally the flow rotates fluid element

FIG. 3. kFS(k) versusk for the random driven flow. The solid lines ar
computed from Eq.~10a!, the dotted lines are computed from Eq.~13!
~multiplied by an arbitrary constant!, and the dashed lines are compute
from Eq. ~16!.
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44 Chaos, Vol. 10, No. 1, 2000 Yuan et al.
counterclockwise ~clockwise! around the vortex if G j

.0(G j,0). If the domain is the infinite plane, then the v
locity field is the superposition ofvW j ’s. That is,

vW 5(
j

vW j . ~27!

If the domain has an impenetrable boundary,]D, then Eq.
~27! needs to be modified to satisfyvW •nW [0 on ]D. We
consider the case where the domainD is a circular cylinder
of radius one. In this case, the normal component of eacvW j

on ]D is cancelled byvW j8 , the velocity field induced by an
image vortex of strengthG j852G j , located at the mirror
image ofxW j . The motion of each vortex is determined by a
other vortices including image vortices. By Helmholtz
theorem for inviscid, incompressible flows, eachG j is con-
stant in time. The equations of motion of the vortices are

dxj

dt
52

1

2p (
iÞ j

G i~yj2yi !

r j i
2 1

1

2p (
i , j

G i~yj2yi8!

r j i8
2 , ~28!

dyj

dt
5

1

2p (
iÞ j

G i~xj2xi !

r j i
2 2

1

2p (
i , j

G i~xj2xi8!

r j i8
2 , ~29!

where

xi85xi /~xi
21yi

2!, yi85yi /~xi
21yi

2!,

r j i 5A~xj2xi !
21~yj2yi !

2,

r j i8 5A~xj2xi8!21~yj2yi8!2.

Equations~28! and~29! form a Hamiltonian system with
Hamiltonian

H5
1

4p H 2(
iÞ j

G iG j loguxW i2xW j u1(
i , j

G iG j loguxW i2xW j8u

1(
i , j

G iG j loguxW i uJ ~30!

where (xi ,yi) are the conjugate variables.
In addition to the HamiltonianH, the angular momentum

I 5S jG j uxW j u2 is also a constant of the motion. Therefore
necessary condition for a system of such vortices to beh
chaotically is that there are at least three vortices. Ar7

showed numerically that three vortices can be sufficient
chaos. In this section we present numerical results fr
studying three model flows:~i! a flow generated by a system
of three self-consistently evolving point vortices whose m
tion is integrable;~ii ! a flow generated by a system of thre
point vortices whose motion is chaotic; and~iii ! a flow gen-
erated by a system of six vortices whose motion is chao
Notice that the Lagrangian dynamics of a flow can be cha
even if it is generated by vortices whose motion is integrab
~This situation is analogous to the restricted three body pr
lem, where the motion of the two large bodies is describ
by Kepler orbits but the third infinitesimal body may mov
chaotically.!

For each case we consider initial conditions on a u
form grid of spacing 0.04. Equations~28! and ~29! are
solved, for each initial condition, by using a fourth ord
ve
f
r

m

-

c.
ic
.

b-
d

i-

Runge–Kutta method. Our statistics are based upon com
tation over these~approximately 2000! initial conditions.

In numerical experiments, we need to be concern
about the singularities at the location of the point vortic
where the velocity has infinite magnitude. These singulari
may cause numerical problems. In addition, our assump
that the velocity field is relatively smooth is not valid ne
these singularities. To overcome these difficulties, we
place the point vortices by vortex patches, i.e., the vortic
is uniformly distributed in a small circle centered where t
point vortices were, so that there are no singularities in
flow. We assume that the motion of the vortex patches
be described in the same way as the point vortices as lon
they do not come too close to each other. This condition
be satisfied as we select the radii of the patches appro
ately. We observe, however, that the results from using v
tex patches and from using point vortices agree with e
other.

1. Three integrable vortices

Figure 4~a! shows the trajectory of vortex 1.xW1(t), for
the case where the initial configuration is given byxW1(0)
5(0.1,0.7), xW2(0)5(0.5,0.5), xW3(0)5(0.5,0.3), and the
vortex strengths are2G15G25G351. The regular pattern
of the trajectory is apparent, and suggests that the motio

FIG. 4. ~a! Regular trajectoryxW1(t) for an initial configuration given by
xW1(0)5(0.1,0.7), xW2(0)5(0.5,0.5), xW3(0)5(0.5,0.3), and with2G15G2

5G351. ~b! The return map yields one dimensional closed curves, wh
u1 andu2 are the polar angles ofxW1 andxW2 . The surface of section is take
at x1

21y1
250.25.
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the vortices is integrable~i.e., quasiperiodic!. Figure 4~b!
also confirms that the motion of the vortices is integrab
This figure shows the return map to the surface of sec
x1

21y1
250.25. The return map yields one dimensional clos

curves, again implying quasiperiodic motion. Calculation
the trajectories of passive fluid elements for this flow sugg
that the presence of both integrable and chaotic region
space. The distribution of the finite time stretching rateh for
104 initial passive fluid element positions uniformly distrib
uted in (x21y2)<1 is shown in Fig. 5. The distribution ha
a major peak nearh50 and possibly a minor peak nearh
50.25. The peak ath50 is due to the existence of initia
conditions for which the passive scalar dynamics is in
grable. The existence of a minor peak shows that for ot
trajectories the Lagrangian dynamics is chaotic. Such dis
butions have been previously discussed in Ref. 14.

Figure 6 shows the evolution ofkj for an arbitrarily cho-
sen wave packet in the chaotic part of the phase space.
observed thatkj sometimes increases in sudden bursts
lowed by long flat or more gently increasing ranges. We c
such behavior intermittency. If we trace the trajectory of t
wave-packet, we find that the bursts occur when it gets v

FIG. 5. The distribution of the stretching factor at different times for t
flow induced by three integrable vortices,^h&'0.1760.02.

FIG. 6. The evolution of an arbitrarily chosen wave packet in the fl
induced by three integrable vortices.
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close to the two positive vortices, which move as they cir
around each other.

Figure 7 shows the wavenumber power spectrum of
passive scalar computed from Eq.~10a!. The spectrum for
this case does not conform to Batchelor’sk21 law in any
range ofk. This is not surprising since Batchelor’s argume
assumes exponential stretching, and this does not apply
wave-packets in the quasiperiodic part of phase space.

2. Three chaotic vortices

Figure 8 shows the trajectoryxW1(t), for the case where
the initial configuration is given byxW1(0)5(0.1,0.7),xW2(0)
5(0.2,0.9), xW3(0)5(0.5,0.3), and the vortex strengths a
2G15G25G351. The trajectory is irregular, suggestin
that the vortex motion is chaotic. This is confirmed by c
culation of the leading Lyapunov exponent for the system
vortices~28! and ~29!, which is approximately 0.3. For the

FIG. 7. kFS(k) versusk for the flow generated by three integrable vortice
The solid lines are computed from Eq.~10a! and the dotted lines are com
puted from Eq.~13!.

FIG. 8. The trajectoryxW1(t) is irregular, where the initial configuration is
given by xW1(0)5(0.1,0.7), xW2(0)5(0.2,0.9), xW3(0)5(0.5,0.3), and2G1

5G25G351.
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flow generated by these vortices, the spatially avera
Lyapunov exponent of passive advected particles is^h&
'0.1260.02. From Fig. 9 we see that there is one main p
in the distribution ofh which is near̂h&, so the distribution is
more uniform than that in the integrable case. Howev
compared to the randomly driven flow discussed earlier~Sec.
III A !, the peak is broader.

Figure 10 shows the evolution ofkj for an arbitrarily
chosen wave packet. The growth ofkj is apparently less
intermittent than the case for the three integrable vortic
Fig. 6. This difference appeared to hold for other rand
wave packet choices for the two flows.

Figure 11 shows the predictions of the spectrumFS(k)
from Eq. ~13! ~uniform stretching! as the dotted curve, Eq
~16! @theM* (t) result# as the dashed line, and Eq.~10a! ~the
integral ofFS! as the solid line. The predictions of Eq.~16!
and Eq.~10a! are similar and significantly different from th
prediction of Eq.~13!. We believe that the small differenc
between the predictions of Eq.~16! and Eq.~10a! is due to
insufficient mixing and the limitation of finite diffusion. In
this case, the distributionM* (t) depends on the wavenum

FIG. 9. The distribution of the stretching factor at different times for t
flow induced by three chaotic vortices,^h&'0.1260.02.

FIG. 10. The evolution of an arbitrarily chosen wave packet in the fl
induced by three chaotic vortices.
d

k

r,

s,

ber k. This may also explain why the middle part of th
power spectrum differs slightly from thek21-scaling.

3. Six chaotic vortices

In this section we focus on how the power spectrum
affected when the flow has more vortices. We study a fl
generated by a system of six vortices whose initial confi
ration is given byxW1(0)5(0.1,20.2), xW2(0)5(0.2,20.8),
xW3(0)5(0.5,20.5), xW4(0)5(0.1,0.5), xW5(0)5(0.7,0.1),
xW6(0)5(0.9,0.2), and whose strengths are2G15G25G3

52G452G552G651. The leading Lyapunov exponen
for the system of vortices is approximately 0.7, which
larger than in the previous cases. This is apparently beca
the stirring is stronger when there are more vortices in
flow. The spatially averaged rate of stretching is^h&'0.28
60.02 ~the distribution ofh is presented in Fig. 12!, so the
flow is chaotic. The distribution ofh is more uniform than
the other vortex flows. Figure 13 shows that Eq.~16! ~the
dashed curve! agrees well with the power spectrum com

FIG. 11. kFS(k) versusk for the flow generated by three chaotic vortice
The solid lines are computed from Eq.~10a!, the dotted lines are compute
from Eq.~13! ~multiplied by an arbitrary constant!, and the dashed lines ar
computed from Eq.~16!.

FIG. 12. The distribution of the stretching factor at different times for t
flow induced by the flow induced by six chaotic vortices,^h&'0.35
60.02.



te
of

o
on

y
o
ric

r
ty

r
ch

e
d
e

-

f

tir-

if-

r

the
lar

ed

the

ity

e

ef.
in
e-

e

e

ity

47Chaos, Vol. 10, No. 1, 2000 Scalars in chaotic flows
puted from Eq.~10a! ~the solid curve!, but not with the result
assuming uniform stretching~13! ~the dotted line!.

C. Realistic flow

The transport of a passive scalar field which is advec
by a velocity field closely simulating the real velocity field
the experiment of Williamset al. 4 is investigated in this
section. The velocity field is obtained by solving the tw
dimensional Navier–Stokes equation with a linear fricti
term

]v~xW !

]t
1vW •¹v5n¹2v2mv1Sv~xW !, ~31!

wherev(xW ) is the scalar vorticity field (5 ẑ•¹3vW ), vW is the
velocity vector field,n is the kinematic viscosity,m is the
linear friction coefficient,Sv(xW ) is a source of vorticity given
by the curl of the stirring force field@5 ẑ•¹3 fW(xW ), where
fW(xW ) is the stirring force field which in Ref. 4 is produced b
a Lorentz force on the fluid due to the combined effect
permanent magnets placed under the fluid and an elect
current flowing through the fluid#. The above equation is
obtained by taking the curl of the two dimensional Navie
Stokes equation with a linear friction term. The vortici
field is related to the stream functionc(x,y) by ¹2c5v,
and the velocity field is related to the stream function byvW
52(¹3c ẑ). The linear friction term models friction with
the bottom of the container supporting the fluid layer.

Equation~31! for v and Eq.~4! for the passive scala
advection are solved numerically using a time split-step te
nique with periodic boundary conditions inx,y. A system
size of @2p,p#3@2p,p# is used. In the first phase of th
split step the Laplacian parts of both equations are solve
wave number space with the source terms and the lin
friction term included. For the vorticity field,]v/]t
5n¹2v2mv1Sv(x,y) is solved by fast Fourier transform
ing to wave number space@v(x,y,t)→v̄(kx ,ky ,t)#, fol-
lowed by v̄(kx ,ky ,t1Dt)5v̄(kx ,ky ,t)exp@2(nk21m)Dt#
1S̄v(kx ,ky)Dt, whereS̄v(kx ,ky) is the Fourier transform o

FIG. 13. kFS(k) versusk for the flow generated by six chaotic vortices. Th
solid lines are computed from Eq.~10a!, the dotted lines are computed from
Eq. ~13! ~multiplied by an arbitrary constant!, and the dashed lines ar
computed from Eq.~16!.
d

f
al

-

-

in
ar

the vorticity source function.Sv(x,y)5a cos 2x(cos 4y11)
is used to give an approximated functional form for the s
ring field used in the experiment of Williamset al. Then,
v̄(kx ,ky ,t1Dt) is transformed back to real space. The d
fusive and source terms of the passive scalar field,]f/]t
5k¹2f1Sf(x,y), are treated in a similar way, while, fo
the source function of the passive scalar,Sf(x,y)5cos 2x
1cos 2y is used. In the second phase of the split step
convection parts of the vorticity field and the passive sca
field, ]v/]t52vW •¹v, ]f/]t52vW •¹f, respectively, are
solved in real space using the velocity field which is obtain
from the stream functionc(x,y) utilizing vW 52(¹3c ẑ).
@We note that our choice ofSf(x,y) is different from the
experiment, where dye is introduced at the boundary of
flow; see Ref. 4.#

Figure 14~a! shows the energy spectrum for the veloc
field of the numerical solution with the grid size of 10242,
n50.005,m50.12. The value ofm was chosen to match th
value for the experiment in Ref. 4, whilen was adjusted so
that the resulting flows resembled the measured flows of R
4. The energy spectrum of the velocity field is obtained
the following way. The energy density at a given wav
vectorkW is evaluated by

E~kW !5 1
2~ uṽx~kW !u21uṽy~kW !u2! ~32!

FIG. 14. ~a! Power spectrum of velocity field~b! typical velocity field (t
540). The length of the arrows is proportional to the magnitude of veloc
field at the corresponding grid point.
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where ṽx(kW ),ṽy(kW ) are Fourier transformations o
vx(xW ),vy(xW ), respectively. Then the energy spectrumE(k) is
calculated by

E~k!5E E~kW8!d~ ukW8u2k!d2kW8. ~33!

The energy of the field at log10k;1 or k;10 is almost 104

times smaller than that at the lowestk in Fig. 14~a!. So the
velocity field with smaller scale thanL;2p/10 does not
fluctuate much, which will justify our linear interpolatio
approximation of the velocity field at the smaller scale lat
A typical velocity field is shown in Fig. 14~b!. During the
course of the simulation, there are typically 3;5 large vortex
structures visible in the system.

After the initial transient time, the passive scalar fie
which is continuously influxed at the large scale, is evolv
to a field which has very small length scale due to stretch
and folding by the velocity field. Figure 15 shows a we
developed passive scalar field with a diffusivityk52.5
31025. The power spectrum of the passive scalar is m
sured during the simulation at every 2.5 time units. The ti
averaged spectrum is obtained by averaging these insta
neous spectra.

^F~k!&5(
i 51

N

FI~k,t i !z i , ~34!

where the weighting factorz i51/*dk F(k,t i), t i5T01( i
21)DT, DT52.5, andi 51,...,17.T0 is selected to be large
enough to give full development of the passive scalar sp
trum in the viscous-convection range. Here we chooseT0

530 ~assumingk;k0e^h&t with the measured̂h&;0.208,k
becomes;1.03104 by the timet5T0530, which is much
bigger than the cutoff wave number!. The diamonds in Fig.
16~a! show the time averaged spectrum^F(k)&.

The power spectrum of the passive scalar is also
tained using the wave-packet method. The derived velo
field from solution of~31! is used for the advection of th
passive scalar wave packets. Since, with the given visco
the velocity field can be calculated in fairly coarse resolut
~32332 or 64364!, to increase the computational efficienc
without losing the details of velocity field, a linear interp
lation between grid points is utilized to obtainvW (xW ) and
¹vW (xW ) for any location of a passive scalar wave packet. T

FIG. 15. Passive scalar field att545.
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passive scalar wave packets are injected initially~or continu-
ously! uniformly over the space investigated. Initial wav
vectors for passive scalar wave packets are set to~2, 0!
which corresponds to the major wave vector of the sou
function for the full numerical computations in Eq.~4!.

The obtained power spectra of the passive scalar
shown in Fig. 16~a!. The solid line is the time integrate
passive scalar power spectrum obtained from Eq.~10a!,
whereF1 is obtained by initially starting with a large numbe
of passive scalar wave packets. The dashed line is the po
spectrum computed from Eqs.~5!–~9! for the case when the
passive scalar wave packets are continuously injected to
system at lowk. For the second case, the power spectrum
obtained by a time average of the instantaneous power s
trum overT5@30,300#. The diamonds are from full numeri
cal integration of~4!. For all these cases, the same diffusiv
k52.531025 is used. We find very good agreement b
tween the full numerical simulation of passive scalar adv
tion @diamonds in Fig. 16~a!# and the two results from the
wave-packet method. The deviation at low wavenumber

FIG. 16. ~a! kFS(k) of passive scalar. Diamonds are from the full numeric
simulations with the time average overt5@30,70#; the solid line and the
dashed line are results from the wave-packet method with the initial and
continuous input of passive scalar wave packets, respectively. The d
line is for a smaller diffusion coefficient,k51.031026. ~b! The solid line is
the result from the wave-packet method with the initial input of pass
scalar wave packets. The dashed line is from Eq.~16!. The dotted line is the
result from Eq.~13! ~multiplied by an arbitrary constant!.
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due to the fact that the passive scalar injected at low w
numbers is not well approximated in the wave-packet
proximation. The dotted line in Fig. 16~a! is the case when a
smaller diffusivity coefficient (k5131026) is used for a
wave-packet method simulation with the same flow. Wh
the diffusion coefficient is low, Batchelor’sk21 law is very
clearly observed over a large range ink before the roll-off
due to diffusivity. In Fig. 16~b!, the power spectrum from
Eq. ~16! ~dashed line! is compared to the result of the wav
packet simulation~10a! ~solid line!. The agreement amon
these results is good, but there is significant deviation fr
Batchelor’s formula~13! ~dotted line!.

IV. CONCLUSION

We have studied the power spectra of passive scala
several model flows. For most of the chaotic flows that
studied, we observe ak21-scaling region in the power spec
trum, as predicted by Batchelor. For the case in Sec. III
the power spectrum deviates from thek21-scaling, and we
argue that this is due to insufficient mixing combined w
finite diffusion. On the other hand, when the flow has stro
intermittency, for example, when there are highly-localize
long-lasting vortices~as in Secs. III B 2 and III B 3!, the roll-
off of the power spectrum tends to be smoother than p
dicted by~13!. In this case, Eq.~16! gives a better prediction

In their experiments Williamset al.4 observed significan
deviation from Batchelor’sk21 scaling, for which our analy-
sis cannot account. There may be additional mechani
causing this deviation in their experiments which has not
been understood. One explanation may come from the
that the flows in their experiments were not exactly two
mensional, and this possible effect was discussed in deta
Ref. 4. An additional possible explanation may be related
the method of injecting a scalar~a fluorescent dye! from one
end and extracting it from the other end of the container. T
effect of this on the wavenumber spectrum will be repor
elsewhere.15
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