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We investigate the effect of drag force on the enstrophy cascade of two-dimensional Navier-Stokes
turbulence. We find a power law decrease of the energy wave number �k� spectrum that is faster than the
classical (no-drag) prediction of k23. It is shown that the enstrophy cascade with drag can be analyzed
by making use of a previous theory for finite lifetime passive scalars advected by a Lagrangian chaotic
fluid flow. Using this we relate the power law exponent of the energy wave number spectrum to the
distribution of finite time Lyapunov exponents and the drag coefficient.

PACS numbers: 47.27.Eq, 47.52.+ j, 83.10.Ji, 83.50.Ws
Two-dimensional Navier-Stokes fluid turbulence has
been of interest for many years. Examples where two-
dimensional (2D) Navier-Stokes turbulence is potentially
relevant include soap film flow [1–6], rotating fluids [7],
magnetically forced stratified fluids [8,9], plasma in the
equatorial ionosphere [10], and the Earth’s large scale
(.500 km) atmospheric dynamics [11]. In these situations
there are regimes where drag is an important physical
effect [12]. In this case the describing Navier-Stokes
momentum equation is

≠v
≠t

1 v ? =v � 2r21=p 1 n1=2v 2 n0v 1 f , (1)

where n0 is the drag coefficient, n1 is the viscosity, f is an
external forcing term, and incompressibility (= ? v � 0)
will be assumed. If the forcing is localized in k space
with a characteristic wave number of kf , it is well known
that, in the absence of drag �n0 � 0�, an energy cascade
to larger scales, E�k� � k25�3 (k , kf), and an enstro-
phy cascade to smaller scales, E�k� � k23 (k . kf), are
expected [13,14]. Our concern in this paper will be the
effect of drag (the term 2n0v) on the enstrophy cascade
in two-dimensional turbulence forced at low wave num-
ber (long wavelength). In the absence of drag (n0 � 0),
many experimental and numerical results are consistent
with the theoretical prediction of a k23 dependence of the
energy wave number spectrum E�k� at wavelengths below
the forcing wavelength [5,9,15] [while some other experi-
mental and numerical results show that E�k� � k23 be-
havior is not conclusive yet [1–4,16] ]. In the presence of
drag, we find that there is still a power law dependence of
the energy spectrum on k, but the power law exponent is
greater than three,

E�k� � k2�31j�, j . 0 .

This might be relevant to results of experiments where
energy spectra steeper than k23 were reported [1–4,16].
Furthermore, we find that the exponent increase j can be
quantitatively related to the drag coefficient n0 and the
chaotic straining induced by the flow. The key point in
obtaining a theory for the exponent increase j is our argu-
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ment (given subsequently) that the presence of drag funda-
mentally changes the character of the enstrophy cascade,
making it possible to analyze the high wave number com-
ponents by the use of a recent theory for the wave number
spectrum of a finite lifetime passive scalar in a Lagrangian
chaotic fluid flow. In particular, we will argue that the high
k components of vorticity behave like a passive scalar ad-
vected by the Lagrangian chaotic low k components of the
velocity field.

In our studies, we numerically solved the vorticity equa-
tion obtained by taking the curl of Eq. (1);

≠v

≠t
1 v ? =v � �21�n11nn=2nv 2 n0v 1 Sv�x� ,

(2)

with v � ẑ 3 =c , =2c � v, where c is the stream func-
tion, v � ẑ ? = 3 v is the vorticity, and we have replaced
the term n1=2v resulting from (1) by a hyperviscous
damping, �21�n11nn=2nv. Sv is a source function of
the vorticity (� ẑ ? = 3 f). Hyperviscosity (n � 4 for
our numerical computations) is a commonly used device
to enhance the wave number power law scaling range in
numerical turbulence simulations. Our simulations employ
a two-dimensional square domain, �2p , p� 3 �2p , p�,
with periodic boundary conditions, and Sv�x, y� � sin2y
is used for the source function of the vorticity. All the
simulation results presented here use a spatial grid of
10242 and n4 � 5 3 10220.

The energy spectrum resulting from a simulation with
n0 � 0.1 is shown in Fig. 1. The energy spectrum is ob-
tained by time averaging of instantaneous energy spectra
measured at every 5 time units over a time duration of 40.
The dashed line corresponds to E�k� � k23.5, where the
exponent is from our theory which will be explained later.
A clear power law behavior over almost one decade in k
space is observable until the spectrum rolls off at high k’s
due to the hyperviscosity. Figure 2 shows plots of k3E�k�
versus k for three cases with n0 � 0, 0.1, and 0.2 applied
at high k �k . 6�, but with the same drag, n0 � 0.1, ap-
plied at low k �k # 6� in all three cases. The upper-
most curve (circles) is for a high k drag of n0 � 0, the
© 2000 The American Physical Society
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FIG. 1. Energy spectrum with a drag force coefficient n0 �
0.1. The slope of the dashed line is 23.5 from the theory based
on G�h�.

middle curve is for n0 � 0.1, and the lowermost curve is
for n0 � 0.2. Applying the same low k drag allows us to
compare effects of drag for high k’s while keeping similar
large scale dynamics of the flows [17]. This is impor-
tant since we will show that, with drag, the major contri-
bution to the straining of high k vorticity components is
from the longest length scale (lowest k) flow components.
While the energy spectrum for our n0 � 0.0 case shows
�k23 behavior, consistent with the classical Batchelor-
Kraichnan prediction, the energy spectrum shows steeper
power law behavior as we increase the drag coefficient. A
summary of the simulation results appears in Table I.

In order to start to formulate a theory of E�k� in the
presence of drag, we first consider the straining rate, h�r�,
on eddies of size r ,

h�r� �

ø
jv�x 1 r� 2 v�x�j2

r2

¿1�2

�

vuutZ 1�r

kf

E�k�k2 dk ,

(3)

where, in setting the lower limit of the integration over
k at kf , we have in mind the situation of our numerical
simulation where k21

f is of the order of the system size
and there is appropriate long wavelength damping [17]. In
(3) the contribution of E�k� from high wave numbers be-
comes negligible for large k (small r) if E�k� � k2�31j�

with j . 0 (which is the case when drag is present). For
the classical case without a drag term where j � 0, the
above quantity diverges logarithmically at large k (small r)
and this leads to Kraichnan’s prediction of a weak logarith-
mic correction to the power law energy spectrum, E�k� �
k23 log21�3�kL� [18]. In contrast, if E�k� � k2�31j� with
j . 0, then for small r the straining rate becomes con-
stant,

R1�r
0 E�k�k2 dk �

R`

0 E�k�k2 dk, indicating that the
straining of smaller scales comes from the larger scales.
Thus, for the j . 0 case, it is a good approximation to
assume that the vorticity components at sufficiently high
k are passively advected by the chaotic velocity field of
FIG. 2. Energy spectrum with various drag coefficients n0.
The circles, the crosses, and the stars are for n0 � 0.0, n0 � 0.1,
and n0 � 0.2, respectively.

large structures and this approximation becomes better and
better as k is increased. In treating the case with drag
we shall use Lyapunov exponents. We thus need to dis-
cuss the relevance of Lyapunov exponents to our prob-
lem. Crudely, we estimate the Lyapunov exponent h as the
straining rate at vanishingly small separation, i.e., r � 0
in Eq. (3), h � �

R`
kf

k2E�k� dk�1�2. In the presence of vis-
cosity (or hyperviscosity), the resulting high k cutoff to
E�k� implies a finite Lyapunov exponent. However, de-
pending on the exponent in the power law dependence of
E�k�, different wave numbers, i.e., different scale lengths
will determine the value of the Lyapunov exponent. With
no drag we expect E�k� � k23 and the Lyapunov exponent
is dependent on contributions from flow components with
wave numbers down to the viscous cutoff scale. [This is
signaled by the logarithmic dependence of

R1�r
kf

E�k�k2 dk
on r .] This means that the Lyapunov exponents only de-
scribe straining of scales smaller than the viscous cutoff
scale, and hence are not relevant to the enstrophy cascade.
On the other hand, if E�k� � k2�31j� with j . 0, as we
claim for the case with drag, then the situation is different.
When j . 0, Lyapunov exponents are relevant in the ab-
sence of a high k cutoff and are determined by the largest
scale flow components. Thus, for j . 0, the Lyapunov
exponents describe the straining of scales small compared
to k21

f , which, however, may still be large compared to a
viscous cutoff.

TABLE I. Comparison of the power law exponents from the
direct numerical simulations, �3 1 jNS�, to the theoretical re-
sults, �3 1 jth�. The spectral ranges linear fitted to measure the
power law exponents are log10k � �1.0, 2.0� for the direct nu-
merical simulation.

n0�k . 6� 3 1 jNS 3 1 jth

0.0 3.1 3.0
0.1 3.6 3.5
0.2 4.1 4.0
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The discussion in the previous paragraph implies that the
situation for v at high k is the same as the situation for a
passive scalar f convected by a Lagrangian chaotic flow v
in the presence of a loss term such that f obeys an equa-
tion [analogous to (2)] of the form ≠f�≠t 1 v ? =f �
D=2f 2 n0f 1 Sf�x�, where 2n0f is the loss term.
(This type of spectral passive scalar problem is of interest
for certain reacting chemical scalars and also for plankton
concentration in the ocean [19–21].) The wave number
spectrum for such a passive scalar has recently been con-
sidered in Ref. [20], and we can make direct use of that
reference. According to Ref. [20], the wave number power
spectrum of f behaves as Ef�k� � k2�11j�, where j is de-
termined by the probability distribution function P�h, t� for
finite time �t� Lyapunov exponents �h�. In order to define
this function, consider a disk of fluid of infinitesimal ra-
dius dr0 originally located at a point r, and evolve the disk
forward for a time t. At time t the disk has been deformed
into a differential ellipse whose major radius is drt . The
time t finite time Lyapunov exponent for the initial point
r is h�r, t� � ln�drt�dr0�. P�h, t� dh is the probability
that h�r, t� is between h and h 1 dh given that the initial
point r is chosen randomly. For large t, it can be shown
that lnP�h, t� has an asymptotic form lnP�h, t� � 2tG�h�,
where G�h� is concave up [G00�h� . 0] and has a minimum
at h̄ [i.e., G0�h̄� � 0] with G�h̄� � 0, where h̄ is the usual
infinite time Lyapunov exponent [22]. According to [20],
the spectral exponent is determined from G�h�,

j � min
h

��G�h��h� 1 �2n0�h�	 . (4)

As argued above, at k ¿ kf we can treat v as a passive
scalar in a Lagrangian chaotic fluid flow so that Ev �
k2�11j�. Also, since = ? v � 0, v � ẑ ? = 3 v , we
have E�k� � k22Ev�k�, and E�k� � k2�31j� with j

given by (4).
We test the applicability of this theory to the enstrophy

cascade with drag by numerically obtaining G�h� from a
histogram approximation to the finite-time Lyapunov ex-
ponent distribution P�h, t�. The latter is obtained by com-
puting h for 4 3 104 initial conditions spread uniformly
in space. A cubic polynomial fit to t21 lnP�h, t� is utilized
to obtain G�h�. Theoretical power law exponents obtained
from Eq. (4) and the numerical G�h� are compared with the
results from full numerical simulations in Table I. Within
the accuracy of our computations reasonable agreement is
obtained.

It is also of interest to consider the possible power law
scaling of the vorticity structure functions,


jv�x 1 r� 2 v�x�jq� � rzq , (5)

for small r � jrj and r . �viscous cutoff length�. Re-
cently the structure functions for Lagrangian chaotic
advection of finite lifetime passive scalars have been
considered [23]. By our previous arguments we can
directly apply the result of Ref. [23] to the vorticity
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structure functions for two-dimensional turbulence with
drag,

zq � min
h

�q, �G�h��h� 1 �qn0�h�	 , (6)

which generalizes (4). That is, z2 agrees with j in (4).
For the case without drag �n0 � 0�, Eq. (6) indicates

that jq � 0 for all q [recall that G�h̄� � 0]. This indicates
the absence of small scale intermittency in the enstrophy
cascade for n0 � 0, in agreement with previous work (see
[9] and references therein). This situation is in striking
contrast with three-dimensional turbulence where intermit-
tency is clearly present. Equation (6), however, shows the
important result that drag �n0 . 0� leads to intermittency
also in the two-dimensional case (zq fi 0 and not propor-
tional to q).

In conclusion, we have considered the effect of linear
drag on the enstrophy cascade of two-dimensional Navier-
Stokes turbulence. We find that, as in the case without
drag, enstrophy cascade results in power law behavior of
the energy spectrum. However, the power law exponent is
different from the classical Batchelor-Kraichnan prediction
(23) and is determined by the distribution of finite time
Lyapunov exponents and the drag coefficient.

K. N. acknowledges useful discussions with M. Hendrey
and D. Lathrop. This work is supported by the Office of
Naval Research (Physics).

*Department of Physics.
†Department of Electrical Engineering.

[1] H. Kellay, X-l. Wu, and W. I. Goldburg, Phys. Rev. Lett.
74, 3975 (1995).

[2] H. Kellay, X. L. Wu, and W. I. Goldburg, Phys. Rev. Lett.
80, 277 (1998).

[3] M. Rivera, P. Vorobieff, and R. E. Ecke, Phys. Rev. Lett.
81, 1417 (1998).

[4] B. K. Martin, X. L. Wu, and W. I. Goldburg, Phys. Rev.
Lett. 80, 3964 (1998).

[5] M. A. Rutgers, Phys. Rev. Lett. 81, 2244 (1998).
[6] P. Vorobieff and R. E. Ecke, Phys. Rev. E (to be published).
[7] J. Sommeria, S. D. Meyers, and H. L. Swinney, Nature

(London) 337, 58 (1989); T. H. Solomon, E. R. Weeks,
and H. L. Swinney, Phys. Rev. Lett. 71, 3975 (1993); E. R.
Weeks et al., Science 278, 1598 (1997). In a rotating tank,
two-dimensionality results from the tendency of the fluid to
maintain “Taylor columns” as it moves, and Eq. (1) is (in
the rotating frame) relevant for the case where the bottom
and top of the tank are horizontal.

[8] B. Juttner et al., Phys. Rev. E 55, 5479 (1997).
[9] J. Paret, M.-C. Jullien, and P. Tabeling, Phys. Rev. Lett.

83, 3418 (1999).
[10] M. C. Kelley and E. Ott, J. Geophys. Res. 83, 4369 (1978).
[11] G. D. Nastrom and K. S. Gage, J. Atmos. Sci. 42, 950

(1985).
[12] For soap films there is drag between the film and surround-

ing gas, for rotating flows there is friction with the bot-
tom and top of the container (Eckmann pumping), for the



VOLUME 84, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 29 MAY 2000
magnetically forced flows of Ref. [8] there is a discussion
of drag in that reference, and for the ionospheric case there
are ion-neutral collisions [10].

[13] R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
[14] G. K. Batchelor, Phys. Fluids 12, II-233 (1969).
[15] V. Borue, Phys. Rev. Lett. 71, 3967 (1993).
[16] C. H. Bruneau, O. Greffier, and H. Kellay, Phys. Rev. E 60,

R1162 (1999).
[17] We also note that low k damping of some sort is necessary

in our computations to prevent continual energy accumu-
lation at low k (due to inverse energy cascade).

[18] R. H. Kraichnan, J. Fluid Mech. 547, 525 (1971).
[19] E. R. Abraham, Nature (London) 391, 577 (1998); L. Seu-

ront et al., J. Plankton Res. 21, 877 (1999).
[20] K. Nam et al., Phys. Rev. Lett. 83, 3426 (1999). In this
work a basic assumption is that the spatial Fourier trans-
form of the velocity field decreases sufficiently rapidly with
increasing k that a treatment based on Lyapunov exponents
makes sense. We call such a flow Lagrangian chaotic if
h̄ . 0.

[21] Z. Neufeld, C. Lopez, and P. H. Haynes, Phys. Rev. Lett.
82, 2606 (1999).

[22] E. Ott, Chaos in Dynamical Systems (Cambridge Univer-
sity Press, Cambridge, England, 1993), Sec. 9.4, and ref-
erences therein.

[23] Z. Neufeld, C. Lopez, E. Hernandez-Garcia, and T. Tel,
e-print chao-dyn/9907023, 1999.
5137


