
VOLUME 87, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 3 DECEMBER 2001

235002-1
Velocity Shear Stabilization of Centrifugally Confined Plasma
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A magnetized, centrifugally confined plasma is subjected to a 3D MHD stability test. Ordinarily, the
system is expected to be grossly unstable to “flute” interchanges of field lines. Numerical simulation
shows though that the system is stable on account of velocity shear. This allows consideration of a
magnetically confined plasma for thermonuclear fusion that has a particularly simple coil configuration.
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In essence, nearly all magnetic schemes to confine plas-
mas for thermonuclear fusion are based on the idea that
energetic charged particles gyrate tightly about a magnetic
field line which is then configured to close on itself inside
the system [1]. This requirement on closure of field lines
(at least six confinement schemes are based on this idea)
implies significant constraints in coil design. It would be
desirable to relax this constraint, say, by allowing “open”
field configurations (wherein the field lines are not con-
fined but the particles are). One well-known open configu-
ration is the magnetic mirror [1]. This scheme relies on
the mirror forces to reflect particles at the mirror throats
and so contain plasma. But mirror reflection can contain
plasma only up to a collision time, beyond which particles
scatter into a “loss cone” and are lost on the open field
line. Another issue for mirrors is the MHD stability of the
mirror: the magnetic configuration is inherently unstable
to “flute” interchanges of field lines. Basically, a field line
loaded with hot particles can interchange with one of cold
particles, thus releasing net potential pressure energy, akin
to the Rayleigh-Taylor gravitational energy release in or-
dinary fluids. While it is possible to suppress this inter-
change in advanced mirror schemes, the latter come with
greater magnetic coil complexity and, in any case, do not
necessarily resolve the loss-cone issue mentioned.

The centrifugally confined plasma scheme [2,3] is an
open field line configuration which holds the promise of
overcoming these drawbacks. In the centrifuge scheme, a
magnetic mirror-type plasma is made to rotate azimuthally
at supersonic speeds, in accordance with frozen-in �E 3 �B
motion. The resulting centrifugal forces, given the field
line curvature, prevent the escape of ions along the open
lines —the mirror forces become irrelevant and the loss
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cone is erased. The MHD flute stability issue, however, is
intricate and constitutes the subject of this Letter. A quick
assessment of flute stability is as follows: at first glance,
it would seem that the outward centrifugal force adds to
the unfavorable gravitational acceleration and makes the
interchanges even more potent. There is, however, a new
ingredient, shear in the angular frequency of rotation (a
sheared flow is inevitable for plasma situations): it has
become increasingly clear over the past decade that flow
shear can stabilize interchanges (among other plasma in-
stabilities), basically by introducing a shearing frequency
that tears apart convection cells before they can release en-
ergy [4–6]. Thus, the overall flute stability is a result of
these competing effects. To make matters more compli-
cated, gradients in the flow shear might introduce Kelvin-
Helmholtz instabilities: the quick assessment is that the
latter would likely, at worst, be slowly growing because of
the Rayleigh inflection theorem [7]. Evidently, the issue
of whether rotation shear would iron out the interchange
needs resolution.

In this Letter, we show by numerical simulation that a
centrifugally confined plasma in a mirror-type configura-
tion is stable to the flutes, at Mach numbers of rotation of
about 4. If this conclusion holds for a fusion-grade plasma
(expected to be in the same dimensionless parameter range
as our simulation), it allows consideration of a fusion de-
vice with a very simple coil configuration (among other
advantages) [3]. We solve numerically the 3D MHD and
transport equations [8] in cylindrical �R, f,Z� coordinates.
The governing equations are
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Standard notation is used. The viscosity is assumed iso-
tropic; the thermal conductivity is anisotropic with con-
duction along the field dominating that cross field. Viscous
heating is included, as this is the means by which centrifu-
gal schemes could be heated [3]: for simplicity, we keep
only the most significant term in the viscous heating (since
© 2001 The American Physical Society 235002-1



VOLUME 87, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 3 DECEMBER 2001
the plasma rotates supersonically in the f direction, we
expect uf ¿ uz , ur ).

We use normalized units as follows: lengths are nor-
malized to the simulation radial dimension L, the mag-
netic field B is normalized to a reference field B0, and
electron number density n is normalized to a reference
density n0. Thus, speeds are normalized to the reference
Alfvén speed VA0 � �B2

0�4pn0M�1�2, and time is normal-
ized to the Alfvénic time scale L�VA0. It follows that
energies and temperature are normalized to MV 2

A0, the vis-
cosity m, and the thermal conductivities k� and kk are
each normalized to LVA0, and resistivity h is normalized
to 4pLVA0�c2.

Our simulation box is within two concentric cylindrical
walls. The width of the box is 1, the inner cylinder is
at radius 0.45, and the elongation in the z direction is
5. (For efficient centrifugal confinement, it is desired to
have the ratio of the outermost to the innermost radius of
a field line to be at least 3 [3]. The inner radius of 0.45
was picked for this reason and for numerical ease.) The
external magnetic field is, dominantly, a uniform field in
the z direction plus the field of two additional “mirror”
coils of radius 1.75 placed at the top and bottom of the box.
The latter coils produce the throats of the mirror. (Since we
impose periodic boundary conditions in the z direction, in
practice we also place additional coils in periodic fashion
along z, separated by a distance of five units. The latter
coils are subdominant to the main field described earlier;
for the simulation, we terminated the series at 20 extra coils
above and below the box.) The number of grid points in
the simulations reported below was 60 3 40 3 100.

As mentioned, periodic boundary conditions are im-
posed in z, as well as in the f direction. The boundaries in
R are assumed to be perfectly conducting hard walls: since
field lines cut these walls in general, we assume zero flow
at and into the walls, we let the perturbed normal magnetic
field, B̃R , be zero, and we assume that the perturbed trans-
verse magnetic field satisfies ≠RB̃Z � 0, ≠R�RB̃f� � 0,
consistent with zero current at the walls. The growth rate
of the interchange instability is much larger than resistive
penetration rates through a conducting vessel wall, thus
the conducting wall boundary conditions used (“line tying”
and no flux penetration for the magnetic field) are reason-
able. (For current-driven kink modes, it is well known
[1] that close fitting conducting shells reduce the growth
rate; interchange mode growth rates are independent of the
wall radius since these modes are well localized.) In ad-
dition, in a real system, a low temperature plasma with
attendant high density of neutral atoms close to the walls
provides a strong drag on plasma flow, thus the no-slip
boundary conditions on the flow are also reasonable from
this standpoint.

The temperature T at the radial walls, as well as at the
z boundaries, is kept at “room temperature” T0. This is
achieved by putting in a heat sink term of the form 2�T 2

T0�Ae2a�Dx�2 on the boundary, where A is a large constant,
a � 1��grid size�2 and Dx is the distance to the wall. This
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simulates radiation close to the walls, which would be ex-
pected and would keep the temperature low there.

The numerical algorithm is described in detail in Guzdar
et al. [9]. We began the simulation with uniform density
and temperature at room temperature (n � 1 and T � T0).
The initial magnetic field was all due to the external coils.
There was no rotation in the initial state. Further, we did
not “seed” any noise in the toroidal direction initially, i.e.,
we first used the 3D code to attain a 2D azimuthally sym-
metric laminar state. For this run, we took the viscosity m,
the perpendicular thermal conductivity k�, and the resis-
tivity h all to be 0.002. The parallel thermal conductivity
kk was set to be 200k�. The room temperature T0 was set
to be 0.002. With this initial condition, we applied a force,
Ff � 8m, in the f direction to model the external I 3 B
forces on the plasma (other methods of “start-up” were
tried, e.g., imposed radial currents at the top and the bot-
tom also spun up the plasma). Because of the applied force,
the plasma started rotating in the f direction. By build-
ing speed, the centrifugal force was then seen to push the
plasma towards the midplane. The temperature rose due
to viscous heating, especially in the flanks, with heat con-
ducting toward the midplane. After about 300 time units
from the onset of the driving force, the system came to an
approximate steady state.

Figure 1 shows the temperature and the pressure gray
scale contour plots of this 2D laminar state, with magnetic
field lines overlaid. The pressure is localized to a peak in
the center. All the temperature rise results from viscous
heating. Temperature contours tend to match magnetic
field lines because of the much higher thermal conductiv-
ity along the field line. The angular frequency of rotation,
V, self-consistently ended up being a flux function, as pre-
dicted by theory [3]. A profile is shown in Fig. 1(c), with
shear in V clearly evident given the no-slip boundary con-
ditions. The central Mach number is a key parameter. We
define the Mach number Ms by M2

s � Mu2
f�T . For this

run, we achieved a maximum Mach number of Ms � 4
at the center. The pressure drop pmax�pmin � 86, and the
Alfvén Mach number was MA � 0.3. This laminar state
shows that centrifugally confined plasmas can provide rea-
sonable profiles for a fusion device.

This steady state was then seeded with random noise,
in all coordinates, of the size 1024 in density, and all flow
variables. The fastest growing instability was expected to
have a toroidal wavelength of the order of p�6. Thus, for
numerical ease, we reduced the box size in f and imposed
periodic boundary conditions over the range f � �0, p�3�
(this was remedied in other runs, wherein we confirmed
that longer wavelengths were not an issue, by increasing
the box size). This 3D random noise test was allowed to
run for more than 60 time units, much longer than the ex-
pected growth times (of the order of tens of time units).
There was no sign of the characteristic interchange insta-
bility and breakup of the laminar state: the random noise
was initially seen to smooth out, some mild undulation in
f was then seen, at wavelengths of the order of p�3 rad,
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FIG. 1. The 2D laminar profiles: (a) temperature and (b) pres-
sure, with magnetic field lines overlaid. A cut of angular
frequency at midplane is shown in (c). Likewise, (d) is a pres-
sure cut.

and this undulation then settled down to a small wobble
with amplitude less than 1%. A wobble had been observed
in a z pinch simulation done earlier [10] and so was ex-
pected in our simulation, but the size of the wobble was
found to be considerably smaller than expected. For all
practical purposes, this simulation indicated that the lami-
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nar state was maintained. As mentioned above, we experi-
mented with longer box sizes in f (p�2, p, and 2p) as
well as differing resolution. We also started the simulation
from scratch (no rotation), but included random noise. No
evidence was found in any case that would equivocate the
conclusion that the system is stable.

Because we saw no breakup of the system, it was impor-
tant to find a counterexample where the code did produce
a characteristic interchange breakup. To be sure, Cartesian
versions of this code have shown large scale, nonlinear,
turbulent behavior [10]. (In addition, our stable result is
consistent with theoretical analysis which suggests sta-
bilization at Mach numbers somewhat larger than unity
[5,11].) Nonetheless, we looked for an unstable situation
to test in this case. One possibility was to rerun the simu-
lation with no shear in the angular frequency, i.e., config-
ure the system such that V0 was zero and the entire plasma
was rigidly rotating. Then, there would be instability (since
one can then transform to a frame in which the centrifugal
force would go as R and there would be no velocity shear).
This test, unfortunately, cannot be implemented for the
centrifuge system without changing too many things that
would then make the comparison meaningless: if we set
up an equilibrium with V0 � 0, there would be no viscous
heating [see Eq. (3)], thus the temperature would be a con-
stant and the density profile would adjust to compensate.
As a result, we would be comparing two different situ-
ations. In order to carry out a test that would maintain the
density and temperature profiles but minimize the velocity
shear, we settled on an “artificial” test. We took the final
output frame of the 3D seeded code above and “froze” the
centrifugal and Coriolis accelerations as well as the viscous
heating as follows: In the momentum equation [Eq. (2)]
we froze the terms corresponding to the Coriolis and cen-
trifugal accelerations, set the applied force �F to zero, and
reset all the remaining flow terms to zero as the initial con-
dition. The new momentum equation then looked like
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Here, V0 is the rotation frequency function frozen from
the previous run. Note that the variable �u, while set to
zero initially, is free to evolve. Concomitantly, the density
n in front of the centrifugal term is free to evolve. Thus,
we are starting from a situation where there are destabiliz-
ing accelerations but no flow shear — and no possibility of
flow shear buildup since the applied force �F is zero. Note
also that in the initial state the above equation keeps the
system in equilibrium, and no equilibrium pressure profile
adjustments will occur at restart. Likewise, we also froze
the heating terms in the temperature equation. In particu-
lar, in Eq. (2), we froze the viscous heating term to keep
it at �2�3�MmR2j �=V0j

2. This form of the heat equation
ensures that there will be no temperature adjustments on
the transport time scale.
We restarted with random noise as before. The discharge
became unstable. Figure 2 shows the pressure on the
R 2 f cut through the midplane at t � 0, 70, 83, 89, 95,
and 101. The characteristic “mushrooms” associated with
an interchange are clearly visible and the entire discharge
is effectively destroyed. Continuation of the run at this
stage would produce turbulence. We then restored velocity
shear: we reintroduced the force �F, at the same level as be-
fore, and restarted from the last frame of Fig. 2, except that
uf was set to RV0 as an initial condition. The Coriolis and
the centrifugal terms were turned off. The discharge then
recovered. The pressure profiles on the R 2 f midplane
cut at t � 0, 3.5, 7, 10.5, 17.5, and 63 are shown in Fig. 3.
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FIG. 2. The time evolution of the pressure on the R 2 f
midplane of the test without velocity shear.

The discharge was stabilized and the laminar state was al-
most completely recovered at t � 63.

In conclusion, our numerical experiment demonstrates
the existence of a stable, centrifugally confined plasma
within a magnetic configuration that is relatively simple. It
is incontrovertible that a simple magnetic mirror is grossly
flute unstable, and would be even more so under rigid rotor
azimuthal rotation. We have shown that strong velocity
shear renders the system laminar. Analytic calculations in
progress support this numerical finding [11]. This is a very
attractive idea for a fusion device. Supersonic rotation is
required but this is precisely what is also required for the
containment of the plasma by centrifugal forces [3]. The
system we consider is of small Larmor radius and, accord-
ingly, the simulation is based on ideal MHD. Drift insta-
bilities, by definition for this system, have lower growth
rates and shorter wavelengths and are not included in this
description. The lower growth rate, however, means our
large velocity shear would be strongly stabilizing; the
shorter wavelengths would imply that these instabilities
would not disrupt the discharge but, at worst, cause tur-
bulent transport. All frequencies considered are below
the ion-cyclotron frequency, at least for long wavelengths.
Thus, kinetic cyclotron effects, again, would not be grossly
disruptive. Clearly, however, both drift and kinetic ef-
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FIG. 3. Stabilization from restoring velocity shear.

fects would have to be included in a more encompassing
study.

An experiment currently under construction should be
able to test this result [3]. The experimental plan allows
for extra coils to produce an azimuthal field to assist veloc-
ity shear stabilization of interchange instability, if needed.
The present simulation, albeit at Reynolds numbers smaller
than expected in the experiment, suggests the azimuthal
field may not be needed.
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