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Shear flow generation by drift waves revisited
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The generation of shear flow by drift waves is an important area of investigation. In a recent paper
[Chenet al, Phys. Plasmasg, 3129(2000] an elegant formalism was developed for the generation

of shear/zonal flows by drift waves in a toroidal plasma. The study of shear flow generation in fluids
and plasmas is put into perspective. In this paper it is shown how a simple slab geometry analysis
can lead to a similar dispersion relation and highlight the subtle differences between the slab and
toroidal geometries. €2001 American Institute of Physic§DOI: 10.1063/1.134061]8

I. INTRODUCTION the four-wave model was a higher spatial harmonic of the
) ) . shear flow and was necessary to conserve the average vor-
The observation of the low to high confinemeht-H) ity This led to a modification by Hermiet al*! of the
transition in tokamaks heralded significant optimism for i ,ncated model used by Howard and Krishnamfrsjnce

achieving the goal of fusion in a laboratory plastiaMore e jatter model did not conserve average vorticity. Later on,
recently, the enhanced confined modes observed in all th&

O dbvices has also has added to th vy sing the Hasegawa—Mima—Charney equation, Gdzdar
major devices has also has adde 0 _t e optiniSAs a tudied the shear-flow generation by Drift/Rossby waves. In
consequence, understanding of this remarkable self;

i f the tok K ol in th d f‘ his study it was shown that the pump wave coupled to the
organization of the tokamax plasma in these good con Ine'hear flow, its higher harmonic, as well as two drift-wave

ment regimes is an important area of research. Central to a?l. ) .
: ) ) Sidebands. In the context of parametric processes the insta-
these enhanced confinement regimes, be they in the ed

region or the core region of the plasma, is the generation o ‘ﬁ|ty due to coupling to the two sidebands is generically a

. . modulational instability. The finite frequency associated with
sheared flows or zonal flows, which are believed to be re- ) ) . )
the drift/Rossby wave was responsible for introducing the

sponsible for suppressing fluctuations and inhibiting trans- .
P PP g g econd sideband. More recently, Chehal*® have per-

port. Thus, it is important to understand the mechanisms fof . .
the generation of shear flow. ormed an elegant analysis of the shear/zonal flow generation

We first put into historical perspective the study of shealby drift and/or ion temperature gradiefiTG) driven modes

flow generation in fluids and plasmas. It is only in the recent” @ toroidal plasma using the coupling of a pump drift/ITG

past that the linear theory of the generation of shear flow had0de to the shear/zonal flow and two sidebands. These au-

been investigated. The first study that identified the sheai°rs used a kinetic description of the plasma. Finally, recent

14 15 H :
flow instability is the work of Howard and Krishnamufty, WOrk by Jenkoet al™and Dorlandet al.™ using a Kelvin—

where the authors showed that tilting of the fluid vortices inr€lmholtz instability analysis for periodic shear flows,
a Rayleigh—Beard convection experiment at low Reynolds showed that due to the difference in the adiabatic response of

number was due to the onset of the shear-flow instability. Iffléctrons for the ITG modes and the adiabatic response of the
the context of plasma physics, Drakeal” and Finnet al®  ions for the electron temperature gradi€Bi G) modes, the
developed a four-wave model for the instability, which leadsshear flow growth rates are significantly different for these
to the generation of shear flow for driven vortices for a fluidtWo modes. This has major implications in the nonlinear
represented by the incompressible Navier—Stokes equaticituration and transport scaling for these modes.
in two dimensions. This study was motivated by the obser- A more recent development for understanding the zonal
vation of shear-flow generation in the three-dimensionaflow as an instability is the work of Lebedest al,*® Kaw
simulation of drift-resistive ballooning modes in the edgeet al,'” and Smolyakowet al,'® where the drift waves are
region of a tokamak by Guzdast al® Although Diamond represented by a wave-kinetic equation coupled to the zonal
and Kimt? recognized earlier that the Reynolds stress wadlow equation. For this case, the modulational instability
capable of driving shear flow, the actual instability mecha-analysis for a broad spectrum of drift waves yields a growth
nism that was a generalized parametric instability, was onlyate that depends on the square root of the amplitude of the
understood due to the studies cited above. pump. However recently, for a monochromatic wave packet
As shown in the earlier work;® the basic shear-flow for the drift wave, Smolyakoet al'® have shown that like
instability is a parametric instability involving a pump wave the coherent modulational instability analysis, the growth
(which could be any normal mode like the drift, ion tempera-rate is proportional to the amplitude of the pump. The latter
ture gradient, resistive ballooning modes to name g,fédve  is a stronger instability. In using the wave-packet formula-
shear flow and a single sideband. The fourth mode used ition one tacitly assumes that the drift waves have a much
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smaller spatial scale compared to the scale of the shear flow. c2 R c? R

This separation of scale is not necessary in the coherent wayd — ngz)ﬁ ba— §V¢dXZ°V Inny— 55_V<¢> X2:V ¢pyq

formulation. In retrospect, the earlier modulational instability ! :

studies by Sagdeeet al?° and Shapiroet al,?* using the c2p? . .

wave packet formulation for the interaction of short-scale-  + —~ V'IV($)XZVV g+ VX2 VV(4)]=0,

length drift waves with long wavelength convective cells can '

be viewed as a precursor to the recent work, since the shear (5)

flow is a special case of the convective cell. where c=\To/m;, ps=Cs/Qi, Ppg=edpy/Te, and (¢)
Here we provide a simple slab analysis of the electro-—eg/T,, and

static drift-wave zonal flow interaction model and re%)ver ; o2

the basic results derived in the recent work of Cle¢al. 2 s ~ _

for the toroidal case. We show the differences between the EV ()= EVO[V%XZ'V ¢al=0. ®

slab and toroidal calculation, and also extend the regime of These sets of equations are different from the

validity qf the analysi_s _to high mode numbers. The presenhasegawa—Mima—Charne(jHMC) model. which describes
theo.ry gives an explicit mode number dependence of thﬂwe drift-wave/drift-wave interaction but misses the lowest
maximally growing zonal flow. order drift-wave/zonal interactigihe third term on the left-
hand side of Eq.(5)]. This is because in deriving the
Hasegawa—Mima—Charney equation one has assumed that
Il. BASIC EQUATIONS the electron is dominated by the adiabatic approximation
) , , given by Eq.(4) withoutthe ¢ piece. As a consequence, the
The basic equations for the study of drift mode~zonalyiry term in our current equatiofs) does not appear in the
flow interaction are HMC model. Also for the shear flow, the adiabatic limit is
incorrect and the dynamics is strictly two dimensional like

J

ﬁn+V-(nvL)=0, (1)  the incompressible Navier—Stokes fluid.
with IIl. LOW-DIMENSIONAL MODEL

. ¢ d We first develop a low-dimensional model for the gen-

Vi=— §V¢XZ— OB av‘ﬁ' () eration of shear/zonal flow by assuming that
with bq= ¢gocosky(y—Ct) + ¢yssink,x sink,(y — Ct)

d s + ¢gcsinkyx cosky (y—Ct), )

c -
i gYexzy (3 with C=V/(1+k}p3), V=—(cZ/Q;)dInny/dx and
(¢)= p,cosKyx. ()

and

The interesting aspect of this truncated model is that the drift
n e — wave consists of the pump wavg,;,, which couples to the
n_0_1: T_e[‘f’_‘f’]- 4 two sidebands¢ys and ¢y4., as was done in the earlier
work.}? In the more recent work by Chest al.*® instead of
Heren=ny(Xx) + dny is the total density, witmg the equi- using the sine and cosine sidebands, the complex wave rep-
librium density, with a spatial dependence, ahy, the den-  resentation for the two sidebands is used. In the parlance of
sity associated with the drift waves. Hefg is the electron mode coupling processes, the instability obtained for cou-
temperature(); =eB/m;c the ion gyrofrequencye the posi-  pling of the pump wave to the two sidebands by the shear/
tive magnitude of the electron chargeg, the ion masscis  zonal flow is referred to as a modulational instability. The
the speed of light. Equatiofd) is the correct adiabatic re- equivalence of the two approaches has been well docu-
sponse for the electrons, as first pointed out by Dorland anchented for the modulation instability of large-amplitude
Hammett? and more recently by Cheet al’® In deriving  electromagnetic waves in the work of Kaet al?® and
the velocity as the sum of tHex B and the polarization drift  Gurevich?* Using this representation, the coupled nonlinear
we have ordered the time scale associated with the drift wavequation for the four waves are
(and zonal flowsto be ordered smaller than the ion gyro- 2
frequency, i.e., d/dt)/Q;~ 5, where 6<1 is a smallness _—_ , _ S =
parameter. We also assume théity/ne(0)~(V, L,)~* at P 20 Kuky2bas=0. ®
~ 6. HerelL, is the scale length of the equilibrium density

2 2
inhomogeneity. With these orderings, writiRg= ¢+ by,  (1+ kfpi)i byt kyv—k;‘p; de
normalizing the potential td /e and densityn to ny(0), we dt (1+kjps
substitute the velocity and density into the continuity equa- 2
tion, Eg. (1), and obtain the set of equations that describes ﬁ_kxky(Hkipi—k§p§)¢z¢do=0, (10)
1

the coupling of the drift waves to the zonal/shear flow,
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K VK2p2 The inertia of the trapped ions reduces the growth rate
y—;;¢ds=0, (11) by decreasing the destabilization tefthe first term in the
(1+kyps square bracket on the right-hand sides)].

q o2 Thizs 2dispersion relation shows that modes witfp?

: >
it b+ Z—Qikxky%o(ﬁds: 0. (12) ;1t;:ekyps are alway_s stable. The thresh_old for the amplitude

pump wave is due to the detuning or the frequency

g_ifference between the pump and the two sidebands. By set-
ting the growth rate to zero, the critick} below which the
instability occurs can be determined. Kfp2<1, then the
critical wave numbek, . below which the drift wave is un-
stable to the generation of shear flgw the slab caseis

d
(1+ kfpg)a Pac—

These equations are an extension of the nonlinear equ
tions derived by Cheret al’® to include finite ion Larmor
radius effectgwith electron temperatuyen the drift waves
obtained from the polarization drift term. If we assume that
bd, Pac, P<bqo0, and that the perturbed state variables

have a time dependence given as exp(then the linearized 1 baoCs
system of equation€l0)—(12) yield the following dispersion Kyeps=——(1+ kipﬁ)zT. (16)
relation: V2

422 22 2 s For the toroidal case, this critical wave number would be
o Cskiky (1+kyps—kKips) (1 +KT p5) 2 smaller by a factor ofps/(y/1.6e¥A,). This condition
Qi2(1+kJ2_p§ 2 2 do would be valid for small amplitude waves for which
€8dqo!/ Te<ps/L,. However, if €d¢pyo/Tc>ps/L,,, then

Y

V2Kk2p2 13 the critical wave numbek,ps= (1+kip3)*% beyond which
c§(1+k§p§)2 ' no instability occurs.

Here k? =kZ+kZ. Also, this dispersion relation is ge- |v. CONCLUSIONS
nerically similar to one derived by Guzdausing the HMC _ _ _ _
equation. The differences arise because of the limitations of e have derived a low-dimensional system of equations
the HMC equation in describing the drift wave/zonal flow fOr the generation of shear/zonal flow by drift waves. The
interaction as well as the finite size of the geometry inxthe inéar stability analysis in the slab geometry of this simple
direction in the earlier work? This dispersion relation is the SyStem displays the similarities and yet slugbtle differences
slab version of Eq(10) in the work of Cheret al3 and also with the recent toroidal analysis of Chetal.” The evolu-

includes the large mode-number limit because of the termfon equation[Eq. (14)] for the shear flow in a toroidal
associated with the nonlinear polarization drift in the drift- Plasma is due to the trapped ions, while in a slab the shear

wave components. If these terms were neglected, then tHPW €quation is due to the circulating iofifg. (12)]. As a
above dispersion relation would reduce to that in Ref. 1Fonsequence the growth rates in the toroidal case are smaller

with one significant difference, which is due to the toroidal [Ed- (15)] compared to the slab cafigq. (13)]. We have also

geometry. For the toroidal plasma, the zonal/ishear flow i§Xteénded the regime of validity intPlIargk; wave number
dominated by the trapped ions. Thus Ef2) for the shear SPace(comparable and larger than °) to provide a short-
flow in toroidal geometry gets replaced by wavelength cutoff for the zonal flow instability.
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