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Shear flow generation by drift waves revisited
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The generation of shear flow by drift waves is an important area of investigation. In a recent paper
@Chenet al., Phys. Plasmas7, 3129~2000!# an elegant formalism was developed for the generation
of shear/zonal flows by drift waves in a toroidal plasma. The study of shear flow generation in fluids
and plasmas is put into perspective. In this paper it is shown how a simple slab geometry analysis
can lead to a similar dispersion relation and highlight the subtle differences between the slab and
toroidal geometries. ©2001 American Institute of Physics.@DOI: 10.1063/1.1340618#
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I. INTRODUCTION

The observation of the low to high confinement~L–H!
transition in tokamaks heralded significant optimism
achieving the goal of fusion in a laboratory plasma.1–3 More
recently, the enhanced confined modes observed in all
major devices has also has added to the optimism.4,5 As a
consequence, understanding of this remarkable s
organization of the tokamak plasma in these good confi
ment regimes is an important area of research. Central t
these enhanced confinement regimes, be they in the
region or the core region of the plasma, is the generation
sheared flows or zonal flows, which are believed to be
sponsible for suppressing fluctuations and inhibiting tra
port. Thus, it is important to understand the mechanisms
the generation of shear flow.

We first put into historical perspective the study of she
flow generation in fluids and plasmas. It is only in the rec
past that the linear theory of the generation of shear flow
been investigated. The first study that identified the sh
flow instability is the work of Howard and Krishnamurty6

where the authors showed that tilting of the fluid vortices
a Rayleigh–Be´nard convection experiment at low Reynol
number was due to the onset of the shear-flow instability
the context of plasma physics, Drakeet al.7 and Finnet al.8

developed a four-wave model for the instability, which lea
to the generation of shear flow for driven vortices for a flu
represented by the incompressible Navier–Stokes equa
in two dimensions. This study was motivated by the obs
vation of shear-flow generation in the three-dimensio
simulation of drift-resistive ballooning modes in the ed
region of a tokamak by Guzdaret al.9 Although Diamond
and Kim10 recognized earlier that the Reynolds stress w
capable of driving shear flow, the actual instability mech
nism that was a generalized parametric instability, was o
understood due to the studies cited above.

As shown in the earlier work,6–9 the basic shear-flow
instability is a parametric instability involving a pump wav
~which could be any normal mode like the drift, ion tempe
ture gradient, resistive ballooning modes to name a few!, the
shear flow and a single sideband. The fourth mode use
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the four-wave model was a higher spatial harmonic of
shear flow and was necessary to conserve the average
ticity. This led to a modification by Hermizet al.11 of the
truncated model used by Howard and Krishnamurty,6 since
the latter model did not conserve average vorticity. Later
using the Hasegawa–Mima–Charney equation, Guzd12

studied the shear-flow generation by Drift/Rossby waves
this study it was shown that the pump wave coupled to
shear flow, its higher harmonic, as well as two drift-wa
sidebands. In the context of parametric processes the in
bility due to coupling to the two sidebands is generically
modulational instability. The finite frequency associated w
the drift/Rossby wave was responsible for introducing
second sideband. More recently, Chenet al.13 have per-
formed an elegant analysis of the shear/zonal flow genera
by drift and/or ion temperature gradient~ITG! driven modes
in a toroidal plasma using the coupling of a pump drift/IT
mode to the shear/zonal flow and two sidebands. These
thors used a kinetic description of the plasma. Finally, rec
work by Jenkoet al.14 and Dorlandet al.15 using a Kelvin–
Helmholtz instability analysis for periodic shear flow
showed that due to the difference in the adiabatic respons
electrons for the ITG modes and the adiabatic response o
ions for the electron temperature gradient~ETG! modes, the
shear flow growth rates are significantly different for the
two modes. This has major implications in the nonline
saturation and transport scaling for these modes.

A more recent development for understanding the zo
flow as an instability is the work of Lebedevet al.,16 Kaw
et al.,17 and Smolyakovet al.,18 where the drift waves are
represented by a wave-kinetic equation coupled to the zo
flow equation. For this case, the modulational instabil
analysis for a broad spectrum of drift waves yields a grow
rate that depends on the square root of the amplitude of
pump. However recently, for a monochromatic wave pac
for the drift wave, Smolyakovet al.19 have shown that like
the coherent modulational instability analysis, the grow
rate is proportional to the amplitude of the pump. The lat
is a stronger instability. In using the wave-packet formu
tion one tacitly assumes that the drift waves have a m
© 2001 American Institute of Physics
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smaller spatial scale compared to the scale of the shear fl
This separation of scale is not necessary in the coherent w
formulation. In retrospect, the earlier modulational instabil
studies by Sagdeevet al.20 and Shapiroet al.,21 using the
wave packet formulation for the interaction of short-sca
length drift waves with long wavelength convective cells c
be viewed as a precursor to the recent work, since the s
flow is a special case of the convective cell.

Here we provide a simple slab analysis of the elect
static drift-wave zonal flow interaction model and recov
the basic results derived in the recent work of Chenet al.13

for the toroidal case. We show the differences between
slab and toroidal calculation, and also extend the regime
validity of the analysis to high mode numbers. The pres
theory gives an explicit mode number dependence of
maximally growing zonal flow.

II. BASIC EQUATIONS

The basic equations for the study of drift mode–zo
flow interaction are

]

]t
n1“"~nv'!50, ~1!

with

v'52
c

B
“fÃẑ2

c

V iB

d

dt
“f, ~2!

with

d

dt
5

]

]t
2

c

B
“fÃẑ"“ ~3!

and

n

n0
215

e

Te
@f2f̄#. ~4!

Here n5n0(x)1dnd is the total density, withn0 the equi-
librium density, with a spatial dependence, anddnd the den-
sity associated with the drift waves. HereTe is the electron
temperature,V i5eB/mic the ion gyrofrequency,e the posi-
tive magnitude of the electron charge,mi the ion mass,c is
the speed of light. Equation~4! is the correct adiabatic re
sponse for the electrons, as first pointed out by Dorland
Hammett22 and more recently by Chenet al.13 In deriving
the velocity as the sum of theE3B and the polarization drift
we have ordered the time scale associated with the drift w
~and zonal flows! to be ordered smaller than the ion gyr
frequency, i.e., (d/dt)/V i;d, where d!1 is a smallness
parameter. We also assume thatdnd /n0(0);(“'Ln)21

;d. HereLn is the scale length of the equilibrium densi
inhomogeneity. With these orderings, writingf5f̄1dfd ,
normalizing the potential toTe /e and densityn to n0(0), we
substitute the velocity and density into the continuity eq
tion, Eq. ~1!, and obtain the set of equations that describ
the coupling of the drift waves to the zonal/shear flow,
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]

]t
fd2

cs
2

V i
“fdÃẑ"“ ln n02

cs
2

V i
“^f&3 ẑ"“fd

1
cs

2rs
2

V i
“"@“^f&3 ẑ"““fd1“fd3 ẑ"““^f&#50,

~5!

where cs5ATe /mi , rs5cs /V i , fd5edfd /Te , and ^f&
5ef̄/Te , and

]

]t
“

2^f&2
cs

2

V i
“"@“fd3 ẑ"“fd#50. ~6!

These sets of equations are different from t
Hasegawa–Mima–Charney~HMC! model, which describes
the drift-wave/drift-wave interaction but misses the lowe
order drift-wave/zonal interaction@the third term on the left-
hand side of Eq.~5!#. This is because in deriving th
Hasegawa–Mima–Charney equation one has assumed
the electron is dominated by the adiabatic approximat
given by Eq.~4! without the f̄ piece. As a consequence, th
third term in our current equation~5! does not appear in the
HMC model. Also for the shear flow, the adiabatic limit
incorrect and the dynamics is strictly two dimensional li
the incompressible Navier–Stokes fluid.

III. LOW-DIMENSIONAL MODEL

We first develop a low-dimensional model for the ge
eration of shear/zonal flow by assuming that

fd5fd0cosky~y2Ct!1fdssinkxx sinky~y2Ct!

1fdcsinkxx cosky~y2Ct!, ~7!

with C5V/(11ky
2rs

2), V52(cs
2/V i)d ln n0 /dx, and

^f&5fzcoskxx. ~8!

The interesting aspect of this truncated model is that the d
wave consists of the pump wavefd0 , which couples to the
two sidebandsfds and fdc , as was done in the earlie
work.12 In the more recent work by Chenet al.,13 instead of
using the sine and cosine sidebands, the complex wave
resentation for the two sidebands is used. In the parlanc
mode coupling processes, the instability obtained for c
pling of the pump wave to the two sidebands by the she
zonal flow is referred to as a modulational instability. T
equivalence of the two approaches has been well do
mented for the modulation instability of large-amplitud
electromagnetic waves in the work of Kawet al.23 and
Gurevich.24 Using this representation, the coupled nonline
equation for the four waves are

d

dt
fd02

cs
2

2V i
kxkyfzfds50, ~9!

~11k'
2 rs

2!
d

dt
fds1

kyVkx
2rs

2

~11ky
2rs

2!
fdc

1
cs

2

V i
kxky~11ky

2rs
22kx

2rs
2!fzfd050, ~10!
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~11k'
2 rs

2!
d

dt
fdc2

kyVkx
2rs

2

~11ky
2rs

2!
fds50, ~11!

d

dt
fz1

cs
2

2V i
kxkyfd0fds50. ~12!

These equations are an extension of the nonlinear e
tions derived by Chenet al.13 to include finite ion Larmor
radius effects~with electron temperature! on the drift waves
obtained from the polarization drift term. If we assume th
fd , fdc , fz!fd0 , and that the perturbed state variabl
have a time dependence given as exp(gt), then the linearized
system of equations~10!–~12! yield the following dispersion
relation:

g25
cs

4kx
2ky

2

V i
2~11k'

2 rs
2!2 S ~11ky

2rs
22kx

2rs
2!~11k'

2 rs
2!

2
fd0

2

2
V2kx

2rs
2

cs
2~11ky

2rs
2!2D . ~13!

Here k'
2 5kx

21ky
2 . Also, this dispersion relation is ge

nerically similar to one derived by Guzdar12 using the HMC
equation. The differences arise because of the limitation
the HMC equation in describing the drift wave/zonal flo
interaction as well as the finite size of the geometry in thx
direction in the earlier work.12 This dispersion relation is the
slab version of Eq.~10! in the work of Chenet al.13 and also
includes the large mode-number limit because of the te
associated with the nonlinear polarization drift in the dri
wave components. If these terms were neglected, then
above dispersion relation would reduce to that in Ref.
with one significant difference, which is due to the toroid
geometry. For the toroidal plasma, the zonal/shear flow
dominated by the trapped ions. Thus Eq.~12! for the shear
flow in toroidal geometry gets replaced by

e1/2Dp
2 d

dt
fz1

cs
2

2V i
kxkyrs

2fd0fds50. ~14!

Heree5r /R is the inverse aspect ratio andDp is the banana
width of the trapped ions. For trapped ions, the banana w
is the characteristic scale size of the excursion. The first t
is the effective polarization drift for thee1/2 fraction of
trapped ions~compared to the total ion population!. If we
recall thatDp5Aerp , with rp the poloidal Larmor radius
we basically recover~within a multiplicative factor 1.6! the
inertia term on the left hand side of Eq.~3! of Chenet al.13

The factor 1.6 arises from a more detailed analysis by Ros
bluth and Hinton.25 Thus, in the toroidal case the dispersio
relation should be

g25
cs

4kx
2ky

2

V i
2~11k'

2 rs
2!2 F S rs

2

1.6e1/2Dp
2D

3
~11ky

2rs
22kx

2rs
2!~11k'

2 rs
2!

2
fd0

2 2
V2kx

2rs
2

cs
2~11ky

2rs
2!2G .

~15!
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The inertia of the trapped ions reduces the growth r
by decreasing the destabilization term@the first term in the
square bracket on the right-hand side~rhs!#.

This dispersion relation shows that modes withkx
2rs

2

.11ky
2rs

2 are always stable. The threshold for the amplitu
of the pump wave is due to the detuning or the frequen
difference between the pump and the two sidebands. By
ting the growth rate to zero, the criticalkx below which the
instability occurs can be determined. Ifkx

2rs
2!1, then the

critical wave numberkxc below which the drift wave is un-
stable to the generation of shear flow~in the slab case! is

kxcrs5
1

A2
~11ky

2rs
2!2

fd0cs

V
. ~16!

For the toroidal case, this critical wave number would
smaller by a factor ofrs /(A1.6e1/4Dp). This condition
would be valid for small amplitude waves for whic
edfd0 /Te!rs /Ln . However, if edfd0 /Te@rs /Ln , then
the critical wave numberkxcrs5(11ky

2rs
2)1/2, beyond which

no instability occurs.

IV. CONCLUSIONS

We have derived a low-dimensional system of equatio
for the generation of shear/zonal flow by drift waves. T
linear stability analysis in the slab geometry of this simp
system displays the similarities and yet subtle differen
with the recent toroidal analysis of Chenet al.13 The evolu-
tion equation@Eq. ~14!# for the shear flow in a toroida
plasma is due to the trapped ions, while in a slab the sh
flow equation is due to the circulating ions@Eq. ~12!#. As a
consequence the growth rates in the toroidal case are sm
@Eq. ~15!# compared to the slab case@Eq. ~13!#. We have also
extended the regime of validity into largerkx wave number
space~comparable and larger thanrs

21) to provide a short-
wavelength cutoff for the zonal flow instability.
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