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Numerical Solution of Fields in Lossy Structures
Using MAGY

Alexander N. Vlasov, Member, IEEE,and Thomas M. Antonsen, Jr., Member, IEEE

Abstract—Lossy structures are used in vacuum electronic de-
vices to control and suppress modes. Numerical simulation of the
effect of these lossy structures is critical to the design and opti-
mization of devices. The gyrotron simulation code MAGY makes
use of the generalized telegraphist’s equations in which the trans-
verse structure of fields is represented as a sum of local modes of a
metallic waveguide. If the wall is not a perfect conductor then sum
over modes is not uniformly convergent. We have developed an al-
gorithm to deal with this problem and allow for the simulation of
structure with highly lossy walls. The theory and implementation
of this algorithm will be presented.

Index Terms—Hybrid codes, lossy structures, microwave tubes.

I. INTRODUCTION

DESIGNING new sources of electromagnetic millimeter
wavelength radiation requires extensive computer sim-

ulation to reduce design cycles and optimize performance. It
is an important requirement for computer codes to be able
to describe real processes in vacuum electronic devices [1].
The gyrotron simulation code MAGY [2] developed at the
University of Maryland and Naval Research Laboratory is able
to describe the self-consistent nonlinear interaction between
electromagnetic fields of axisymmetric structures and electron
beams. It is particularly useful for millimeter wave device
modeling because it can simulate highly overmoded structures.
There are many gyrodevices operating in the millimeter and
submillimeter wavelengths which contain a variety of loss
mechanisms: losses in beam tunnels to suppress electron beam
instabilities [3]–[6], lossy ceramic in drift sections to prevent
excitation of parasitic modes [4], [6], [7], losses in cavities to
control quality factors, and losses due to the presence of slots
and holes. Thus, it is imperative to develop a method to treat
these effects is MAGY. The presence of partially conducting
materials can drastically change the electromagnetic field prop-
erties. To predict microwave device operation in the presence
of lossy elements we should be able to calculate accurately the
electromagnetic fields including the effects of both the losses
and the electron beam.

The generalized telegraphist’s equations approach [8], [17],
[9] and related methods of transverse cross sections [10] are
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Fig. 1. Radial distribution of electric fieldE for the three first basis functions
and for an actual field in the case of finite wall conductivity.

widely used in the theory of waveguides with axially varying
boundaries and for electronic device simulations [2], [11]. The
effect of wall losses can be treated in a general way, pertur-
batively, if the value of the surface impedance of the wall is
small [12], [18], [13], [14], [19]. This approach is successful for
waveguides with highly conducting metal walls. Problems arise
when the surface impedance becomes large, which is often the
case of interest. To treat this case a computer code should be
able to solve the electromagnetic field problem in the case of
a partially absorbing wall. The goal of this work is to extend
the generalized telegraphist’s equations approach for the case
of structures with finite wall surface impedance.

The nature of the difficulty associated with the generalized
telegraphist’s equations approach is that the fields are repre-
sented as a superposition of waveguide modes appropriate to a
structure with perfectly conducting boundaries. For each mode
in the superposition the tangential electric field vanishes at the
boundary of the simulation region. However, if the boundary, in
fact, has nonzero surface impedance, then the actual tangential
field will be nonzero at the surface, see Fig. 1 as an illustra-
tion. Here we have plotted the theta component of the electric
field for the first three symmetric modes of cylindrical wave-
guide of radius along with a hypothetical field that could be
present if the metallic wall where replaced by a surface with
large impedance. This field can still be represented as a super-
position of perfectly conducting boundary waveguide modes.

0018–9383/01$10.00 © 2001 IEEE
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However, the series will not be uniformly convergent. As a result
one can expect Gibbs’ phenomenon to appear in any truncation
of the series (see as an example [15]), and one can expect that
extreme care needs to be taken when taking spatial derivatives
of the field. A possible alternative to representing the fields as
a superposition of waveguide modes appropriate to a structure
with perfectly conducting walls is to consider modes that indi-
vidually satisfy the boundary conditions at the wall. There are
several drawback associated with this idea. First, these modes
are more difficult to find than the perfect conducting boundary
modes. For example, a nonzero surface impedance couples TE
and TM modes. Thus, the basis functions in the nonzero sur-
face impedance case would have mixed polarization. Second,
the structure of the modes would be different for and require
calculation at each axial location. Using modes appropriate to
a perfectly conducting cylinder (Bessel functions) allows us to
evaluate the modes by scaling the radial coordinate to the wall
radius. Third, if one introduces a real surface impedance, then
the self adjoint property of the Maxwell equations is lost, and
it is no longer clear that the nonzero surface impedance modes
form a complete basis.

Our approach to the problem of nonuniform convergence will
be presented in Section II of this paper. Section III contains
examples of numerical simulations of different electrodynamic
structures with lossy materials on the walls. The summary and
discussions about the advantages and limitations of the proposed
modifications are presented in Section IV.

II. BASIC FORMULATION FOR LOSSYSTRUCTURES

One of the most successful approaches to describe electro-
magnetic fields in complex waveguides and cavities and their
interaction with electron beams is based on the representation
of the electromagnetic field as a sum of local eigenfunctions
of the structure. The MAGY code developed at the University
of Maryland is an example of such an approach for the case in
which the radiation has a narrow spectral width. A complete
derivation of the generalized telegraphist’s equations used in
MAGY code is presented in ref. [2]. Here, we reproduce some
steps, which are necessary in order to formulate a description of
the field when the wall has a nonzero surface impedance.

A. Generalized Telegraphist’s Equations

The electromagnetic field is split into transverse and longitu-
dinal parts:

(1a)

(1b)

where
complex amplitudes of the transverse electric
and magnetic fields;
complex amplitudes of the longitudinal field
components;
carrier frequency, ;
unit vector directed along theaxis.

The complex field vectors and as well as and are
assumed to be slowly varying functions of time. The transverse

fields are represented at each axial location as a sum of TM,
TE and TEM modes (For the current case we limit our anal-
ysis to noncoaxial waveguides with TM and TE modes only.) of
a waveguide with a transverse cross-section equal to the local
transverse cross section of the structure.

(2a)

(2b)

Here, the primed variables refer to TM modes and the double
primed variables refer to TE modes. The amplitudes, ,
and depend slowly on time and arbitrarily on the axial coor-
dinate . The two sets of eigenfunctions of the local transverse
cross section are introduced as follows:

(3a)

(3b)

where

(3c)

(3d)

describing TM modes, and

(4a)

(4b)

where

(4c)

(4d)

describing TE modes. The eigenfunctions are orthogonal with
normalization

if
if

Here, represents the curve defining the boundary of the
local cross section in which the fields are represented and
is an outward normal from this curve. We will characterize
the axially varying boundary by the two dimensional vector

. Where the polar angle varies from 0 to . We
assume that is single valued, however this restriction
can be dropped later. A unit vector tangent to this curve is
where
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Fig. 2. Coordinates and unit vectors for an axially varying waveguide with an
elliptical cross section.

and the outward normal is given by . Note that
the vector lies in the transverse plane and is not, in general,
normal to the surface defined by the family of axially dependent
curves. The situation is illustrated in Fig. 2. On the left we see
an axially varying waveguide and on the right we see the cross
section of the waveguide at a particular axial point. The cross
section pictured is elliptical. The unit vectorsand lie in
the plane of the cross section. The shape of the cross section is
defined by the two-dimensional (2-D) vector function .
The normal to the waveguide surface is, which, in general,
will have a component in the direction. Finally, we introduce

which defines the local rate of change
of the radius of a point on the curve.

The longitudinal components of electromagnetic field are re-
lated by Maxwell’s equations to the transverse components:

(5)

and

(6)

where is the complex amplitude of the beam current. Thus, if
the transverse components are known at each axial position the
longitudinal components can be determined from them.

The transverse components of the fields are governed by the
transverse components of Maxwell’s equations

(7)

and

(8)

The Maxwell equations written above are appropriate for the
case in which the fields are monochromatic. That is the spectrum
consists of a single frequency, and the complex amplitudes
are time independent. We will continue the derivation under this
assumption. We can recover at subsequent times the results for
slow time variation of the amplitudes by replacing the frequency

by the operator .
To obtain telegraphist’s equations one dots (7) with either

or and (8) with either or and integrates over the trans-
verse cross section of the waveguide. One then inserts when ap-
propriate the expression [ (2a) or (2b)] for the transverse fields,

and uses (5) and (6) to eliminate the longitudinal fields. Be-
cause of the anticipated nonuniform convergence in the sums in
(2a)–(2b) it is critical that transverse derivatives of the fields are
not carried out term by term. For example, one can not insert
(2a) into (5) and arrive at a series expression for. Rather,
in the integrals over transverse cross section, terms involving
transverse derivatives must be done by parts so that the trans-
verse derivative falls on the single basis functionsand
and not on the fields themselves. This procedure results in the
following pair of equations:

(9)

and

(10)

The preceding equations apply to either TE or TM amplitudes
depending on whether the transverse components of Maxwell’s
equations were dotted with a primed or double primed basis
function. Implicit in the sum over all modes,, is a sum over
mode type, TE and TM. In some instances terms simplify or
disappear for one or the other mode types. For example, it fol-
lows from (2a)–(2b) that .

Coefficients appearing in (9) and (10) are defined as follows.
The coupling matrix describes the effect of axial variations
of the transverse crosssection of the waveguide, as follows:

Again we note that the basis functions may be either of the
primed (TM) or double primed (TE) type depending on the cir-
cumstances. The coefficients and determine the axial
propagation constants for the waveguide modes

for TM modes

for TE modes

for TM modes

for TE modes

where and are the axial dependent cut off wave
numbers which are the eigenvalues of (3c) and (4c). The quan-
tities and are sources in the wave equation describing
the excitation of fields by the electron beam

and
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Finally, there are boundary terms involving integrals over the
perimeter of the transverse cross section of the waveguide. Both
boundary terms involve integrals of the tangential electric field
at the perimeter. These terms vanish if the wall is perfectly con-
ducting but are nonzero if the surface of the wall has a nonzero
impedance.

B. Evaluation of the Surface Terms

In order to evaluate these terms one must have a method for
evaluating fields outside the simulation boundary, . We
will adopt the approximation that each point on the surface is
characterized by an impedance such that the tangential electric
field is given by

(11)

where is the outward normal to the surface

(12)

Here, we note the distinction between the normal to the surface
defining the simulation, , and the normal to the curve defining
the local transverse cross section,. These normals are illus-
trated in Fig. 2. For the moment we consider the impedance to
be isotropic, but later we will allow for it to depend on the di-
rection of flow of the surface current, .

Characterization of fields outside the simulation region by a
local impedance is an approximation. In fact, the relationship
between magnetic and electric field is nonlocal. A local approx-
imation can be expected to be valid if the thickness of the re-
gion being modeled is less than the scale length for axial or lat-
eral variations of the field. This will be discussed in more detail
when we consider the particular example of annular dielectric
rings in cylindrical cavities.

We now focus on evaluation of the boundary terms in (9)
and (10). Using formula (11) for the surface electric field and
expression (12) for the normal vector we find,

What is required for this expression is the tangential component
on the boundary of the transverse magnetic field. The series ex-
pression (2b) for this component is well behaved. We then sub-
stitute the series expression for the transverse magnetic field and
arrive at

(13)

This expression is easy to implement and does not lead to
nonuniform convergence when truncated at a finite number of
modes.

The boundary term appearing in (10) is more difficult to im-
plement. We note that due to the factor this term is
nonzero only for TE modes. The boundary term requires evalu-

ation of the component of the electric field in the
direction,

For a circular cavity this corresponds to the-component of
the electric field. Expressing this field in terms of the surface
impedance and tangential magnetic field, gives

(14)

where we have used expression (12) for the surface normal.
Equation (14) can not be implemented directly because we do
not have a uniformly convergent series for the cross-section
normal component of the transverse magnetic field on the
boundary, . In particular, the normal magnetic field
vanishes for each term in the sum given by (2b). Instead we
express the cross section normal field in terms of the surface
normal field

Thus, we have

(15)

Evaluation of the surface normal field can be carried out using
Faraday’s law,

(16)

Combining (15) and (16) results in a differential equation for
that can in principle be integrated. We note that this

difficulty is avoided if either the surface impedance is small or if
the surface impedance is nonzero only on regions where the wall
radius is constant. In either case we may drop the second term
on the right side of (15). That is the surface normal magnetic
field. We assume that this is the case and proceed.

We now must evaluate , and in particular obtain an expres-
sion for on the boundary to be inserted in (15). To represent

we write it as a superposition of the basis functionsused
to define TE modes in (4a)–(4b) and (4c)–(4d)

Here the sum includes all modes appearing in (2a) as well as
the solution for which and
independent of . This latter solution does not contribute to
the representation of but is necessary in
the representation of . The normalization for is chosen
to be such that
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We now multiply (5) by and integrate over the cross-section
to obtain formulas for the amplitudes ,

Using the relation (15) between and the tangential compo-
nent of the electric field on the boundary results in an integral
equation for ,

This equation must be satisfied at each axial point in the sim-
ulation region. It has the form of an integral equation in which
the function is determined from the known value of

, the TE mode voltages. This equation has some very pecu-
liar features. First, the usual perturbative technique for calcu-
lating wall losses consists of assuming is small and drop-
ping the integral kernel on the right hand side. One then ob-
tains directly on expression for which is proportional
to the surface impedance and the TE voltages. The peculiar fea-
ture is that the integral kernel diverges in the case when the sum
over modes is not truncated. (Thus, the perturbative technique
requires dropping a term, which is infinite.) The divergence can
be seen by realizing that for high order modes the value of
on the boundary is essentially the same as the value ofin
the interior of the cross section. Thus, each term in the sum
scales as the perimeter divided by the cross-sectional area, and
the sum does not converge. Implementation of (16) with a trun-
cated set of modes will yield results that depend on the number
of modes included, which is clearly unsatisfactory. In spite of
this apparent difficulty (16) is still valid. Convergence of the
sum occurs because the quantity in the curved brackets tends to
zero as . This follows from (10), which we rewrite for
TE modes

(17)
where

and we have used the definition of appearing in (10). Thus,
as

Here we have assumed the does not diverge with mode
number .

To realize a convergent solution of (16) and (17) we separate
the modes into two classes: active and passive. The active modes
are the low order modes for which we solve the
telegraphist’s equation (10) numerically. The passive modes are
the remaindering modes for which we solve (17)
for keeping only the terms that are important in the limit

, that is we neglect . With this separation of modes
our boundary integral equation for can be rewritten

(18)

The third term on the left side converges due to the factor
in the denominator. This equation can thus be inverted to find

from a given set of active modes. Convergence with re-
spect to the number of active modes is also assured. Increasing

changes both the left and right hand sides of (18). How-
ever, if is sufficiently large so as to fall in the asymptotic
range of (17), then the resulting value of is unchanged.

C. Telegraphist’s Equations for a Structure with Circular
Cross Section

Implementation of (18) for the case of a structure with cir-
cular cross-section is straightforward. In this case the basis func-
tions are ordinary Bessel functions

where , and
. Equation (18) then reduces to an algebraic

relation for . The final form of (10) for active TE modes
then is given by

(19)

where

and the constant is essentially the operator appearing at the
left hand side of (18).
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Note that, as discussed previously, we have restored the time
derivative to the voltage in (19). This comes from the frequency
dependence of via the replacement and
assuming . The telegraphist’s equations after sub-
stitution of all lossy terms can be written in the following form:

(20a)

(20b)

(20c)

(20d)

where , , the

impedance is determined by the ratio at the sur-
face. The remainder of this paper will be devoted to illustrating
solutions of example problems.

III. N UMERICAL SIMULATIONS OF ELECTROMAGNETICFIELDS

IN LOSSYSTRUCTURES

To analyze situations with lossy structures the MAGY code
was modified as outlined in the previous section. In this section
we present some sample solutions.

A. Cylindrical Cavity with Nonzero Surface Impedance

The first numerical test was performed for the simplest ge-
ometry of a cylindrical cavity lined by a wall with a nonzero
surface impedance. The cavity had a length of 2.0 cm, a radius
of 0.4115 cm, the two end plates were perfectly conducting. The
inner cylindrical surface of the cavity was given an impedance

[corresponding to
in MKS units]. Equations (20a)–(20d) are then solved on a grid
in z as described in an earlier paper [2]. The amplitudes of the
modes are specified to have a Gaussian dependence onini-
tially and the time evolution of modes is determined by the code.
Because of the large value of surface impedance fields decay
rapidly in the time. By plotting the amplitude of modes versus
time we determine the decay rate of lowest order axial mode.
Fig. 3 displays the dependence of the calculated decay rate
on the time step for the case of 20 “active” modes. With
the smallest time step ( sec.) the real and imag-
inary parts of the frequency were given by
sec and sec (this corresponds to a nor-
malized frequency and ). In
Fig. 3 the time step is normalized to the frequency. It can
be seen from the linear dependence of decay rate on time step

Fig. 3. Decay rate as a function of time step for 20 “active” modes in a closed
resonator with a lossy wall (L = 2 cm, frequency is 44.0 GHz,r = 0:4115

cm,Z = 1:0).

(for small time steps) that the error is first order in the time step.
This is due to the fact that the time derivatives in the numer-
ical implementation are slightly forward differenced to achieve
stability. We note that reasonably accurate results are obtained
even when . This shows the computational advantage
of the slowly varying envelope approximation. In the present
calculation the relative error scales as

(21)

Convergence of the decay rate with number of modes sim-
ulated is as follows. The simulated decay rates with 1, 5, 10
and 20 modes were 2.787 10, 1.996 10 , 1.9095 10 and
1.865 10 sec . This suggests an error, which scales inversely
with the number of active modes. Although the problem of the
decay rates for electromagnetic modes of a cylindrical cavity
with nonzero surface conductivity can be solved analytically, a
comparison with the solution of (20a)–(20d) is not illuminating.
This is because (20a)–(20d) are derived under assumption of
slow time evolution, whereas the calculated decay rates with

are large and do not satisfy this assumption.
The analytic decay rate for this case is sec . We
have verified that for smaller surface impedance the
computed damping rates agree within 2%

sec

sec

The important point to consider is that the solutions of interest
will be slowly varying in time. For this reason we study driven
solutions in the next sections.

B. Beam Tunnel for Parasitic Mode Suppression

A more appropriate test of the code is the calculation of field
profiles excited by a source with specified frequency. In this re-
gard calculations were performed for beam tunnels designed for
parasitic mode suppression. The first beam tunnel considered is
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one that has been designed at the Naval Research Laboratory
[16]. It consists of a periodic array of copper and lossy dielec-
tric rings. The dimensions are as follows: period, cm,
length of dielectric rings, cm, depth of dielectric rings,

cm, internal radius, cm , dielectric con-
stant was . To calculate the spatial decay rate
for waves in a periodic lossy structure we use a long structure
with 20 periods and apply outgoing boundary conditions at both
ends of the structure. The electromagnetic waves were excited
inside the lossy structure by placing a small current source for
a selected mode at the center of a periodic structure. The longi-
tudinal size of the current source calculated as the half width of
a Gaussian profile, is 0.075 cm.

The presence of the dielectric rings was simulated by placing
a finite value of surface impedance at the inner radial position of
the dielectric. The values of and in Eqs. (20a)–(20d) are
determined from the ratios of and at the inner
surface of dielectric rings. For a dielectric ring these values will
be unequal. That is, the surface impedance is anisotropic. To
determine the appropriate values of the surface impedances we
must solve Maxwell’s equations in the dielectric rings, subject
to the boundary condition that tangential electric field vanishes
at the outer radius of the rings where they abut a highly con-
ducting surface. The general form of the solution for the fields
involves Bessel functions with arguments where

. In particular we find for the ratio

(22)

where

and we find for the ratio

(23)

where

Here, and , and is the complex di-
electric permittivity, are Hankel functions of
the th order and first and second kinds, respectively. The nota-
tion TM and TE refers to the polarization of the solutions in the
dielectric. The fact that (22) and (23) are different implies that
the surface impedance of the dielectric is anisotropic. Note that
for nonsymmetric solutions of (20a)–(20d) TM and TE modes
are coupled together. The transverse wave numberappearing
in the arguments of the Bessel functions depends onwhich is
not defined unambiguously. Presumably it is determined by the
longitudinal dependence of the fields in the simulation region,
which are not yet known. However, if and the ar-
guments of the Bessel functions are not too large thenmay be

(a)

(b)

Fig. 4. Dependencies of electromagnetic field amplitude (a) and phase (b) on
axial distance for the NRL beam tunnel [16] at a frequency 30 GHz.

neglected. But more specifically, this is the condition for which
one can define a local surface impedance. One instance in which
the preceding approximation may not hold is if there are reso-
nant solutions with large and fields trapped in the dielectric.
For the current case of dielectric rings with high losses these
trapped fields should be negligible, but, in general, the problem
of trapped fields requires additional analysis.

To excite the desired mode at a prescribed frequency we
used a smooth temporal envelop for the source, and run the
simulation sufficiently long to verify that we have reached
a steady-state solution at the desired frequency. The selected
total length of structure (20 periods) was long enough to pro-
vide large spatial damping of the electromagnetic field and to
minimize the effect of reflection from both ends. The typical
dependence of electromagnetic field amplitude and the phase
on axial distance is presented in the Fig. 4. It can be seen in
the figure that there is region of space where exponential decay
of the magnitude accompanied by linear increase in the phase
occurs. To find the value of the spatial decay rate we select two
points placed at one period separation and form the ratio of



52 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 1, JANUARY 2001

Fig. 5. Relative deviation in attenuation[�(n) � �(1)]=�(1) and wave
number[k (n)�k (1)]=k (1) as a function of1=n, wheren is the number
of “active” modes for the NRL beam tunnel [16] at frequency 30 GHz.

the field magnitude at these two points. The phase dependence
on axial distance is linear (for the most case) inside the region
of field damping. Thus we determine the real part of the axial
wavenumber, , from the rate of change of phase. So, in this
region one can determine the real and imaginary part of the
axial wavenumber.

We first investigate the dependence of the calculated wave
number on the number of active modes. Fig. 5 displays the de-
pendence of the calculated real and imaginary parts of the wave
number as a function of the number of active modes retained
in the calculation. The comparison is made for the frequency of
30 GHz. Plotted is the relative deviation in attenuation and wave
number from the values, which would be obtained with an in-
finite number of active modes. These later values are obtained
by extrapolating values obtained with large number of modes
assuming convergence is realized inversely with the number of
modes as suggested in the figure. As can be seen, accuracy of
1% for attenuation and 0.07% for wavenumber is achieved with
as few as five modes.

Fig. 6(a) and (b) show the real wave number and attenu-
ation computed over a range of frequencies using five active
modes. The solid curves are the values obtained independently
via a mode matching technique using the code DRING [16]. The
squares are the results of the MAGY calculations. Good agree-
ment is obtained. The major source of error in this process is the
determination of the wave number from the MAGY fields.

Nonsymmetric modes in the periodic copper-lossy dielectric
tunnel demonstrated similar behavior, as did the symmetric
ones. The calculated values of the attenuation and the real part
of are plotted in Fig. 7(a), (b) for the least damped, nonsym-
metric, hybrid TE –TM mode. Both TE and TM “active”
modes were used in simulations for this case. The attenuation
increases greatly in a narrow frequency band near 20 GHz. In
this range of frequencies the transverse mode profile differs
qualitatively from that at higher frequencies. Fig. 8 shows the
radial dependence of the theta component of the electric field
amplitude where, evaluated
at the axial location in the middle of a dielectric ring for two

(a)

(b)

Fig. 6. Wavenumber (a) and attenuation (b) as a function of frequency for the
TE mode in the NRL beam tunnel [16] (5 “active” modes).

different frequencies 30.358 GHz, Fig. 8(a), and 19.8 GHz,
Fig. 8(b). At the higher frequency [Fig. 8(a)] the radial profile
is very similar to that of a mode in a cylindrical, conducting
waveguide. At the frequency where attenuation is larger the
plot of the field suggests that the field components in the di-
electric are relatively large. The calculations employed here
used 20 “active” modes of each type. Gibbs’ phenomenon as-
sociated with the large value of electric field at the surface is
evident in the figure. Nevertheless, the calculated decay rate is
well converged.

C. Beam Tunnel for Electron Beam Instability Suppression

The second beam tunnel we analyzed has a wall profile
chosen to suppress electron beam instabilities, see [3]. The
beam tunnel consists of alternating cooper and lossy dielectric
rings and is illustrated in Fig. 9. Shown in the figure is the
simulation boundary for our calculations. Portions of the
boundary alternate between highly conducting metal and lossy
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(a)

(b)

Fig. 7. Wavenumber (a) and attenuation (b) as a function of frequency for
hybrid TM –TE mode in NRL beam tunnel [16] (5 “active” modes).

dielectric. In all these are 43 metal rings and 44 dielectric rings.
At each end of the structure is a smooth conducting waveguide
and outgoing wave boundary conditions are applied at each
end. In general the lossy dielectric corresponds to the recessed
portions of the boundary where the radius of the boundary is
locally maximum. The surface impedance for the dielectric
is calculated according to (22) and (23). The minimum and
maximum radii of the dielectric rings are 6 mm and 10 mm
respectively, the thickness is 3 mm and the dielectric constant

. The boundary at the outer radius of the
dielectric is assumed to be perfectly conducting. The minimum
radius of cooper rings is 5 mm, and their thickness is 2 mm.

To excite an electromagnetic field in the structure a small field
source was placed in the middle of structure. The calculated dis-
tribution of field magnitude is presented in Fig. 10 for frequency
86 GHz. It is clear from the figure that the field is localized near
the source and almost all power is absorbed by the dielectric
rings. More detailed studies of these structures including their
excitation by electron beams will be subject of future study.

(a)

(b)

Fig. 8. The radial dependence of the amplitude of theE field in the middle
of a dielectric ring at frequency 30.358 GHz (a) and 19.8 GHz (b) (20 “active”
TE and 20 “active” TM modes).

IV. CONCLUSIONS ANDDISCUSSIONS

The formulation of the electromagnetic field problem based
on the generalized telegraphist’s equations has been improved
to allow for simulations of the electromagnetic fields in struc-
tures with large surface impedance on the walls. The key steps
in the formulation are the recognition that the series represen-
tation of the fields is not uniformly convergent and the separa-
tion of modes into active and passive groups. The improved for-
mulation has been implemented in the simulation code MAGY.
We find that reasonably accurate solution can be obtained even
for complex structures with from five to 20 active modes. The
numerical stability, convergence and accuracy of developed ap-
proach have been analyzed. It is necessary to note that the devel-
oped model assumes that the lossy materials can be character-
ized by a local surface impedance. This is a reasonable approxi-
mation in many instances. However, the validity of this approx-
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Fig. 9. Profile of beam tunnel radius [3] used in numerical simulations.

Fig. 10. Dependencies of theE component on axial coordinate for the structure described in Fig. 9 at frequency 86 GHz.

imation must be evaluated on case by case basis. The new capa-
bility offered by the code will allow for the design and study of
the stability of beam tunnels as well as the suppression of modes
in cavities and interaction circuits.
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