
PHYSICAL REVIEW E, VOLUME 65, 056219
Phase synchronization of chaotic attractors in the presence of two competing periodic signals

Romulus Breban and Edward Ott*
Institute for Research in Electronics and Applied Physics and Department of Physics, University of Maryland,

College Park, Maryland 20742
~Received 1 October 2001; published 21 May 2002!

We discuss the situation where two periodic signals compete to phase synchronize a chaotic attractor.
Depending on the relative position of the periods with respect to the synchronization tongue for a single
frequency signal, we distinguish several different cases. We find that, depending on parameters, it is possible
that one or the other signal will entrain exclusively, or that they will entrain alternately, at their average
frequency, or not at all.
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I. INTRODUCTION

Phase synchronization of chaos has attracted much a
tion due to its applicability to a wide range of situatio
including laser, plasma, fluid, and biological experimen
Synchronization of chaotic attractors with the phase of a
riodic externally coupled signal has been studied theor
cally @1–5# and demonstrated experimentally@6,7#. Phase
synchronization of coupled chaotic systems has also b
studied@8–13#.

In order to define phase synchronism, assume that we
given two signalsa andb where both possess an oscillato
character, such that phasesfa(t) and fb(t) can, by some
appropriate means, be defined for the two signals. Here
phasesfa,b(t) are assumed to be continuous in time~i.e.,
they are not taken modulo 2p!, so that, if, for two timest2
.t1 , we havefa,b(t2)2fa,b(t1)52Np, then we say that
the phasefa,b has executedN counterclockwise rotations
between timet1 and timet2 . ~Thus,fa,b is defined on the
real line rather than on@0,2p#. This is referred to as the ‘‘lift’’
of the angle.!

Two types of phase synchronism can be distinguish
strong phase synchronismand weak phase synchronism. In
terms of the differenceDf(t)5fa(t)2fb(t), there is
strong phase synchronism between the signalsa andb if

2K<Df~ t !2f0<K

for some constantsK andf0 ~typically K;p! and all timet.
Thus, uDfu does not increase without bound. In weak pha
synchronismuDfu may become arbitrarily large with increa
ing time, but the behavior ofDf(t) as a function of time
manifests correlations between the two phases~examples
will be given subsequently!.

In this paper we consider the case where two perio
signals compete to entrain a chaotic oscillator. There are
eral possible motivations for this study. First, there may
real situations where a chaotic dynamical system simu
neously receives inputs from two distinct periodic syste
~e.g., a neuron receiving signals from two other neuron!.
Second, the study of a signal with two frequencies can

*Also at Department of Electrical and Computer Engineering.
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regarded as a next step from the single frequency cas
obtaining an understanding of phase synchronization
chaos by signals with nontrivial frequency power spec
~Sec. IV!. Third, this situation is a generalization of the pro
lem in which two periodic signals compete to entrain a no
linear periodic oscillator.

II. MODEL

We consider a specific model system consisting of amodi-
fied chaotic Roessler@14# oscillator coupled to a two fre-
quency input signal,s(t). If we denote the regular Roessle
system bydx/dt5R(x), wherexT5@x(t),y(t),z(t)#, then
our modified ~undriven! system is @4# dx/dt5 f (x)R(x),
wheref is a scalar function ofx that is positive in the region
of the chaotic attractor. This modification of the Roess
system does not change the topology of the trajectory cu
followed by orbits in phase space, but it does modify t
speed with which orbits move along these curves. The m
vation for doing this@4# is that the original Roessler syste
displays a frequency spectrum with a near-d-function-like
feature, corresponding to the average period for an orbi
circulate arround the attractor. This type of behavior is ty
cally not present or expected in the experimental stud
@6,7,9–13#. By our modification, we introduce enhanced d
persion in the time for an orbit to circulate around the attr
tor, and hence the width in the Fourier peak. We takef (x)
511s(r 22 r̄ 2), s50.002,r 25x21y2, with r̄ equal to the
time average oft for the unmodified and unentraine
Roessler system (r̄ 55.037) @15#. Our model system be
comes@4#

dx/dt52@110.002~r 22 r̄ 2!#~y1z!,

dy/dt5@110.002~r 22 r̄ 2!#~x10.25y!1s~ t !, ~1!

dz/dt5@110.002~r 22 r̄ 2!#@0.901z~x26.0!#,

where

s~ t !5A1 cos~v1t !1A2 cos~v2t !, ~2!

and we have chosen the parameters of the Roessler syste
that it is in the so-called phase coherent regime~i.e., thex-y
projection of the trajectory of the chaotic system wi
©2002 The American Physical Society19-1
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ROMULUS BREBAN AND EDWARD OTT PHYSICAL REVIEW E65 056219
A15A250 continually circles aroundx5y50, and thex-y
projection of the attractor appears to be shaped like an a
lus with x5y50 in the hole of the annulus!. Our main goals
in this paper are to examine the illustrative system~1!,~2! in
different regimes, and to delineate and explain the vari
types of observed phenomena. We conjecture that the
nomena we observe for the system~1!,~2! are typical for
general oscillatory chaotic systems subject to two freque
external driving.

From studies of the phase synchronism of chaos b
single sinusoidal signal,s0(t)5A0 sinvt, v52p/T, @3,4# it
is known that the parameter space given by the amplitudeA0
and periodT of the signal typically displays a tongue-shap
region where the phase of the attractor locks with the ph
of the periodic signal~i.e., perfect phase synchronism!, as
shown schematically in Fig. 1~a!. For the purpose of the
subsequent discussion we also note that the two freque
entraining signal~2! can be written in an alternate form,

s~ t !5~A11A2!cos@~v11v2!t/2#cos@~v12v2!t/2#

1~A22A1!sin@~v11v2!t/2#sin@~v12v2!t/2#.

~3!

In most of our numerical work we have considered the c
of equal amplitudesA15A25A50.06. ~Later we will dis-
cuss the case whereA1 andA2 are different.! From Eq.~3!,
the entraining signals(t) can be regarded as a modulat
wave, a ‘‘fast wave’’ at the mean frequency

FIG. 1. ~a! Schematic representation of the parameter sp
A02T for the case where there is a single sinusoidal signal,s(t)
5A0 cos(2pt/T), coupled to the Roessler system.~b! Illustration of
various cases for the situation in which a signal, consisting of
sum of two equal amplitude sinusoids,s(t)5A cos(2pt/T1)
1A cos(2pt/T2), is coupled with the Roessler system@T1,T2 , Tf

52T1T2 /(T11T2)#. The bold horizontal lines represent the ran
of T over which phase synchronism occurs for a single sinuso
signal of amplitudeA05A.
05621
u-

s
e-

y

a

se

cy

e

v f5~v11v2!/2

modulated by a ‘‘slow wave’’ at the frequency

vs5~v12v2!/2,

where, forA15A25A, the modulating slow wave is

Â~ t !52A cos@~v12v2!t/2#.

In our numerical experiments (v11v2)@(v12v2).0.
Three periods will prove relevant:T1,252p/v1,2 and Tf
52p/v f52T1T2 /(T11T2). The geometrical phase of a
orbit ~Fig. 2! is given by tanf(t)5@y(t)/x(t)# where the rel-
evant branch of tanf(t)5@y(t)/x(t)# is determined by the pre
viously mentioned definition off(t) as continuous int; see
Sec. I. We investigate howf(t) is related to the phases o
the sinusoidal signalsf1,25v1,2t as well as to the phas
based on the mean frequencyf f5v f t. As in previous stud-
ies, the phase differences,

Df1,2,f~ t !5f~ t !2f1,2,f ,

are used to test phase synchronism between the chaotic o
of our driven Roessler system~1!,~2! and one of the three
phasesf1 , f2 , or f f .

We note that synchronism atf f5
1
2 (v11v2)t can be

viewed as a special case of the general situation wherelf
synchronizes withmf11nf2 , where l, m, and n are inte-
gers. In this framework, synchronism withf f corresponds to
l 52 andm5n51.

III. RESULTS

We now report and discuss the results of computations
several different choices of the parametersT1 andT2 . These
results serve to illustrate the main qualitative behaviors t
we have found. In particular, we consider the five sets
parameter values given in Table I. For each of the param
sets of Table I the disposition of the valuesT1 , T2 , andTf
with respect to the tongue of perfect phase synchronism f
single frequency driving signal is illustrated schematically
Fig. 1~b!. We first give a detailed account for case~i!

e

e

al

FIG. 2. Graphical illustration of the definition of geometric
phasef(t) for a chaotic orbit.
9-2
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PHASE SYNCHRONIZATION OF CHAOTIC ATTRACTORS . . . PHYSICAL REVIEW E 65 056219
followed by brief descriptions of the results for the oth
cases.

A. Case„i…

In this case there are clear intervals of time, lasting ma
rotations off or f1,2,f @note that (v12v2)/v f!1#, whenf
is entrained byf2 . In such a time interval, the fluctuation o
Df2 /(2p) is limited to within a narrow range, while

Df1 /~2p!5Df2 /~2p!2~v12v2!t/~2p!

decreases with time at an average rate (v12v2)/(2p). This
behavior is seen in Figs. 3~a1! and 3~a2!, which show
Df1 /(2p) and Df2 /(2p) versusf f /(2p)5t/Tf over a
range representing over 104 rotations off f . Refering to Fig.
3~a2!, plateaus representing locking off to f2 are clearly
evident and are indicated in the figure by arrowheads~the
longest of these plateaus represents approximately 500
tions of f f!. We also note that each plateau is centered
value ofDf2 /(2p) that is larger than that for the previou
plateau by an integer. That is,f slips relative tof2 by an
integer number of complete rotations between plateaus.@By
the arrowheads in Fig. 3~a2! we have considered a plateau
exist if it is at least as wide asTs/252p/(v12v2), i.e., half
the period of the slow wave.# Referring to Fig. 3~a1!, we see
that the graph ofDf1 /(2p) versusf f /(2p)5t/Tf appears
to consist of intervals of approximate linear decrease~with
superposed fluctuations! at a slope2(v12v2)/v f separated
by glitches. The intervals of time corresponding to appar
linear decrease ofDf1 /(2p) coincide with the plateaus o
Df2 /(2p), while the glitches inDf1 /(2p) coincide with
the time intervals between the plateaus ofDf2 /(2p). Alter-
natively, one may consider these glitches to be narrow

TABLE I. Parameter valuesT1 andT2 .

Case T1 T2

~i! 5.95 5.99
~ii ! 5.90 5.99
~iii ! 5.00 7.40
~iv! 5.00 5.99
~v! 5.00 5.50
05621
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teaus ofDf1 /(2p). A close examination of Fig. 3~a1! also
shows that the average values ofDf1 /(2p) corresponding
to these narrow plateaus differ by integers.f slips relative to
f1 by an integer number of complete rotations between p
teaus. Thus in the competition betweenf1 andf2 to entrain
f, there are intervals whenf1 wins and intervals whenf2

wins, but, overall,f2 is a stronger entrainer thatf1 . This is
also indicated in Figs. 3~a1! and 3~a2! by the fact that, in the
same time interval,Df1 goes through more than 30 rota
tions, whileDf2 only goes through 9.@The relative entrain-
ing strengths off1 andf2 depend on the locations ofT1 and
T2 within the tongue in Fig. 1~a!.# Figure 4~a! plots Df1
versusDf2 . The staircaselike structure shows that wh
Df1 varies,Df2 is approximately constant and vice vers
the approximately horizontal portions of the graph cor
spond to plateaus ofDf2 and the approximately vertica
portions correspond to plateaus ofDf1 . This supports the
picture whereby we can think of the chaotic oscillator
making transitions between two states of locking with t
phasesf1,2 of the competing signals.

Figures 3~b1! and 3~b2! show histogram approximation
of the probability distributions ofDF1[Df1 /(2p) modulo
1 and, respectively,DF2[Df2 /(2p) modulo 1 @16#. The
purpose of these figures is to demonstrate that statistic
significant correlations betweenf and f1,2 can be found.
That is, each of the phasesf1 and f2 weakly synchronize
the chaotic attractor.@In the absence of any coupling betwee
f andf1,2 these graphs would be flat,P(DF1,2)51.#

Figures 3~c1! and 3~c2! show stroboscopic surfaces o
section at the periodsT1 and, respectively,T2 . For each
point on a long trajectory we plot r versus
@f modulo 4p#/v1,22t. This gives a picture of the densit
of the strobed points on the attractor. Both Figs. 3~c1! and
3~c2! show alternating regions of high and low density
points. ~One should imagine an infinite periodic chain
such regions from which we only plotted two periods.! The
high-density regions represent regions where the orbit spe
a long time. The low-density regions are regions that
orbit traverses relatively faster. Therefore, the plateaus
Fig. 3~a1! @Fig. 3~a2!# correspond to regions with high den
sity in Fig. 3~c1! @Fig. 3~c2!#. The times whenf slips with
respect tof1,2 generate regions of low density. The fact th
when Fig. 3~c1! has a low-density region, Fig. 3~c2! has a
-
FIG. 3. ~a1!,~a2! Difference between the geo
metrical phase of the attractorf and the phase of
the first/second sinusoidal signalf1,2 versus time
t/Tf . ~b1!,~b2! Histogram approximations of the
distribution functionsP(DF1,2), where DF1,2

5@Df1,2/(2p)# modulo 1. ~c1!, ~c2! Strobo-
scopic sections at timest5nT1,2 ~n is an integer!
through the perturbed Roessler attractor, Eqs.~1!
and ~2!.
9-3
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ROMULUS BREBAN AND EDWARD OTT PHYSICAL REVIEW E65 056219
high-density region corresponds to the fact that whenf slips
with respect tof1 , it locks with respect tof2 .

We now consider the possibility of phase synchronism
our system with the fast wave phasef f5v f t. Using Eq.~3!,
we think ofs(t) as a sinusoid entraining at the periodTf ~the
period of the fast wave! slowly modulated at the periodTs

~the period of the slow wave!. When the amplitudeÂ of the
fast wave becomes smaller than the thresholdAth set by the
synchronization tongue atTf @see Fig. 1~a!#, the chaotic at-
tractor tends@17# to lose synchronization and slip with re
spect to the phase of the fast wave. The synchroniza
condition uÂu.Ath implies that the attractor tends to los
synchronization asÂ drops belowAth but tends to synchro
nize asÂ decreases through2Ath . Let t denote the duration
of a time interval during whichuÂu,Ath in a slow wave
periodTs . If we consider the phasef8(t) of the free running
Roessler system@i.e., Eqs.~1!–~3! with Â50#, then, during
the time t, the phase differencef8(t)2v f t is found to
change by less thanp. Thus, during a time intervalt, we
expect that there is not sufficient time forDf f to drift as
much as 2p before resynchronizing afteruÂu exceedsAth .
Thus, we anticipate that slips ofDf f are solely due to the
change in sign ofÂ. These slips are expected to be6p. In
order to see this, we make a crude analogy, and consid
particle in the vicinity of a potential minimum in a sinusoid

FIG. 4. ~a! Df2 /(2p) versusDf1 /(2p). The staircaselike
structure indicates that there are alternating time intervals in wh
f is locked to eitherf1 or to f2 . ~b! Details of ~a!.

FIG. 5. Particle in sinusoidal potential:~a! at minimum poten-
tial, ~b! at maximum potential after the sign change of the potent
05621
f
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potential@analogous to the fact that the phasef(t) is in the
vicinity of f f(t)#; see Fig. 5~a!. If we now change the sign o
the potential, then the particle finds itself at the top of
potential hill, and~assuming appropriate friction! will take
some time to evolve to one of the adjacent minima situate
a ‘‘phase of the potential’’ that is6p away @Fig. 5~b!#. By
these considerations, we can expect that the graph ofDf f
versus time will display plateaus of synchronization and sl
of p up or down occurring twice every period of the slo
wave. This is illustrated in Fig. 6~a! that shows howDf f
varies with time for several periods of the slow wave.s(t) is
plotted as the gray background for convenience. To guide
eye, dotted horizontal lines separated by a change ofp in
Df f are drawn through the plateaus.

Figure 6~b! displays Df1(t) and Df2(t) in the same
range of time as in Fig. 6~a!. Comparison of Figs. 6~a! and
6~b! reveals that time intervals of locking with the phase
the fast wavef f with p slips down correspond with the tim
of locking with the phasef2 , while time intervals of locking
with the phase of the fast wavef f with p slips up corre-
spond with the time of locking with the phasef1 . We also
remark that whenDf f has a plateau,Df1,2 drifts slowly at
the ratev f2v1,2 with superimposed fluctuations. During th
time whenDf f slips down,Df2 may stay locked. For ex-
ample, see Fig. 6~b!, which showsDf2 /(2p) to be in a
plateau for t/Tf,1100. In this range, the graph o
Df2 /(2p) versust/Tf has a roughly sawtoothlike structure
with an upward drift with slope (v f2v2)/v f during the pla-

h

l.

FIG. 6. ~a! Detail of howDf f switches between slipping dow
to slipping up with the entraining modulating slow wave indicat
by the gray background.~b! Detail of how the chaotic attracto
switches between locking tof2 and locking tof1 . The time axes
in ~a! and ~b! coincide.
9-4
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PHASE SYNCHRONIZATION OF CHAOTIC ATTRACTORS . . . PHYSICAL REVIEW E 65 056219
teaus ofDf f and rapid decrease between the plateaus
Df f .

Figure 7~a! showsDf f over a much longer time scal
than is plotted in Fig. 6~a!. Refering to Fig. 4~a! and noting
that @Df1 /(2p)1Df2 /(2p)#/25Df f /(2p) and
@Df1 /(2p)2Df2 /(2p)#/25t/Ts , it is seen that ap/4 ro-
tation and a change of scale converts Fig. 4~a! to Fig. 7~a!. In
these coordinates@Fig. 4~a!#, the jumps along the horizonta
and vertical axes are integers. A close inspection of Fig. 4~a!
reveals that the plateaus ofDf2 /(2p) plotted versus
Df1 /(2p) are not entirely flat. They have a rough sawtoo
like structure in which sawtooth segments of slope21 cor-
respond to the times of locking off with f f ~such locking
implies Df11Df2;const!. This is indicated by the blow
up, Fig. 4~b!, where dashed lines of slope21 going through
the plateaus of locking withf f are shown. These lines ar
separated by 1/2, corresponding to the6p slips in Fig. 6~a!.
Figure 7~b! shows a histogram approximation of the pro
ability distribution of DF f[Df f /(2p) modulo 1 demon-
strating that the phase of the attractorf weakly synchronizes
with f f . The probability distribution ofDF f in Fig. 7~b! has
two maxima 0.5 apart becauseDf f undergoes6p jumps.
This is in contrast with the probability distributions fo
Df1,2, which have only one maximum, corresponding to t
fact thatDf1,2 undergo72p jumps, respectively.

B. Other cases

Case (ii). In this case, (A1 ,T1) is outside the single sinu
soid synchronization tongue, while (A2 ,T2) and (Â,Tf) are
inside. Histogram approximations to the distributio
P(DF1), P(DF2), and P(DF f) ~figures not included! all
differ significantly from the flat distribution and look ver
similar to those for case~i! in Figs. 3~b1!, 3~b2!, and 7~b!,
respectively. Thus, some degree of synchronization of
chaotic system with all phasesf1 , f2 , andf f is manifest.
In addition, plots ofDf1 , Df2 , andDf f versus time~not
included! look very similar to those in Figs. 3~a1!, 3~a2!, and
7~a!. However, in comparison to case~i!, there is signifi-
cantly enhanced tendency for synchronization with phasef2
as opposed tof1 . The plateaus ofDf2 are longer~in aver-
age! and the plateaus ofDf1 are shorter than in case~i!.
Df f /(2p) still shows plateaus of synchronization b
mostly slips up corresponding with the fact that almost
the timef2 synchronizes the orbit. At times,Df f /(2p) also
shows slips down, corresponding to the little bit of time t
orbit spends synchronized withf1 .

FIG. 7. ~a! Df f /(2p) versus timet/Tf . ~b! Histogram approxi-
mation of the distribution function P(DF f), where DF f

5@Df f /(2p)#, modulo 1.
05621
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Case (iii). In this case, (A15A25A,Tf) lies inside the
single sinusoid synchronization tongue, while (A1 ,T1) and
(Â,Tf) are outside. Figure 8 shows histogram approxim
tions to the distributionsP(DF1) @Fig. 8~a!#, P(DF2) @Fig.
8~b!#, and P(DF f) @Fig. 8~c!#. We see thatP(DF1) and
P(DF2) are nearly flat, indicating very small, or negligib
synchronization with phasesf1 and f2 . In contrast,
P(DF f) shows two significant peaks separated by 0.5
DF f . This is similar to the plot ofP(DF f) for case~i!
shown in Fig. 7~b!. In addition, plots ofDf1 andDf2 versus
time ~not included! show nearly steady linear drift, while
plot of Df f versus time~also not included! evidences peri-
ods of locking similar to Fig. 7~a! for case~i!. Thus, for case
~iii !, we conclude that there is negligible synchronization
the system with the phasesf1 and f2 , but that there is
significant synchronization withf f .

Case (iv). This case has only (A2 ,T2) inside the synchro-
nization tongue, while (A1 ,T1) and (Â,Tf) are outside. Fig-
ures 9~b!, 9~c!, and 9~a!, respectively, show histogram ap
proximations to the distributionsP(DF1), P(DF2), and
P(DF f). We remark thatP(DF1) and P(DF f) are almost
flat, indicating little synchronization of the chaotic syste
with phasesf1 andf f . On the other hand,P(DF2) shows
a big peak, suggesting synchronization with phasef2 . Ac-
cordingly, the graphs ofDf1 @Fig. 9~a!# andDf f versus time
~not included! show nearly steady linear drift, while th
graph ofDf2 @Fig. 9~a!# versus time shows very long pla
teaus of synchronization, indicative of strong phase synch
nism ~see Sec. I!. These results can be understood by not
that, by construction, case~iv! has (A2 ,T2) inside the single
sinusoid synchronization tongue, while (A1 ,T1) and (Â,Tf)
are outside.

Case (v). In this case we have all (A1 ,T1), (A2 ,T2), and
(Â,Tf) outside the single sinusoid synchronization tong
Figure 10 shows that histogram approximations to the dis
butions P(DF1) @Fig. 10~a!#, P(DF2) @Fig. 10~b!#, and
P(DF f) @Fig. 10~c!# are all nearly flat, indicating negligible
synchronization with phasesf1 , f2 , andf f , respectively.
Plots of Df1 , Df2 , and Df f versus time~not included!
show nearly steady linear drift. These results are not surp
ing since, in this case, (A1 ,T1), (A2 ,T2), and (Â,Tf) are far
outside the single sinusoid synchronization tongue.

We have also investigated a few cases whereA1 andA2
are unequal. For example, for the values ofT1 , T2 , andA2
50.06 used in case~i!, we did computations forA150.01
andA250.03. In the former case, (A1 ,T1) is not in the syn-

FIG. 8. Results for case~iii !. ~a!,~b!,~c! Histogram approxima-
tions of the distribution functionsP(DF1,2,f), where DF1,2,f

5@Df1,2,f /(2p)# modulo 1.
9-5
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FIG. 9. Results for case~iv!. ~a! Df1 /(2p)
andDf2 /(2p) versus timet/Tf . ~b!,~c!,~d! His-
togram approximations of the distribution func
tions P(DF1,2,f), where DF1,2,f5@Df1,2,f /
(2p)# modulo 1.
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chronization tongue, and the phenomena observed are
similar to that in case~iv! above. In the caseA150.03 @here
(A1 ,T1) is inside the synchronization tongue# we see results
similar to that case~i!, but with much reduced tendency fo
locking with phasef1 .

IV. FURTHER DISCUSSIONS AND CONCLUSIONS

Even though our two frequency signals(t) is much sim-
pler than entraining signals typically encountered in exp
ments@9,12#, we believe that it offers an important lesso
regarding the understanding of synchronization by entrain
with complicated continuous frequency spectra. Data an
sis of numerical and experimental results@8,9,12# shows that
one can assign a phase to a signal~for the purpose of detect
ing phase synchronization of chaotic systems! by either
bandpass filtering or by the use of the Hilbert transform
has been found in experiments that the detection of ph
synchronism can be enhanced by bandpass filtering@9,12#. If
we were to apply a bandpass filter to our two frequen

FIG. 10. Results for case~v!. ~a!,~b!,~c! Histogram approxima-
tions of the distribution functionsP(DF1,2,f), where DF1,2,f

5@Df1,2,f /(2p)# modulo 1.
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signals(t), then, assuming a filter bandwidth less than (v1

2v2), we would pick either the sinusoid atv1 or the sinu-
soid atv2 , depending on the center frequency of the ban
pass filter. Thus the phase of the filtered signal would
either f1 or f2 . Alternatively, consider the case where w
do no filtering and use the Hilbert transform technique,
advocated in Ref.@8#, to produces̃(t), the complex ‘‘analytic
signal’’ corresponding tos(t). This yields

s̃~ t !5A1 exp~ iv1t !1A2 exp~ iv2t !.

The associated ‘‘Hilbert phase,’’fH , is

tanfH5
Im@ s̃~ t !#

Re@ s̃~ t !#
5

A1 sin~v1t !1A2 sin~v2t !

A1 cos~v1t !1A2 cos~v2t !
.

For A15A2 , this gives tanfH5tan@(v11v2)t/2#, or fH
5f f @18#. Thus by filtering we obtainf1 or f2 , while by
not filtering and using the Hilbert phase we obtainf f ~for
A15A2!. Which procedure is best? The answer to this qu
tion depends on circumstances. For example, in our case~i!,
~ii !, and ~iv! synchronism withf2(t) is strong and clearly
manifest; if a continuous spectrum had such a case, filte
might be thought to clean up the phase and make ph
synchronism more apparent~as indeed has been found
some experiments@9,12#!. If, however, the situation is more
like that of case~iii !, where the only detectable synchronis
is with f f , then narrow bandpass filtering~which yields
9-6
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f1 or f2! would not reveal any synchronism, while applyin
the Hilbert transform to the unfiltered signal would reve
synchronism.

In conclusion, in this paper we have investigated the s
ation in which two sinusoidal signals compete to phase s
chronize a chaotic oscillator. We find and illustrate seve
possible outcomes of this situation.

~1! Phase synchronism can be discerned to be prese
J.

s,

M

s.

ev

, J
tt

D

e

05621
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to

some degree for both sinusoids as well as for the mean p
of the sinusoids,f f @cases~i! and ~ii !#.

~2! Phase synchronism can be discernable only for
mean phase@case~iii !#.

~3! Phase synchronism is discernable only for one of
sinusoids@case~iv!#.
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