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Phase synchronization of chaotic attractors in the presence of two competing periodic signals
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We discuss the situation where two periodic signals compete to phase synchronize a chaotic attractor.
Depending on the relative position of the periods with respect to the synchronization tongue for a single
frequency signal, we distinguish several different cases. We find that, depending on parameters, it is possible
that one or the other signal will entrain exclusively, or that they will entrain alternately, at their average
frequency, or not at all.
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I. INTRODUCTION regarded as a next step from the single frequency case in
obtaining an understanding of phase synchronization of
Phase synchronization of chaos has attracted much attenhaos by signals with nontrivial frequency power spectra
tion due to its applicability to a wide range of situations (Sec. IV). Third, this situation is a generalization of the prob-
including laser, plasma, fluid, and biological experimentslem in which two periodic signals compete to entrain a non-
Synchronization of chaotic attractors with the phase of a pelinear periodic oscillator.
riodic externally coupled signal has been studied theoreti-

cally [1-5] and demonstrated experimentall§,7]. Phase Il. MODEL
synchronization of coupled chaotic systems has also been ) " L :
studied[8—13. We consider a specific model system consisting iofoali-

In order to define phase synchronism, assume that we af¢d chaotic Roesslef14] oscillator coupled to a two fre-
given two signalsa andb where both possess an oscillatory quency input signais(t). If we denote the regular Roessler
character, such that phasés(t) and ¢,(t) can, by some ~ System bydx/dt=R(x), wherex"=[x(t),y(t),z(t)], then
appropriate means, be defined for the two signals. Here th@ur modified (undriven) system is[4] dx/dt=f(x)R(x),
phasesd, ,(t) are assumed to be continuous in tirfie., wheref is a spalar function qi that is positive in the region
they are not taken modulomd, so that, if, for two timed, of the chaotic attractor. This modification of t_he Roessler
>ty, we haved, p(ts) — dap(t)=2Nm, then we say that system does not change the topology of the trajectory curves

the phases, , has executedN counterclockwise rotations followed by orbits in phase space, but it does modify the
between time; and timet,. (Thus, ¢, , is defined on the speed with which orbits move along these curves. The moti-

real line rather than of0,2]. This is referred to as the “ift” ~ vation for doing thig 4] is that the original Roessler system
of the angle. displays a frequency spectrum with a nédunction-like
Two types of phase synchronism can be distinguishedf:eature' corresponding to the average period for an orbit to
strong phase synchronisand weak phase synchronisrm circulate arround the attractor. This type of behavior is typi-
terms of the differenceA ¢(t)= ¢a(t)— du(t), there is cally not present or expected in the experimental studies

strong phase synchronism between the sigaasadb if [6,7,9—13. By our modification, we introduce enhanced dis-
persion in the time for an orbit to circulate around the attrac-
—K<Ad(t)— po<K tor, and hence the width in the Fourier peak. We take)

=1+0(r?=7?), 0=0.002,r>=x?+y?, with T equal to the
for some constants and ¢, (typically K~ r) and all timet. time average ofr for the unmodified and unentrained
Thus,|A¢| does not increase without bound. In weak phasdRoessler systemr{5.037) [15]. Our model system be-
synchronismA¢| may become arbitrarily large with increas- comes{4]
ing time, but the behavior oA ¢(t) as a function of time
manifests correlations between the two phag@samples
will be given subsequently
In this paper we consider the case where two periodic
signals compete to entrain a chaotic oscillator. There are sev-
eral possible motivations for this study. First, there may be
real situations where a chaotic dynamical system simultag jare
neously receives inputs from two distinct periodic systems
(e.g., a neuron receiving signals from two other neurons s(t)=A; cog wqt) + A, cog w,t), 2)
Second, the study of a signal with two frequencies can be
and we have chosen the parameters of the Roessler system so
that it is in the so-called phase coherent regiime, thex-y
*Also at Department of Electrical and Computer Engineering.  projection of the trajectory of the chaotic system with

dx/dt=—[1+0.002r?-T2)](y+2),
dy/dt=[1+0.002r?—T7?)](x+0.25/)+s(t), (1)

dz/dt=[1+0.002r2—T1?)][0.90+ z(x— 6.0)],
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FIG. 1. (3 Schematic representation of the parameter spacénodulated by a “slow wave” at the frequency
Ay—T for the case where there is a single sinusoidal sigs(a),
=A, cos(27t/T), coupled to the Roessler systeth) lllustration of ws= (w1~ w7)/2,
various cases for the situation in which a signal, consisting of the . .
sum of two equal amplitude sinusoidss(t)=A cos(2t/T,) where, forA; =A,=A, the modulating slow wave is
+Acos(2nt/T,), is coupled with the Roessler systgif, <T,, T ~
=2T,T,/(T,+T,)]. The bold horizontal lines represent the range A(t)=2A cod (w1~ wy)t/2].
of T over which phase synchronism occurs for a single sinusoidall

signal of amplituded,=A. n our numerical experiments i+ w,)>(w;— w,)>0.

Three periods will prove relevanfly ,=27/w,, and T;
. . . o =27l wi=2T,T,/(T1+T,). The geometrical phase of an
A1=A;=0 continually circles around=y=0, and thex-y i (Fig. 2) is given by tanp(t)=[y(t)/x(t)] where the rel-
projection of the attractor appears to be shaped I|_ke an annigyant branch of tag(t)=[y(t)/x(t)] is determined by the pre-
lus with x=y=0 in the hole of the annulyisOur main goals joysly mentioned definition of(t) as continuous ift; see
in this paper are to examine the illustrative systm(2) in ~ gec. |. We investigate how(t) is related to the phases of
different regimes, and to delineate and explain the varioug,e sinusoidal signalgh, ,= w4 as well as to the phase

types of observed phenomena. We conjecture that the phgzsed on the mean frequendy= wt. As in previous stud-
nomena we observe for the systei),(2) are typical for jog the phase differences

general oscillatory chaotic systems subject to two frequency
external driving. Ay 25(1)=p(t) — b1 24,

From studies of the phase synchronism of chaos by a
single sinusoidal signaky(t)=AgSinwt, w=27/T, [3,4] it are used to test phase synchronism between the chaotic orbits
is known that the parameter space given by the amplifyde of our driven Roessler systefi),(2) and one of the three
and periodT of the signal typically displays a tongue-shapedphasesp;, ¢,, Or ¢;.
region where the phase of the attractor locks with the phase We note that synchronism ap;=3%(w;+ w,)t can be
of the periodic signali.e., perfect phase synchronismas viewed as a special case of the general situation whére
shown schematically in Fig.(&). For the purpose of the synchronizes wittme¢,+ndg,, wherel, m, andn are inte-
subsequent discussion we also note that the two frequengyers. In this framework, synchronism with corresponds to

entraining signal2) can be written in an alternate form, |=2 andm=n=1.
s(t)=(A;+A,)co8 (w;+ w,)t/2]cod (w;— w,)t/2] . RESULTS
+(Ay,—Aq)sin (w1 + w,)t/2]sin (w1 — w,)t/2]. We now report and discuss the results of computations for

several different choices of the paramef€fsandT,. These
3 results serve to illustrate the main qualitative behaviors that

we have found. In particular, we consider the five sets of
In most of our numerical work we have considered the cas@arameter values given in Table |. For each of the parameter
of equal amplitude®\;=A,=A=0.06. (Later we will dis- sets of Table | the disposition of the valu€s, T,, andT;
cuss the case whete, andA, are different) From Eq.(3),  with respect to the tongue of perfect phase synchronism for a
the entraining signas(t) can be regarded as a modulatedsingle frequency driving signal is illustrated schematically in
wave, a “fast wave” at the mean frequency Fig. 1(b). We first give a detailed account for case
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TABLE |. Parameter value$,; andT,. teaus ofA¢,/(27). A close examination of Fig.(a1 also
shows that the average values®#,/(2) corresponding
Case T T, to these narrow plateaus differ by integegsslips relative to
(i) 5.95 5.99 ¢, by an integer number of complete rotations between pla-
(ii) 5.90 5.99 teaus. Thus in the competition betwegn and ¢, to entrain
(iii) 500 7.40 ¢, there are intervals whet,; wins and intervals wheipb,
(iv) 5.00 5.99 wins, but, overallg, is a stronger entrainer that, . This is
W) 5.00 5.50 also indicated in Figs.(&1) and 3a2) by the fact that, in the

same time intervalA ¢, goes through more than 30 rota-
tions, whileA ¢, only goes through 9.The relative entrain-
followed by brief descriptions of the results for the Othering Strengths ofﬁl and¢2 depend on the locations Gfl and
cases. T, within the tongue in Fig. (8).] Figure 4a) plots A ¢,
versusA¢,. The staircaselike structure shows that when
A. Case(i) A ¢, varies,A ¢, is approximately constant and vice versa;

In this case there are clear intervals of time, lasting manyn® @pproximately horizontal portions of the graph corre-
rotations of¢ or ¢, o [Note that fo; — w,)/w;<1], whene spopd to plateaus oA ¢, and the approx.lmately vertical
is entrained by, . In such a time interval, the fluctuation of POrtions correspond to plateaus &8, . This supports the
A, /(2) is limited to within a narrow range, while picture whereby we can think of the chaotic oscillator as

making transitions between two states of locking with the
A 1(2m)=Apy(27) — (01— wy)t/(277) phasesp, , of the competing signals.

Figures 3bl1) and 3b2) show histogram approximations
decreases with time at an average raie<{ w,)/(2m). This  of the probability distributions oA®;=A ¢, /(27) modulo
behavior is seen in Figs.(&) and 3a2, which show 1 and, respectivelyA®,=A¢,/(27) modulo 1[16]. The
Ay /(2m) and Ap,/(27) versus¢/(27)=t/T; over a  purpose of these figures is to demonstrate that statistically
range representing over 4fbtations of¢; . Refering to Fig.  significant correlations betwees and ¢1, can be found.
3(a2), plateaus representing locking gfto ¢, are clearly That is, each of the phases, and ¢, weakly synchronize
evident and are indicated in the figure by arrowheéitle  the chaotic attractofIn the absence of any coupling between
longest of these plateaus represents approximately 500 rotg-and ¢1., these graphs would be fla® (AP, ) =1]
tions of ¢¢). We also note that each plateau is centered at a Figures 3c1) and 3c2) show stroboscopic surfaces of
value of A¢,/(27) that is larger than that for the previous section at the period3; and, respectivelyT,. For each
plateau by an integer. That ig slips relative to, by an  point on a long trajectory we plotr versus
integer number of complete rotations between platef@s. [ ¢ modulo 47]/w, ,—t. This gives a picture of the density
the arrowheads in Fig.(82) we have considered a plateau to of the strobed points on the attractor. Both Fig&1p and
exist if it is at least as wide aby/2=27/(w;— w,), i.e., half  3(c2) show alternating regions of high and low density of
the period of the slow wavgReferring to Fig. 8al), we see  points. (One should imagine an infinite periodic chain of
that the graph ofA ¢, /(27) versuse;/(2m7)=t/T; appears such regions from which we only plotted two perigdEhe
to consist of intervals of approximate linear decreasigh  high-density regions represent regions where the orbit spends
superposed fluctuationat a slope— (w;,— w,)/w; separated a long time. The low-density regions are regions that the
by glitches. The intervals of time corresponding to apparenbrbit traverses relatively faster. Therefore, the plateaus of
linear decrease ok ¢, /(27) coincide with the plateaus of Fig. 3(al) [Fig. 3(@a2] correspond to regions with high den-
A ¢, /(27), while the glitches inA ¢4 /(27) coincide with  sity in Fig. 3c1) [Fig. 3(c2)]. The times whenp slips with
the time intervals between the plateausdap,/(27). Alter-  respect tap, , generate regions of low density. The fact that,
natively, one may consider these glitches to be narrow plawhen Fig. 3c1l) has a low-density region, Fig(&) has a

(b1)

FIG. 3. (al),(a2 Difference between the geo-
metrical phase of the attractgrand the phase of
the first/second sinusoidal sign@} , versus time
t/T;. (b1),(b2) Histogram approximations of the
distribution functionsP(A®, ,), where Ad,,
=[A¢1,/(27)] modulo 1.(cl), (c2) Strobo-
scopic sections at times=nT, , (n is an integer
through the perturbed Roessler attractor, Eijs.
and(2).
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FIG. 4. (8 A¢,/(27) versusA¢,/(2m). The staircaselike

structure indicates that there are alternating time intervals in which

¢ is locked to eitherp, or to ¢,. (b) Details of (a).

high-density region corresponds to the fact that whesiips
with respect tog, , it locks with respect tap,.

We now consider the possibility of phase synchronism of

our system with the fast wave phage= wst. Using Eq.(3),
we think ofs(t) as a sinusoid entraining at the peridd(the
period of the fast waveslowly modulated at the period,

(the period of the slow wayeWhen the amplitudé of the
fast wave becomes smaller than the threshfg|dset by the
synchronization tongue &t; [see Fig. 19)], the chaotic at-
tractor tendg17] to lose synchronization and slip with re-
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FIG. 6. (a) Detail of howA ¢; switches between slipping down
to slipping up with the entraining modulating slow wave indicated
by the gray backgroundb) Detail of how the chaotic attractor
switches between locking t@, and locking to¢,. The time axes

spect to the phase of the fast wave. The synchronizatiop, (a) and (b) coincide.

condition |A|>Ath implies that the attractor tends to lose
synchronization a# drops belowA,, but tends to synchro-
nize asA decreases through Ay, . Let 7 denote the duration
of a time interval during WhicHA|<Ath in a slow wave
periodTs. If we consider the phasg’(t) of the free running
Roessler systerfi.e., Egs.(1)—(3) with A=0], then, during
the time 7, the phase differences’(t) — wst is found to
change by less tham. Thus, during a time intervat, we
expect that there is not sufficient time fdr¢; to drift as
much as 2r before resynchronizing afteW exceedsAy .
Thus, we anticipate that slips df¢; are solely due to the

change in sign ofA. These slips are expected to ker. In

potential[analogous to the fact that the phagg) is in the
vicinity of ¢«(t)]; see Fig. %a). If we now change the sign of
the potential, then the particle finds itself at the top of a
potential hill, and(assuming appropriate frictiorwill take
some time to evolve to one of the adjacent minima situated at
a “phase of the potential” that is-7 away[Fig. 5(b)]. By
these considerations, we can expect that the graph ¢of
versus time will display plateaus of synchronization and slips
of 7 up or down occurring twice every period of the slow
wave. This is illustrated in Fig. (6 that shows howA ¢
varies with time for several periods of the slow wasg) is
plotted as the gray background for convenience. To guide the

order to see this, we make a crude analogy, and considereye, dotted horizontal lines separated by a change of

particle in the vicinity of a potential minimum in a sinusoidal

"Potential’

(@

YaNE VAN
NV

difference

(b)
/

— N
NN

T

K

FIG. 5. Particle in sinusoidal potentigl) at minimum poten-

A ¢ are drawn through the plateaus.

Figure Gb) displays A¢4(t) and A¢,(t) in the same
range of time as in Fig.(@). Comparison of Figs. @) and
6(b) reveals that time intervals of locking with the phase of
the fast wavep; with 7 slips down correspond with the time
of locking with the phase&,, while time intervals of locking
with the phase of the fast wavg; with 7 slips up corre-
spond with the time of locking with the phagge . We also
remark that whem\ ¢¢ has a plateaud ¢, , drifts slowly at
the ratews— w; , with superimposed fluctuations. During the
time whenA ¢; slips down,A ¢, may stay locked. For ex-
ample, see Fig. ®), which showsA ¢,/(27) to be in a
plateau for t/T;<1100. In this range, the graph of
A ¢, /(27) versust/T; has a roughly sawtoothlike structure,

tial, (b) at maximum potential after the sign change of the potentialwith an upward drift with slope ¢ — w,)/ ¢ during the pla-
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FIG. 7. () A /(21) versus time/T¢ . (b) Histogram approxi-  tions of the distribution functionsP(A®, ,s), where Ad, 5
mation of the distribution functionP(A®,), where Ad;  =[A¢i2:/(27)] modulo 1.
=[A¢¢/(27)], modulo 1.

teaus of A¢; and rapid decrease between the plateaus of. Case. (i) !n this case, Al._AZ_A‘Tf) I|e_s inside the
Ady. S|Angle sinusoid synchronization tongue, whilk,(T;) and
Figure Ta) showsA¢; over a much longer time scale (A,Ty) are outside. Figure 8 shows histogram approxima-
than is plotted in Fig. @). Refering to Fig. 4a) and noting  tions to the distribution®(Ad,) [Fig. 8a)], P(A®,) [Fig.
that  [A¢y/(2m)+ A,/ (2m)]12=A ¢ /(27) and 8], and P(A®y) [Fig. 8c)]. We see thatP(Ad,) and
[A¢p,/(27)—A¢,/(27)]2=tITs, it is seen that ar/4 ro- P(AD,) are _nearly_flat, indicating very small, or negligible
tation and a change of scale converts Fig) 40 Fig. 7@). In ~ Synchronization with phasesp; and ¢,. In contrast,
these coordinatelig. 4(a)], the jumps along the horizontal P(A®¢) shows two significant peaks separated by 0.5 in
and vertical axes are integers. A close inspection of Rig. 4 A®;. This is similar to the plot ofP(A®;) for case(i)
reveals that the plateaus of¢,/(27) plotted versus ShowninFig. Tb). In addition, plots oA ¢; andA ¢, versus
A ¢4 /(27) are not entirely flat. They have a rough Sawtooth_time (not included show nearly Steady linear drift, while a
like structure in which sawtooth segments of slopg cor-  plot of A¢; versus time(also not includegievidences peri-
respond to the times of locking @f with ¢; (such locking ©ds of locking similar to Fig. @) for case(i). Thus, for case
imp“es A¢1+A¢2~C0n3)_ This is indicated by the blow (|||), we conclude that there is negllglble SynChronization of
up, Fig. 4b), where dashed lines of slopel going through  the system with the phases; and ¢,, but that there is
the plateaus of locking withp; are shown. These lines are Significant synchronization witkp; .
separated by 1/2, corresponding to ther slips in Fig. a). Case (iv) This case has onlyA,T) inside the synchro-
Figure 1b) shows a histogram approximation of the prob- nization tongue, while4&,,T;) and (A, T;) are outside. Fig-
ability distribution of A®;=A¢;/(27) modulo 1 demon- ures 3b), 9(c), and %a), respectively, show histogram ap-
strating that the phase of the attracipbweakly synchronizes proximations to the distribution®(A®,), P(Ad,), and
with ¢ . The probability distribution oA ®; in Fig. 7(b) has  P(A®;). We remark thaP(A®;) and P(A®;) are almost
two maxima 0.5 apart becauses; undergoest= jumps. flat, indicating little synchronization of the chaotic system
This is in contrast with the probability distributions for with phasesp,; and ¢;. On the other hand?(A®,) shows
A ¢ ,, which have only one maximum, corresponding to thea big peak, suggesting synchronization with phase Ac-

fact thatA ¢, , undergo=2m jumps, respectively. cordingly, the graphs ok ¢4 [Fig. 9a)] andA ¢; versus time
(not included show nearly steady linear drift, while the
B. Other cases graph of A ¢, [Fig. Aa)] versus time shows very long pla-

teaus of synchronization, indicative of strong phase synchro-
nism (see Sec.)l These results can be understood by noting
that, by construction, cades) has @A,,T,) inside the single

Case (ii) In this case, A;,T,) is outside the single sinu-

soid synchronization tongue, whilé\§,T,) and @, T) are
!,](que)'l),H;,S(tZ%?;? ar?g FIJDr(O A)(Ig")itlgigir;g ngt]ein C(ljlzsdt;g);rllonssinusoid.synchronization tongue, whil&4(,T,) and A,Ts)
differ significantly from the flat distribution and look very are outside. .

similar to those for cas€) in Figs. 3bl), 3(b2), and 7b), . Case (v) .In this ca§e we have .am(l’Tl)' (Az’TZ)’ and
respectively. Thus, some degree of synchronization of théA Tr) outside the single sinusoid synchronization tongue.
chaotic system with all phases,, ¢,, and ¢; is manifest. ~Figure 10 shows thgt histogram approximations to the distri-
In addition, plots ofA¢;, Ad,, andA ¢, versus timenot ~ butions P(Ad,) [Fig. 10@)], P(Ad,;) [Fig. 10b)], and
included look very similar to those in Figs.(81), 3(@2, and  P(A®y) [Fig. 10c)] are all nearly flat, indicating negligible
7(a). However, in comparison to cag®), there is signifi- Synchronization with phaseg,, ¢,, and ¢y, respectively.
cantly enhanced tendency for synchronization with phiase Plots of ¢y, Ay, and A¢ versus time(not included
as opposed t@, . The plateaus oA ¢, are longer(in aver- show nearly steady linear drift. These result§ are not surpris-
age and the plateaus ok ¢, are shorter than in casg). ing since, in this caseA;,T1), (A,,T,), and (A, T;) are far
Ag¢l(2m) still shows plateaus of synchronization but outside the single sinusoid synchronization tongue.

mostly slips up corresponding with the fact that almost all We have also investigated a few cases whgreand A,

the time ¢, synchronizes the orbit. At timed,¢;/(27) also  are unequal. For example, for the valuesTef T,, andA,
shows slips down, corresponding to the little bit of time the=0.06 used in cas€é), we did computations foA;=0.01
orbit spends synchronized wii; . andA,=0.03. In the former caseA(,T;) is not in the syn-
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chronization tongue, and the phenomena observed are vesygnals(t), then, assuming a filter bandwidth less than (
similar to that in caséiv) above. In the casA;=0.03[here  —w,), we would pick either the sinusoid at; or the sinu-
(A,,T,) is inside the synchronization tonguee see results soid atw,, depending on the center frequency of the band-
similar to that casei), but with much reduced tendency for pass filter. Thus the phase of the filtered signal would be
locking with phasep; . either ¢, or ¢,. Alternatively, consider the case where we
do no filtering and use the Hilbert transform technique, as
advocated in Ref8], to producé&(t), the complex “analytic

IV. FURTHER DISCUSSIONS AND CONCLUSIONS signal” corresponding ta(t). This yields

Even though our two frequency sigrglt) is much sim-
pler than entraining signals typically encountered in experi-
ments[9,12], we believe that it offers an important lesson
regarding the understanding of synchronization by entrainers
with complic_ated continuogs frequency spectra. Data analyTne associated “Hilbert phasedy , is
sis of numerical and experimental resui8s9,17 shows that
one can assign a phase to a sigifiat the purpose of detect-
ing phase _syn_chronization of chaotic s_yst¢nhry either IM[3(t)] Ay Sin(t) + A, sin( w,t)
bandpass filtering or by the use of the Hilbert transform. It tandy=—— = .
has been found in experiments that the detection of phase RES(1)]  Aicogwst)+A, Cogw,t)
synchronism can be enhanced by bandpass filt¢8rig]. If
we were to apply a bandpass filter to our two frequency o

For Aj=A,, this gives tampy=tar(w;+wy)t/2], or ¢y
= ¢ [18]. Thus by filtering we obtainp; or ¢,, while by
2 @l ° o ° © not filtering and using the Hilbert phase we obtafn (for
g '97\; 3_1 A1=dA2). V\ghich procedure is best? The an:iwer to thi(sa)gues-
4 2 r\”w ) w tion depends on circumstances. For example, in our dases
- M ~ > (i), and(iv) synchronism withe,(t) is strong and clearly
0 L 0 . 0 L manifest; if a continuous spectrum had such a case, filtering
AD AD AD might be thought to clean up the phase and make phase
synchronism more apparef@s indeed has been found in

FIG. 10. Results for cas@). (a),(b),(c) Histogram approxima- Some experiment®,12)). If, however, the situation is more
tions of the distribution functionsP(A®,,;), where A®,,; like that of casdiii), where the only detectable synchronism
=[A¢y,¢/(27)] modulo 1. is with ¢;, then narrow bandpass filteringvhich yields

B(t) = Ag expli wgt) + A, expli wst).
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¢, or ¢,) would not reveal any synchronism, while applying some degree for both sinusoids as well as for the mean phase

the Hilbert transform to the unfiltered signal would revealof the sinusoidsg; [cases(i) and (ii)].

synchronism. (2) Phase synchronism can be discernable only for the
In conclusion, in this paper we have investigated the situmean phasgcase(iii)].

ation in which two sinusoidal signals compete to phase syn- (3) Phase synchronism is discernable only for one of the

chronize a chaotic oscillator. We find and illustrate severakinusoidgcase(iv)].

possible outcomes of this situation. This work was supported by the Office of Naval Research
(1) Phase synchronism can be discerned to be present {&hysic$ and by the National Science Foundation.
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