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The dynamical behavior of power dropouts in a semiconductor laser with optical feed-
back, pumped near threshold current, is strongly influenced by quantum noise. This is
clearly demonstrated by experiments with modulations on the pumping current or the
feedback strength. For the cases without modulation and with only current modula-
tion, the dropouts occur randomly. However the feedback strength modulation locks the
dropout events periodically. By numerically modeling these three cases using the Lang–
Kobayashi equations with a stochastic term to take into account spontaneous emission
noise, it is shown that the observed behavior of the dropouts can be readily reproduced
for all three cases. Noise plays a signifcant role in explaining the observed dropout events.
A simple explanation of the observed dropout phenomenon is presented, based on the
adiabatic motion of the ellipse formed by the steady state solutions of the rate equations
due to slow time modulations of the injection current or the feedback strength.

PACS numbers: 05.40.Ca, 05.45.-a, 42.55.Px, 42.65.-k

1. Introduction

Deterministic chaos occurs in many systems which have irregular and complicated

behaviors. However, whether the complexity of a system is due to deterministic

chaos, a stochastic source, or a combination of both is sometimes not easy to dis-

tinguish. Among these systems, the power dropout phenomenon in semiconductor

lasers with optical feedback is a typical example for which the source of the ob-

served chaotic intensity time series has been discussed extensively.1–13 When a

solitary laser pumped very near threshold is subject to reflective feedback from a

distant mirror, the output intensity drops to almost zero (dropout), recovers to a

steady state output level gradually, and repeats this behavior at irregular intervals.

After decades of study, there are mainly two pictures of the phenomenon. The

first one is a stochastic model suggested by Henry and Kazarinov2 recognizing

the importance of quantum noise due to spontaneous emission in initiating the

dropouts. They considered small fluctuations in intensity and phase about steady
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state values as a result of spontaneous emission and reduced the infinite-dimensional

delay differential rate equations (Lang–Kobayashi equations) to an approximate

one-dimensional equation of motion in a potential well for the carrier number. A

first-passage time problem was thus formulated and the dependence of the mean

time interval between dropouts on the feedback strength was estimated. This was

later experimentally verified for the operation of the laser near threshold.6,11 In

their study, Henry and Kazarinov did not integrate the stochastic delay differential

equations explicitly.

The second picture is of a deterministic nature and was carefully investigated

by Sano.4 Instead of just using a linear analysis, he integrated the delay differential

Lang–Kobayashi equations explicitly without noise. In the phase space spanned by

the population inversion and the external cavity round trip phase shift, the stable

external cavity modes and unstable “antimodes” form an ellipse. As the injection

parameter is increased, the stable external cavity modes become unstable via a

Hopf bifurcation and then become chaotic through the quasi-periodic route. In the

absence of a noise source in the calculation, he explained the dropout phenomenon

as a collision between a chaotic attractor and the unstable “antimodes”. This ex-

planation provides a detailed insight of the dropout. However, he neglected the

influence of quantum noise.

In this paper, we show that the above two approaches have to be combined and

that noise plays an integral role in providing a quantitative understanding of the

observed dropout phenomenon in the solitary laser near threshold with feedback.

We show through a novel set of experiments, which involve modulating the pumping

current or the feedback strength, that the Lang–Kobayashi model with feedback

and spontaneous emission noise provides an excellent quantitative comparison with

observations for three different cases. For all three cases, namely (1) no modula-

tion of the pumping current or feedback strength, (2) sinusoidal modulation of the

pumping current12 only and (3) sinusoidal modulation of feedback strength only,

the role of noise is critical in modeling to obtain excellent agreement with the obser-

vations. Also a simple explanation of the observed dropout phenomenon based on

the adiabatic changes in the solutions on the ellipse in the parameter space spanned

by the population inversion and the external cavity round trip phase shift, caused

by the slow time modulation of the injection current or the feedback strength, is

presented.

2. Experimental Setup and Observations

In the experiment (Fig. 1), a temperature controller is used to stabilize (to better

then 0.01 K) a Fabry–Perot laser diode (Sharp LT015MD) with an anti-reflection

coating of approximately 10% reflectivity on one facet and a high reflection coating

on the other facet. The laser is pumped by a laser driver at the threshold current

of 56.6 mA. A coupler (Picosecond, model 5547 bias-tee) coupling an AC signal

on top of a DC signal is used between the laser driver and the diode. The light
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Fig. 1. Experimental setup.

Fig. 2. Normalized intensity time series from experiment with sampling period of 800 ps with
(a) no modulation, (b) current modulation, and (c) feedback modulation.
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Fig. 3. Probability distribution function of the interval between two dropouts from experiment
with (a) no modulation, (b) current modulation, and (c) feedback modulation.

(λ = 830 nm) from the diode is collimated by a microscope objective and then

reflected by a mirror placed at a distance of 45 cm from the anti-reflection coated

facet. An acousto-optic modulator (AOM) (ISOMET model 1206c) is inserted in

the path of the reflected light to the laser. A beam splitter directs light onto a

photoreceiver (New Focus Model 1181, DC-125MHz bandwidth). The output of the

photoreceiver is recorded by a digital oscilloscope (Tektronix TDS7104). A 4 MHz

sinusoidal signal, which is comparable in frequency to the inverse of the average

dropout time interval without modulation, is fed to either the bias-tee to modulate

the current or the AOM to modulate the feedback strength.

Shown in Figs. 2(a), 2(b), and 2(c) are the three cases. The first plot (a) shows

the intensity dropout phenomenon as a function of time without any modulation of

the pumping current or the feedback strength. The second one (b) is the same plot

for which only the pumping current is modulated. The last case (c) is for feedback

modulation only. The amplitude of the modulation is chosen such that the output
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intensity fluctuation due to the modulation is about a quarter of the maximal

output intensity of the laser with feedback. In Fig. 2(a), power dropout events occur

irregularly due to the feedback. In Fig. 2(b), with current modulation, dropout

events are superposed on top of a sine wave (associated with the modulation). Here

the statistical behavior of the dropouts is not changed by the current modulation

(Fig. 2(b)) compared to unmodulated case (Fig. 2(a)). This is clear through the

random occurence of dropout events in both cases. However, for the case of feedback

modulation (Fig. 2(c)), the dropout events are locked to the sine wave and occur

only on the falling segment of the wave, which corresponds to a reduction of the

feedback strength.

In Fig. 3, we show the probability distribution functions (PDFs) of the interval

between consecutive dropouts for three cases. For the cases without modulation

(Fig. 3(a)) and with current modulation (Fig. 3(b)), the PDFs show that both

cases have similar dropout statistics. The two broad peaks observed in Figs. 3(a)

and 3(b) are most probably due to mode-hopping of the laser between two soli-

tary laser modes. Even in this case, current modulation appears to have a very

small influence on the distribution. But the PDF for the feedback modulation case

(Fig. 3(c)) indicates the frequency locking behavior by two clear peaks, the sharp

one corresponding to the interval between two dropouts on one falling portion of

the sine wave, while the broader peak corresponds to the longer interval between

the dropouts on two consecutive falling phases of the sine wave. As a consequence,

the statistical properties of the dropout events show a marked difference compared

to the two previous cases. Thus current modulation and feedback modulation have

dramatically different effects on the statistics of the dropout dynamics.

3. Numerical Model and Role of Noise

To understand these observations quantitatively, we integrated the Lang–Kobayashi

equations given below6

dE

dt
=

1

2
(1 + iα)Gn,0

√

r0

r
nE(t) + κE(t − τ)e−iω0τ + FE(t) , (1)

dn

dt
= (P − 1)

Nth

τr
− Γn|E|2 − n

(

1

τr
+ Gn,0

√

r0

r
|E|2

)

, (2)

using a standard fourth order Runge–Kutta method. Here E(t) is the complex

field; n(t) ≡ (N(t)−Nth) is the difference between the carrier number at arbitrary

time and the threshold carrier number Nth = 3.9 × 108; α = 5 is the linewidth

enhancement factor; Gn,0 = 21400 s−1 and r0 = 0.32 are the differential gain

and facet power reflectivity of a laser with uncoated facet, respectively; r = 0.1

is the facet power reflectivity of a laser with an anti-reflection coating; κ = (1 −
r)(R/r)1/2/τin is the feedback rate, where R = 0.05 is the external mirror power

reflectivity, τin = 3.9 ps is the solitary laser pulse round trip time; τ = 3.0 ns

is the external cavity round trip time; ω0 is the solitary laser frequency; FE(t) is
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Fig. 4. Normalized intensity time series from simulation with (a) Rsp = 0 s−1, (b) Rsp =
1010 s−1, (c) Rsp = 1014 s−1 and (d) experiment with sampling period of 800 ps.

the Langevin noise term, with 〈FE(t)FE(t′)∗〉 = Rspδ(t − t′), where Rsp is the

spontaneous emission rate; P = 1.01 is the ratio of pumping to threshold current;

τr = 1.1 ns is the carrier recombination time and Γn = 1.1 ps−1 is the photon decay

rate. The constant value of ω0τ is taken to be a multiple of 2π for convenience. The

equations are integrated with a time step of 0.5 ps from t = 0 to 3 µs and we display

the last 2 µs only in order to remove the transient behavior influenced by initial

conditions. The original time series are then Fourier transformed and a 125 MHz

bandwidth low pass filter is applied to simulate the photoreceiver electronics.

In Fig. 4, we show the dropout intensity time series from simulations for three

different spontaneous emnission rates, Rsp = 0 (Fig. 4(a)), 1010 (Fig. 4(b)) and

1014 s−1 (Fig. 4(c)) without modulation, respectively. We see that with the incre-

ment of the noise rate, the dropouts occur less and less frequently, and the shape of

an individual dropout looks closer and closer to that in the experiment (Fig. 4(d)).
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Finally, the simulation with Rsp = 1014 s−1 (Fig. 4(c)) produces dropout phe-

nomenon matching the experimental result (Fig. 4(d)) very well. It is worth men-

tioning that we tried combinations of different values for the parameters in the

equations to simulate intensity time series which best match the experimental one

without the spontaneous emission noise, namely, with a purely deterministic model,

but we failed to do so. We conclude that we reproduce the experimental results only

when we include a suitable amount of spontaneous noise (Rsp = 1014 s−1) in the

model. This same level of noise will be used in all subsequent computations.

The importance of spontaneouse emission noise can further be investigated by

introducing modulations on pumping current and feedback strength in the sim-

ulation. For the current modulation case, P is replaced by P + AI sin(2πνI t),

where AI = 0.0045 is current modulation amplitude, νI = 4 × 106 Hz is

modulation frequency; if the feedback strength is modulated, R is replaced by

Fig. 5. Normalized intensity time series from simulation without noise with (a) no modulation,
(b) current modulation, and (c) feedback modulation.
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R[(1 − AR) + AR sin(2πνRt)], where AR = 0.2, νR = 4 × 106 Hz. Again, the am-

plitude of the modulation is chosen such that the output intensity fluctuation due

to the modulation is about a quarter of the maximal output intensity of the laser

with feedback.

Figures 5(a), 5(b), and 5(c) show the numerically computed intensity time se-

ries without modulation, with current modulation and with feedback modulation,

respectively, ignoring FE(t). In Fig. 5(a), the dropout events occur much more fre-

quently than those observed in the experiment (Fig. 2(a)). In Figs. 5(b) and 5(c),

Neither the current nor the feedback modulation change the behavior of dropout

events in the simulations, unlike the observations, where feedback modulation locks

the dropouts (Fig. 2(c)). Also, the dropout events occur both on the raising and

falling segments of the sine wave under feedback modulation in Fig. 5(c). Basically,

without the Langevin noise term in the equations, the numerical modeling shows

that all three cases have similar dropout characteristics, unlike the observations in

Fig. 2.

Fig. 6. Probability distribution function of the interval between two dropouts from simulation
without noise with (a) no modulation, (b) current modulation, and (c) feedback modulation.
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In Fig. 6, the PDFs of the interval between two dropouts from simulations

without noise for three different cases confirm that the dropout statistics is not

appreciably changed by either current or feedback modulations. All three cases

have similar shape of PDF (Figs. 6(a), 6(b) and 6(c)).

In Fig. 7, the same three sets of simulations were repeated including the

Langevin term FE(t). We can see that with the noise term, the experimental results

in Fig. 2 are dramatically reproduced. In Fig. 7(a), the number of dropouts is sig-

nificantly reduced compared to Fig. 5(a) and in 2 µs they occur at time scales com-

parable to those in the experiment (Fig. 2(a)). In Fig. 7(b), the current modulation

doesn’t change the statistics of the dropouts again in agreement with observations

(Fig. 2(b)). Finally the most significant result is in Fig. 7(c), where the simulations

show that feedback modulation in the presence of noise organizes the dropouts pe-

riodically on the falling edge of the sine wave, again in excellent agreement with

the observations (Fig. 2(c)).

Fig. 7. Normalized intensity time series from simulation with noise with (a) no modulation,
(b) current modulation, and (c) feedback modulation.
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Fig. 8. Probability distribution function of the interval between two dropouts from simulation
with noise with (a) no modulation, (b) current modulation, and (c) feedback modulation.

Figure 8 shows the PDFs of the interval between two dropouts from simulations

with noise for three different cases. In Figs. 8(a) and 8(b), the two similar PDFs

show that the cases without modulation and with current modulation from the

simulation with noise have similar dropout statistics, whereas that of the feedback

modulation case in Fig. 8(c) shows a two-peaked structure similar to Fig. 3(c),

which indicates frequency locking behavior, as explained earlier.

4. Dynamics of Phase Space and the Effect of Modulation

In order to explain the phenomenon presented above, we follow Sano’s approach4

by examining the dynamics in the phase space spanned by population inversion

n(t) and the external cavity round trip phase shift φ(t) − φ(t − τ), where φ(t) is

the phase of wave field E(t). We first calculate the steady state solutions of the

system by substituting E(t) =
√

Pse
i∆ωst, and n(t) = ns into Eqs. (1) and (2),

setting t = τ in order to calculate one round trip phase shift ∆ωsτ and obtaining
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the following three transcendental equations:5

∆ωsτ = −κτ
√

1 + α2 sin(ω0τ + tan−1 α + ∆ωsτ) , (3)

ns = −2κGn,0

√

r/r0 cos(ω0τ + ∆ωsτ) , (4)

Ps =
(P − 1)Nth − ns

τr(Γn + nsGn,0

√

r0/r)
. (5)

We solve for ∆ωsτ in Eq. (3) by Newton’s method and obtain 1589 solutions, which

can then be substituted into Eq. (4) to get the corresponding ns, and into Eq. (5)

to get Ps. From Eqs. (3) and (4), we know that the set of steady state solutions

(∆ωsτ, ns) form an ellipse in the phase space of n(t) and φ(t)−φ(t− τ). According

to Sano’s definition, the solutions forming the upper brench of the ellipse are called

“antimodes”, while those forming the lower branch are external cavity modes. For

our choice of parameters, the “steady” state external cavity mode solutions are

unstable and chaotic in the absence of noise. This is the intrinsic deterministic chaos

in the feedback laser system. The chaotic attractors are located in the vicinity of the

unstable steady states. This is why the basic steady state solutions, even if they are

unstable, provide a reliable framework for understanding the dynamics. In Fig. 9(a),

the trajectory of simulation without noise and modulation is plotted on top of the

ellipse. During the recovery part of the dropout, the trajectory “tunnels” from one

steady state to the next with large deviations on the chaotic attractors. The dropout

occurs when the chaotic attractors associated with the unstable steady states on

the lower section of the ellipse, collide with the unstable “antimodes” on the upper

section of the ellipse, and the trajectory relaxes towards zero inversion and phase

shift, which is the steady state of the solitary laser without feedback. Because of

the feedback, the trajectory starts from the upper right of the lower branch of the

ellipse and the intensity recovers again. The dynamics on the chaotic attractors

progresses towards the highest external cavity gain mode. This is intercepted by a

random collision with the “antimodes” again, and the process repeats itself.

If the noise is included in the simulation, then it introduces coherence by allowing

the “tunneling” from one steady state to the next without very large deviations

on the chaotic attractor. This is clearly shown in Figs. 9(b) and 9(c), where two

different values of noise rate Rsp = 1010 and 1014 s−1 are used respectively. We

see that with the increment of noise rate, the fluctuation of the trajectory on the

attractors in n(t) coordinate becomes smaller and smaller, so it takes a longer and

longer time to go through more external cavity modes and then collide with an

“antimode”. The dropouts therefore occur less and less frequently (Fig. 4(a) to

4(c)). Here we see how the noise affects the dynamics of the system in an counter-

intuitive way — it reduces the fluctuations and organizes the dynamics of the system.

With the same spontaneous emission noise level 1014 s−1, now let us discuss

the two cases in which we modulate either the pumping current or the feed-

back strength. We recall that the modulation frequency used in these investiga-

tions is very small (about two order of magnitude) compared to the frequency
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Fig. 9. Phase space of population inversion and phase shift for (a) Rsp = 0 s−1, (b) Rsp =
1010 s−1, (c) Rsp = 1014 s−1.

difference between the external cavity modes. As a consequence, these modulations

adiabiatically move the steady state solutions in the phase space of φ(t) − φ(t− τ)

and ns or Ps. Now, if we slowly modulate the pumping current, P becomes a time

dependent quantity. Since there is no dependence on P in Eqs. (3) and (4), the

steady state solutions, ∆ωsτ and ns, and therefore the ellipse, are fixed. So the at-

tractors in the phase space of n(t) and φ(t)−φ(t− τ) collide with the “antimodes”

on the upper branch of the ellipse at about the same position (Fig. 10(b)) as the case

without modulation (Fig. 10(a)) for each dropout. Therefore, the dropout statistics

is the same without modulation and with current modulation.

On the other hand, for the case of feedback modulation, both ∆ωsτ and ns

change according to Eqs. (3) and (4). In fact, the number of steady solutions

oscillates between 1231 and 1589. Again, since the modulation frequency is very

small compared to the external cavity modes frequencies, this leads to an adiabatic
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Fig. 10. Phase space of population inversion and phase shift for (a)–(c) simulation with noise,
and (d)–(f) simulation without noise. (a) and (d) no modulation, (b) and (e) current modulation
and (c) and (f) feedback modulation.

motion of the steady state solutions in the population inversion and phase shift

space. In Fig. 10(c), the two ellipses with the most and least number of solutions

corresponding to maximal and minimal feedback strength respectively are plot-

ted. Feedback modulation moves the ellipse between these two extremes. When the

feedback strength is increasing (decreasing), represented by the increasing (falling)

segment of the sine wave on the intensity time series (Fig. 7(c)), the ellipse moves

toward lower left (upper right), in the same (opposite) direction as the trajectory in

phase space (Fig. 10(c)). So the collision between the attractors on the lower branch

of the ellipse and the “antimodes” is inhibited (enhanced). Therefore the dropout

can not (can) occur. This is precisely why in Figs. 2(c) and 7(c), the dropouts

are observed to occur during the falling phase but not in the rising phase of the

modulational cycle.
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Also shown in Fig. 10(d) to Fig. 10(f), are the three corresponding plots for

simulations without noise. In Fig. 10(d), the fluctuation on the chaotic attractor

is much larger in the n(t) direction compared to the case with noise (Fig. 10(a)).

Only a small section on the lower branch of the ellipse is traversed before a collision

between the attractors and the upper unstable branch of the ellipse occurs. So the

collisions, and therefore the dropouts, occur here more frequently (Fig. 5(a)) than in

the system with noise (Fig. 7(a)). In Fig. 10(e), current modulation doesn’t change

the ellipse and the trajectory on the fixed ellipse looks similar to that in Fig. 10(d).

In Fig. 10(f), under the absence of noise, the fluctuation of the dynamics is so

large that the chaotic attractors collide with the “antimodes” frequently and the

collisions are not influenced by the slow oscillation of the ellipse due to feedback

strength modulation. Thus collisions with the upper branch can occur for both

the motions of the ellipse, towards and opposite to the direction of the trajectory.

Consequently, the dropouts can occur on both phases of the sinusiodal modulation

(Fig. 5(c)).

The ellipse dynamics caused by the modulations with consequence on dropouts

can also be seen in the alternate phase space of intensity and phase shift φ(t) −
φ(t − τ). Now the steady states form a “distorted” ellipse (Fig. 11). In Fig. 11(a),

the phase dynamics corresponding to two consecutive dropouts is plotted on top

of the distorted ellipse. During the recovery part of the dropout, the trajectory

climbs along the upper branch of the distorted ellipse. When it is close to tip of the

ellipse (maximal gain output), the dropout occurs, represented by the fast drop of

the intensity followed by relaxation of the phase shift to zero. The power dropout

phenomenon in time domain is therefore represented by a continuous winding curve

in this phase space.

For the current modulation case, P is time dependent. From Eqs. (3) and (5),

we see that although the solutions of phase shift ∆ωsτ are fixed, the solutions,

Ps, change with time. Therefore the distorted ellipse only changes the position,

but not the size in the phase space. In Fig. 11(b), the upper and lower distorted

ellipses correspond to the set of steady state solutions for the maximal and minimal

pumping current. The current modulation adiabatically moves the ellipse vertically

between these two extremes. The trajectory of intensity P (t) versus phase shift

φ(t)−φ(t− τ) is again a continuous winding curve, corresponding to time series in

Fig. 7(b). The trajectory follows the moving reference frame (the distorted ellipse),

caused by the modulation, and the positions of dropouts on the frame are not

affected by the motion of the frame. Therefore current modulation has the same

dropout statistics as the unmodulated case (Fig. 7(a)), except for the sinusoidal

modulation of the peak intensity (Fig. 7(b)).

For feedback modulation, both Ps and ∆ωsτ and therefore both the size and

the position of the distorted ellipse change with time. In Fig. 11(c), the upper left

and lower right distorted ellipses correspond to the maximal and minimal feedback

strength. The sinusoidal modulation moves the ellipse between these two extremes.

The dropouts are inhibited (enhanced) when the feedback strength is increasing
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Fig. 11. Phase space of intensity and phase shift for (a)–(c) simulation with noise, and (d)–(f)
simulation without noise. (a) and (d) no modulation, (b) and (e) current modulation and (c) and
(f) feedback modulation.

(decreasing), which correspond to the upper left (lower right) movement of the

ellipse. As a result, the dropouts occur periodically on the falling phase of the

sinusoidal feedback modulation (Fig. 7(c)).

In Fig. 11(d) to Fig. 11(f), the three corresponding plots for simulations without

noise show that different kinds of modulations (or no modulation) do not follow

the moving frame. And all three cases have much more frequent dropout events

(Fig. 5(a) to 5(c)). However, in the case of the current modulation, the maximal

intensity does show the modulation (Fig. 5(b) and Fig. 11(b)).

5. Conclusions

The role of noise on the dropout phenomenon observed in semiconductor lasers near

threshold with optical feedback, is highlighted by modulating the pumping current
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and the feedback strength. In the experiment, the two cases produce totally different

dropout dynamics. In the former, the dropouts occur randomly; in the later, they

are locked by the sinusoidal modulation periodically on the falling edge of the wave.

In the simulation, different levels of spontaneous emission rate show that the

noise reduces the fluctuation of the dynamics in the phase space and the frequency

of the power dropouts. An optimal value is therefore found to match the experi-

mental and numerical results well. This same level of noise is used in the following

calculation.

With current modulation, the motion of the distorted ellipse due to the modu-

lation and the trajectory in phase space of intensity and phase shift are orthogonal

to each other and hence no coupling occurs between them. Therefore, the cur-

rent modulation does not change the dropout dynamics. However with feedback

modulation, the motions of the ellipse and the trajectory are in parallel and both

dynamics couple with each other in both phase spaces. This leads to the occurence

of the dropouts only during the falling phase of the modulation.

By modeling the observed features using the Lang–Kobayashi equations with a

Langevin noise source, we have identified that only in the presence of noise (which

was taken to be the same for all three cases) can the distinct behaviors for the

two different types of modulation be explained. Simulations without noise show

that the large fluctuations on the chaotic attractor dominate the dynamics thereby

obscuring and significantly reducing the role of modulation in the injection current

and the feedback constant.
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