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Magnetorotational and Parker instabilities in magnetized plasma Dean flow
as applied to centrifugally confined plasmas

Yi-Min Huanga) and A. B. Hassamb)
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~Received 29 August 2002; accepted 22 October 2002!

The ideal magnetohydrodynamics stability of a Dean flow plasma supported against centrifugal
forces by an axial magnetic field is studied. Only axisymmetric perturbations are allowed for
simplicity. Two distinct but coupled destabilization mechanisms are present: flow shear
~magnetorotational instability! and magnetic buoyancy~Parker instability!. It is shown that the flow
shear alone is likely insufficient to destabilize the plasma, but the magnetic buoyancy instability
could occur. For a high Mach number (MS), high Alfvén Mach number (MA) system with
MSMA*pR/a (R/a is the aspect ratio!, the Parker instability is unstable for long axial wavelength
modes. Implications for the centrifugal confinement approach to magnetic fusion are also discussed.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1528937#
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I. INTRODUCTION

An idea currently under investigation is to use the ce
trifugal force of a rotating plasma to augment magnetic c
finement for thermonuclear fusion plasmas.1 In this scheme,
a magnetic mirror type plasma is made to rotate azimuth
at supersonic speeds; thus, centrifugal forces confine
plasma to the central section. The central issue here is
ideal MHD ~magnetohydrodynamics! stability of the system.
Previous studies indicate that the prevalent interchange m
can be stabilized by the strong velocity shear that accom
nies the rotation.2,3 However, all the previous studies a
based on the orderingCS&u!VA , whereCS is the sound
speed,u is the flow speed, andVA is the Alfvén speed. In that
case, the strong magnetic field stabilizes any fluctua
along the field, and the calculations were done for nona
symmetric flute modes. From the fusion viewpoint, howev
the output power is proportional to the square of the part
density; for a device with a given magnetic field, a highb
([2p/B2;CS

2/VA
2 ) system withu;VA is highly desirable.

For such a system, the magnetic field may not be str
enough to stabilize fluctuations along the field. Thus, id
MHD instabilities with axial wave numbers need investig
tion.

An immediate concern is the magnetorotational insta
ity ~MRI!.4–7 Since the recent work by Balbus and Hawle6

the MRI has attracted broad attention and is believed to
the cause of the turbulent angular momentum transpor
accretion disks. Roughly speaking, the stability criteri
based on a local analysis is7

~k"VA!2.2
dV2

d ln~r !
, ~1!

wherek is the wave number andV is the angular frequency

a!Electronic mail: yopology@umd.edu
b!Electronic mail: hassam@umd.edu
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Condition~1! can only be violated where] rV
2,0, which is

usually true for most astrophysical disks. In a centrifuga
confined plasma, a parabola-likeV profile is expected,2,3

hence the MRI is possible in the outboard half of the syste
Condition ~1! also indicates that a system with high Alfve´n
Mach number (MA;rV/VA) and high elongation~which
allows smallerk! is more prone to the MRI. Since both a
tributes are desirable for centrifugal confinement schem
~high MA means highb, and elongation assists velocity she
stabilization, see Ref. 8!, whether or not the MRI is a funda
mental limit needs more investigation.

Another possible destabilizing mechanism is magne
buoyancy. It was first pointed out by Parker9 that a magne-
tized plasma partially supported against gravity by a m
netic field could be unstable. When the Parker instabi
occurs, the plasma in a flux tube spontaneously fragme
into clumps, which are then pulled ‘‘downward’’ by the grav
ity. Meanwhile, the dilute parts of the flux tube bulge u
ward, in a way that resembles a buoyant light bubble in
heavy fluid. Parker suggested this as an explanation for
nonuniformity of the interstellar medium inside a galaxy. A
though there is no gravity in the centrifugal confineme
scheme, the plasma is supported by the magnetic fi
against the centrifugal force, which plays the role of t
gravity. It was pointed out in Ref. 10 that for rotating stell
winds or accretion disks in which the magnetic pressure
nonuniform poloidal magnetic fields balance the combin
tion of gravity and centrifugal forces, a poloidal buoyan
mode resembling the Parker instability could occur. T
same instability would also be an issue for the centrifu
confinement scheme.

In this paper, we study the above-mentioned issues
more detail. To avoid the complication of the curved-fie
geometry of the centrifugal confinement scheme, we mo
the system with the straight-field Dean flow model, as we
in our previous study.2 The effect of a curved field, though
not fully understood at present, will be briefly assessed la
© 2003 American Institute of Physics
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It is worth pointing out that although the MRI and the ma
netic buoyancy instability involve different mechanism
they are inextricably coupled, and there is no way to clea
distinguish one from the other.

This paper is organized as follows. In Sec. II, we set
the Dean flow model and the governing equations. In S
III, we first linearize the equations about the equilibriu
then numerically solve the eigenvalue equation so obtai
by a shooting code. Before solving the general equation,
simple limiting cases, the cold plasma limit and the inco
pressible limit, are considered. In Sec. IV, we confirm t
results of Sec. III by a series of initial value simulations.
Sec. V, We discuss the implications for centrifugally confin
plasmas. We conclude in Sec. VI.

II. THE DEAN FLOW MODEL

For simplicity, we consider only the axisymmetric cas
In the cylindrical coordinate system (r ,f,z), the most gen-
eral divergence-free magnetic field can then be written a

B5I“f1“fÃ“c[Bff̂1B' . ~2!

We decompose the flow velocity into the azimuthal comp
nent and the perpendicular component:u5uff̂1u' . The
ideal MHD equations with an adiabatic equation of state~for
]/]f50! are

dr

dt
52r“"u' , ~3!

r
du'

dt
52

“'I 2

2r 2 2
¹'c

r 2 S ¹2c22
] rc

r D1r
uf

2

r
r̂ 2“'p,

~4!

r
duf

dt
5

B'"“'I

r
2r

ufur

r
, ~5!

dI

dt
5r 2B'"“'S uf

r D2Ir 2
“"S u2

r 2 D , ~6!

dc

dt
50, ~7!

dp

dt
52gp“"u', ~8!

where

d

dt
[

]

]t
1u'"“' , ~9!

“'[ r̂ ] r1 ẑ]z . ~10!

Standard notation is used.r is the plasma density,p is the
pressure, andg is the adiabatic index.

Figure 1 depicts the Dean flow model we used. T
plasma is contained in an annular box with inner radiusR,
box width a, and elongationL. We assume the following
equilibrium: p5const, r5const, B5B(r ) ẑ52(1/r )] rc ẑ,
and u5rV(r )f̂. The centrifugal force is balanced by th
magnetic force:
Downloaded 03 Jun 2003 to 128.8.86.10. Redistribution subject to AIP
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rrV25B] rB5
] rc

r 2 S ] r
2c2

] rc

r D . ~11!

The assumed flat density profile and pressure profile m
seem special. To be sure, the gradient of those profiles
affect the stability criteria. However, this model captures
essential physics: the sheared velocity profile allows M
and the compressibility allows a magnetic buoyancy insta
ity. It is worth mentioning that in the centrifugal confineme
scheme, a hot plasma is supported by the magnetic fi
against both the centrifugal force and the pressure grad
for optimum confinement, a sonic Mach number ofMS

54 – 5 is desired, which is to say that the centrifugal for
dominates the pressure gradient provided the aspect
R/a!MS

2;20. If the system has such a large aspect ra
~;20, which is unlikely!, we can no longer neglect the pre
sure gradient in force balance, and accordingly the cons
pressure assumption is not appropriate.

III. LINEAR STABILITY ANALYSIS

A. Derivation of the eigenvalue equation

We now linearize~3!–~8! about the above-mentione
equilibrium. We assume perturbations of the formr→r(r )
1 r̃(r )exp(ikzz2ivt), etc. The resulting linearized equation
are

FIG. 1. A Dean flow model for the straight section of a centrifugally co
fined plasma. A plasma within an annular box with inner radiusR, width a,
and elongationL is threaded by a straight magnetic field inẑ.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp



tio

o

q
-

n
e

e-

n

hree

fly
ith

in
s

ill

he

un-

r

e
ima-

of

e

o

jor
ce,

-

206 Phys. Plasmas, Vol. 10, No. 1, January 2003 Y.-M. Huang and A. B. Hassam
2 ivr̃52rS ũr81 ikzũz1
ũr

r D , ~12!

2 ivrũr5
B

r S c̃92kz
2c̃2

c̃8

r D 1
rV2

B
c̃812rVũf

1 r̃rV22 p̃8, ~13!

2vrũz5
rV2

B
kzc̃2kzp̃, ~14!

2 ivrũf5 ikz

B

r
Ĩ 22rVũr2rrV8ũr , ~15!

2v Ĩ 5kzrV8c̃1kzrBũf , ~16!

2 ivc̃5rBũr , ~17!

2 iv p̃52gpS ũr81 ikzũz1
ũr

r D , ~18!

where primes denote differentiation with respect tor. Elimi-
nating ũz , ũf , r̃, p̃, c̃, and Ĩ from Eqs.~12! to ~18!, after
some algebra, we obtain the following eigenvalue equa
for ũr :

~v22kz
2VA

2 !S Fũr91
~rF !8

r
ũr81Gũr D

24v2V2~v22kz
2CS

2!ũr50, ~19!

whereCS
2[gp/r, andVA

2 (r )[B2(r )/r are the square of the
sound speed and the Alfve´n speed, respectively. The tw
functionsF(v,kz ,r ) andG(v,kz ,r ) are defined as

F5~VA
2 1CS

2!v22kz
2VA

2CS
2, ~20!

G5v42S kz
21

1

r 2DF12v2V222kz
2CS

2~V22rVV8!

2kz
2r 2V4. ~21!

In deriving Eqs.~12!–~19!, we use Eq.~11! repeatedly to
expressB8(r ) in terms ofV.

We can eliminate the first-order derivative term of E
~19! by substitutingũr5(rF )(21/2)u. The eigenvalue equa
tion for u is

~v22kz
2VA

2 !~Fu91Hu!24v2V2~v22kz
2CS

2!u50,
~22!

where

H5v42S kz
21

3

4r 2DF1~2kz
2CS

22v2!2rVV8

1
r 2V4~v22kz

2CS
2!2

F
2kz

2r 2V4. ~23!

We assume impenetrable hard wall boundary conditio
therefore, Eq.~22! has to be solved subject to the homog
neous boundary conditionsu(R)5u(R1a)50.

In this paper, we will take the parabolic angular fr
quency profileV54V0(r 2R)(a1R2r )/a2 as our basic
model, which mimics what we expect in the centrifugal co
Downloaded 03 Jun 2003 to 128.8.86.10. Redistribution subject to AIP
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finement scheme. The system is then characterized by t
parameters: the Mach numberMS[(R1a/2)V0 /CS , the
Alfvén Mach numberMA[(R1a/2)V0 /(VAuR1a), and the
aspect ratioR/a. We took R/a51/3 for most parts of the
study; the effect of the aspect ratio will be discussed brie
later. The main task of this work is to assess the stability w
respect to the parameter space.

The eigenvalue equation~22! is quite complicated; nu-
merical solutions are needed. A simple shooting code
MATHEMATICA is written for this purpose. The code allow
complex eigenvaluev2; however, we found no solution with
complex eigenvalue in this study~although we cannot prove
this in general!. Before tackling the general case, we w
consider some limiting cases first.

B. Cold plasma limit, CS\0

As a first limit, we assume the plasma to be cold. In t
CS→0 limit, Eq. ~22! becomes

~v22kz
2VA

2 !S v2VA
2u91S v42S kz

21
3

4r 2Dv2VA
2

22rVV8v21
r 2V4v2

VA
2 2kz

2r 2V4DuD 24v4V2u50.

~24!

The eigenvaluev2 of ~24! can be shown to be real~see
Appendix A!. In this case,v is either real or purely imagi-
nary, which means the transition from stable modes to
stable modes must occur throughv50. Therefore, we can
look for marginal stability by lettingv50 in Eq.~24!, which
simply yieldskz50 providedVÞ0. Since no marginal mode
with nonzerokz exists, either the system is stable for allkz

wave numbers, or modes of allkz are unstable. Now conside
the short wavelength modes,kz@1/a, 1/R, and for the mo-
ment assumeuvu!kzVA , since we are not interested in th
those fast modes, which are stable. Under these approx
tions, Eq.~24! becomes

u92kz
2S 11

r 2V4

v2VA
2 Du50. ~25!

Sincekz is large by assumption, for any localized solution
~25! which peaks at a certain radiusr 0 , we must have

S 11
r 2V4

v2VA
2 D

r 0

.0; ~26!

otherwise the second term on the left-hand side of Eq.~25!
will be very large. Equation~26! gives the local dispersion
relation v2.2r 2V4/VA

2 , which corresponds to unstabl
modes with growth rate.rV2/VA . This is the well-known
local Parker instability growth rate~see Refs. 9 and 10, als
Appendix B!, with the centrifugal accelerationrV2 replacing
the gravity in astrophysical systems. In this limit, the ma
destablization mechanism comes from the centrifugal for
and the differential rotationV8 is less important. The self
consistency condition uvu!kzVA requires rV2!kzVA

2 ,
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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which can be easily satisfied withkz large enough. The
above local dispersion relation is confirmed for the ba
model by numerical solutions with largekz .

We have proved that short wavelength modes are
stable providedVÞ0. From our previous marginal mode a
gument, we have actually proved the system to be unst
for all kz wave numbers. The reason for this is not difficult
understand. If the plasma is cold, we can always comp
the plasma along the field without consuming any work; t
means we can build up a local high density region simply
compression—with no cost. One can make the local den
as high as needed until the magnetic tension can no lo
stop the centrifugal force from pulling it outward, Likewis
the low density part will be pushing inward due to the exc
of the magnetic pressure. As we will see, including t
plasma temperature, thus restoring the sound wave, stab
the Parker instability, especially for short wavelength mod

C. Incompressible limit, CS\`

We next consider the incompressible limit. In this lim
the system cannot have the magnetic buoyancy instab
and MRI is the only mechanism of destabilization. Since
centrifugal confinement scheme, as we mentioned, requ
high MS , this limit may not be realistic. However, this lim
can help us elucidate why the MRI is likely not an issue
the centrifugal confinement scheme. In theCS→` limit, Eq.
~22! becomes

~v22kz
2VA

2 !2u91S 2S kz
21

3

4r 2D ~v22kz
2VA

2 !2

14kz
2~v22kz

2VA
2 !rVV81kz

4r 2V414v2kz
2V2Du50.

~27!

For variousMA and R/a we have tried, no unstable mod
was found for the basic model. This is confirmed by t
result of the general case that the system is always st
whenMS is smaller than some critical value~see Sec. III D!,
and direct simulations of the next section!. In order to gain
some understanding of this fact, we consider the lo
Wertzel–Kramers–Brillouin~WKB! dispersion relation as
follows. It should be mentioned that the validity of the WK
dispersion relation for this kind of problem is questionab
nevertheless, previous studies show that it agrees with
global result to a certain extent, therefore it can be used
reasonable stability criteria~see, for example, Ref. 11!. By
letting ] r

2→2kr
2 in Eq. ~27!, the WKB dispersion relation is

S k21
3

4r 2Dv422kz
2S VA

2 S k21
3

4r 2D12~V21rVV8! Dv2

1kz
4S S k21

3

4r 2DVA
4 14VA

2 rVV82r 2V4D50, ~28!

with k2[kr
21kz

2. Equation~28! is quadratic inv2, and it is
easy to show that the determinant is positive, hencev2 is
real. To have unstable modes, i.e.,v2,0, the coefficient of
v0 has to be negative, or
Downloaded 03 Jun 2003 to 128.8.86.10. Redistribution subject to AIP
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S k21
3

4r 2DVA
4 ,24VA

2 rVV81r 2V4. ~29!

Equation~29! indicates the key characteristic of the MRI—
the flow shear is destabilizing only whenV8,0. For the
parabolicV profile we assumed, only the outboard half
the system could be unstable. Equation~29! also indicates
that a system with a larger angular frequency and a wea
magnetic field is more likely to be unstable. However, t
force balance condition~11! relates the magnetic field
strength to the angular frequency—they are no longer in
pendent. This fact makes the centrifugal confinement dev
quite different from the accretion disk7 and the proposed
MRI experiment of liquid metal,11 where the centrifugal
force is mostly balanced by gravity in the former~Keplerian
flow! and pressure gradient in the later. In those cases
magnetic field could be arbitrarily weak, that makes the s
tems more prone to the MRI. Now we do a simple dime
sional analysis. Roughly speaking, in the outboard half,VA

2

;arV2 from Eq.~11!, andV8;2V/a. The minimum total
wave numberk is limited by the longest wavelength allowe
by the system size, hencek*p/a. Substituting all these into
~29!, we can see the instability criterion is not satisfied. A
though this is a very crude estimate, it indicates that the M
is likely not an issue for the centrifugal confinement schem
The reason for that is simple: for a system with parabola-l
angular frequency, the MRI is only possible in the outboa
half, where the magnetic field is strong enough to stabil
the MRI. One might think that for a system in which th
angular frequency decreases all the way outward, e.g.,
Couette flow, the MRI could be possible. This is certain
true. In some cases of the Couette flow, we have found
calized unstable modes about the inner wall, where the m
netic field is weak. However, for most cases this is not ev
possible, as the magnetic field strength increases so qui
with the radiusr that no unstable mode can be found.

D. Stability over the parameter range

We now numerically solve the system in the general c
by the shooting code. The code found no unstable modes
low MS systems, whereas for highMS systems unstable
modes were found in the region of largeMA and smallkz .
Figure 2 shows the contour plot of the growth rates of
most unstable mode for the caseMS54 in the parameter
space ofMA and the normalized wave numberkza. The
system is more unstable for highMA since the magnetic field
is weaker, and is stable for short wavelengths because o
strong magnetic recovering force at short wavelengths. I
also important to see how the unstable parameter range
ies with respect to differentMS . This can be done by solving
the marginal stability for differentMS . Since thev2 of the
unstable modes we found are real, we can solve for marg
stability by settingv2 to zero in Eq.~22!, which gives~as-
sumekzÞ0)

u92S kz
21

3

4r 2 1
4rVV8

VA
2 2

r 2V4

VA
4 2

r 2V4

VA
2CS

2Du50. ~30!
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Equation~30! is a Schro¨dinger-type eigenvalue equation ofu
with eigenvaluekz

2. If Eq. ~30! has no positive eigenvalue
kz

2, then the system is stable. Before we solve it numerica
a general observation can be made as follows. If we ler
→R, V8→2V/a in ~30!, and notice thatu9;2(p/a)2u
for a solution with the longest wavelength in ther direction,
we have the schematic stability criterion:

2
p2

a22
3

4R2 1
4MA

2

Ra
1

MA
4

R2 1
MA

2 MS
2

R2 ,0. ~31!

The last term of the left-hand side of Eq.~31! is the only one
related toMS . Since that term is positive and proportional
MS

2, a system with higherMS is more unstable. This is con
sistent with our previous results that the system is unsta
for all MA and kz in the cold limit (MS→`) and is com-
pletely stable in the incompressible limit (MS→0). Figure 3

FIG. 2. Normalized growth rates of the most unstable modes for the c
MS54, R/a51/3. The growth rate is normalized to the inverse of the sou
time scale,CS /a.

FIG. 3. Marginal stability curves forMS53,4,6,8,10, withR/a51/3. The
region above the curve is unstable.
Downloaded 03 Jun 2003 to 128.8.86.10. Redistribution subject to AIP
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le

depicts the marginal stability curves for differentMS , which
clearly shows the enlargement of the unstable region asMS

increases.

IV. INITIAL VALUE SIMULATION

So far our conclusions were obtained by solving the l
earized normal mode equation by the shooting code. H
ever, it should be kept in mind that the normal modes co
be incomplete, and some normal modes might even be d
cult to find by a shooting code, especially those solutio
involving cancellation of large terms in the equation. Ev
without the above-mentioned problems, one still cannot
pect to obtain a complete answer by a shooting code
shooting code can find some normal modes, but certainly
all—usually for a givenkz there exists infinite number o
normal modes. Therefore, it is desirable to check the re
by direct simulation.

For this purpose, we solved the time-dependent tw
dimensional MHD equations for our basic model. The co
we used is nonlinear although for this work we are on
interested in linear stability. The numerical algorithm is d
scribed in detail in Ref. 12. The code has viscosity and
sistivity explicitly. In addition to those physical transports,
also has hyperviscosity~proportional toDx3, whereDx is
the grid size! for numerical stability. In order to have an ide
MHD equilibrium, the steady state is ‘‘frozen-in’’~otherwise
resistivity will flatten the magnetic field profile and viscosi
will slow down the flow! and the code steps only the devi
tion from the steady state; therefore the nonideal effect of
code is limited to those perturbed quantities. Periodic bou
ary conditions are assumed in thez direction, which quantize
the allowable wave numbers in thez axis. The steady state
was initially seeded with a random perturbation of the s
1024CS in ur , uf , anduz to see if the system goes unstab
in time evolution. We wish to confirm~1! that the mode
growth rate obtained by the shooting code agrees with
direct simulation in the linear stage, and~2! that the system
is indeed stable in the parameter range where no unst
modes were found. To calculate the growth rate for ea
wave number from the simulation data, first we perform Fo
rier transformation onur to obtain the amplitude of eac
wavelength as a function ofr:

A~kz ,r !5E
0

L

ur~r ,z!exp~ ikzz!dz, ~32!

then average the log of the norm ofA(kz ,r ) over radius:

^ lnuAu&5
1

a ER

R1a

lnuA~kz ,r !udr. ~33!

By plotting ^ lnuAu& with respect to time, one can then obta
the growth rate for each wave number by means of a le
squares fit during the linear growing period. This test h
been run for various Mach numbers, Alfve´n Mach numbers,
elongation, and resolution. In terms of stability, the simu
tion results agree with the shooting code ones for all
cases we have tested, as summarized in Table I.

Figure 4 shows the time evolution of^ lnuAu& for the six
longest wavelength modes in model 1a. According to lin

se
d
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Downloaded 03 
TABLE I. A comparison between the normal mode shooting code results and the initial value simulation r

Model (r ,z) Grid L/a MS MA Shooting code Simulation

1a 453133 2p 6 0.75 Unstable Unstable
1b 453133 1.2 6 0.75 Stable Stable
1c 453133 1.3 6 0.75 Unstable Unstable
1d 603261 2p 6 0.75 Unstable Unstable
2a 453133 2p 6 0.6 Unstable Unstable
2b 453133 2 6 0.6 Stable Stable
3a 453133 2p 4 0.75 Unstable Unstable
3b 453133 2 4 0.75 Stable Stable
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analysis,kza51 – 5 will be unstable. The simulation show
that kza56 is also unstable, aftert.4. An obvious possible
reason for this is the nonlinear coupling between modes
we can see from Fig. 4, the mode withkza51 has two stages
of ‘‘linear growing,’’ with a smaller growth rate withint
52 – 5, followed by a sudden boost att.5. This sudden
boost also indicates nonlinear coupling. For the same rea
although thekza55 mode should be weakly unstable a
cording to linear analysis, we cannot trust the ‘‘line
growth’’ of that mode shown in Fig. 4, since the behav
resembles that ofkza56. To verify the hypothesis of nonlin
ear coupling, we tested the model 1b, with elongation 1
which limits the smallest wave number tokza55.24. Ac-
cording to linear analysis, this wave number will be stab
which is confirmed by the simulation. Model 1b has been
for t530 to ensure that no slowly growing modes exist. A
comparison to model 1b, model 1c, with a slightly long
elongation 1.3, has the smallest wave numberkza54.83,
which is unstable according to the linear analysis. This lin
growth is clearly shown in Fig. 5.

The mode growth rates calculated from models 1a–
are plotted in Fig. 6 and compared with the growth rate fr
the shooting code. We found that the growth rate from sim
lation agrees with the shooting code result but is sligh
lower, which is clearly due to the nonideal terms in the co
To test this possibility, we have to decrease the viscosity
resistivity. This can be done in a simulation with higher res
lution, which also reduces hyperviscosity. Model 1d is ess

FIG. 4. Time evolution of̂ lnuAu& for various wave numbers of model 1a
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tially a high resolution version of model 1a, but the resist
ity and the viscosity are decreased by a factor of 2. T
resulting growth rates are closer to the ones from the sh
ing code, as also shown in Fig. 6.

The agreement between the linear analysis and the s
lation lays a solid foundation for the results obtained in t
previous section. In particular, the stable region found by
shooting code is indeed so.

V. IMPLICATIONS FOR CENTRIFUGALLY
CONFINED PLASMAS

As we mentioned in Sec. I, a highb system is desirable
for a fusion device. Sinceb52p/B25(2/g)MA

2 /MS
2, to

achieve highb we have to achieve highMA . As we can see
from Fig. 3, for a plasma withMS54, the maximum stable
MA.0.66, which yieldsb.3.3%~g55/3 is assumed!. How-
ever, the above-mentioned estimate is based on infinite e
gation, which allows all possiblekza down to zero. For a
system with finite elongationL, we havekza>pa/L, which
makes the system more stable. However, elongation o
slightly affects the stability. For example, the maximu
stableMA.0.7 whenL/a52, which is not much different
from the infinite elongation case. Notice that while our pr
vious study8 shows that large elongation is desirable for v
locity shear stabilization of the interchange instability, t
present study indicates that a system with long elongatio

FIG. 5. Time evolution of̂ lnuAu& for various wave numbers of model 1c
The growth of the modekza59.67 is due to nonlinear coupling.
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more prone to the magnetic buoyancy instability. Howev
since elongation only slightly affects the maximumMA ,
large elongation could be possible.

Another ‘‘knob’’ that could change the maximumMA is
the aspect ratio. From the force balance equation~11!, VA

2

scales asaRV2, which meansMA
2 scales asR/a. Therefore,

a large aspect ratio seems to be desirable to achieve a hb
system. From the magnetic buoyancy stability point of vie
a large aspect ratio is also desirable. This is seen as follo
The magnetic buoyancy instability is driven by the centri
gal forceRV2, which scales asMS

2CS
2/R. For a centrifugally

confined fusion plasma,MS.4, andT.10 keV are required.
Therefore,MS

2CS
2 is fixed and the centrifugal force is propo

tional to 1/R. For exactly the same reason, a large asp
ratio also helps the velocity shear stabilization of intercha
modes, as we have shown before,2 since the interchange
mode is also driven by the centrifugal force. Figure 7 dep
the marginal stability curves for variousMS with aspect ratio
R/a51. When compared with Fig. 3 forR/a51/3, the ben-
efit of large aspect ratio is clearly evident. ForMS54, MA

.1.05 can be achieved, which yieldsb.8.3%.
It should be mentioned that there are two limits on t

achievableMA . The first limit is set by the MHD equilib-
rium: from Eq. ~11!, we haveMA

2 &R/a. The other limit is
set by the MHD stability. For a highMS centrifugal confined
plasma, the schematic criterion~31! is mainly a competition
between the first term and the last term of the left-hand s
Hence, the stability limit is, roughly speaking,MA

2

&(p/MS)2(R/a)2. Since the equilibrium limit scales asR/a
and the stability limit scales as (R/a)2, it is possible that the
latter exceeds the former in a large aspect ratio system,
the system is stable up to the equilibrium limit. For examp
a MS53 system is stable to allMA in the caseR/a51 ~Fig.
7!, whereas it is unstable at largeMA whenR/a51/3 ~Fig.
3!.

FIG. 6. A comparison of the linear growth rate obtained by simulation
by linear analysis.
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VI. SUMMARY AND DISCUSSION

In this paper, we studied the linear ideal MHD stabili
of a Dean flow plasma supported by an axial magnetic fie
We found that the system is likely to be free of the MR
however, the magnetic buoyancy instability could occur. T
effect of aspect ratio on the MHD stability is also studie
Large aspect ratio is found to be stabilizing for the centri
gal confinement scheme. We conclude our study by disc
ing some issues and open questions in the present stud

~1! We considered only axisymmetric stability in th
study. The primary manifestation of the MRI i
two-dimensional,6,7 as is the Parker instability.9 Thus, our
axisymmetric stability is an informative starting point. In a
dition, for MA!1, we have done a fully three-dimension
stability of the centrifuge2,3 and found stability for largeMS .
With the foregoing information, a fairly clear picture of th
parameter space can be discerned. To complete this pic
however, anMA;1, three-dimensional stability analys
needs to be done.

~2! In this paper, we model a centrifugally confine
plasma via the Dean flow model, which certainly lacks so
important features. In addition to the special choices for
density, the pressure, and the flow profile, an obvious om
sion is the lack of the curved magnetic field, which is ess
tial to the centrifugal confinement scheme. At first sig
curved field lines would seem more prone to the buoya
instability. However, whether the buoyancy instability
catastrophic is not clear. It is well known in astrophysics th
the plasma eventually saturates to several localized clu
after the onset of the Parker instability,13 whereas the MRI
usually results in turbulent behavior.7 Since we have shown
that the MRI will likely not destabilize the system, saturatio
is expected. In fact, we have run the nonlinear simulat
beyond the linear growing stage. ForMS54, saturation was
achieved, and the final state has localized plasma clumps
in fact look like centrifugally confined plasmas. For high
MS , the plasma was compressed to a thin disk that m
running the simulation very difficult. A full discussion of thi

d

FIG. 7. Marginal stability curves forMS54,6,8,10, withR/a51.
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issue is beyond the scope of this paper. However, if the
tem indeed saturates, the buoyancy instability might not
catastrophic, and the estimate of the maximumMA in the
previous section may be pessimistic. It should also be m
tioned that Ref. 13 assumed perfect ‘‘frozen-in’’ of the ma
netic field. If the system is allowed to last longer than t
resistive time scale, as one would expect for a steady s
fusion device, then we can no longer neglect the effec
resistivity. The numerical simulation in Ref. 14 showed th
on the resistive time scale, after the onset of the Parker
stability, the magnetic field relaxes to a nearly uniform p
file and the plasma is supported against gravity almost by
pressure gradient only. In fact, this is also what one wo
expect for a resistive Dean flow, even without the Par
instability. Furthermore, it is still not clear how an externa
imposed curvature in the field affects the relaxation of
magnetic field. Further work is necessary to clarify t
above-mentioned problems.
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APPENDIX A: A PROOF OF THE REALITY OF v2 FOR
THE COLD PLASMA CASE

In this appendix, we will prove the eigenvaluev2 to be
real in the cold plasma limit as follows. First we divide E
~24! by (v22kz

2VA
2 )v2VA

2 , then operate the result b
*R

R1adr u* . Integrating by parts and applying the homog
neous boundary conditions, we obtain

^uu8u2&5K S v2

VA
2 2kz

22
3

4r 22
2rVV8

VA
2 1

r 2V4

VA
4 2

kz
2r 2V4

v2VA
2

2
4v2V2

VA
2 ~v22kz

2VA
2 !

D uuu2L , ~A1!

where^ &[*R
R1a dr. The imaginary part of~A1! is

Im~v2!K S 1

VA
2 1

kz
2r 2V4

uv2u2VA
2 1

4V2kz
2

uv22kz
2VA

2 u2D uuu2L 50.

~A2!

Since the coefficient of Im(v2) in ~A2! is positive definite,
we must have Im(v2)50.

APPENDIX B: A SIMPLE DERIVATION OF THE
PARKER INSTABILITY GROWTH RATE IN THE COLD
PLASMA LIMIT

In this appendix, we present a simple derivation of t
local Parker instability growth rate in the cold plasma lim
Suppose a cold plasma is supported against a constant
ity g52gx̂ by a magnetic fieldB5B(x) ẑ. The equilibrium
satisfies the force balance equation

d

dx S B2

2 D52rg. ~B1!

For small perturbations about the equilibrium, the lineariz
ideal MHD equations are

] tr̃52“"~rũ!, ~B2!
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r] tũ52“~B"B̃!1B"“B̃1B̃"“B1 r̃g, ~B3!

] tB̃5“Ã~ ũÃB!. ~B4!

For simplicity, we only consider two-dimensional perturb
tions~i.e.,]y50). Since the system has translational symm
try along thez direction, we can assume normal modes of t
form r̃(x)exp(ikzz2ivt), etc. As we did in Sec. III B, we
assume the wavelength in thez direction to be much shorte
than the length scale of any fluctuation in thex direction~i.e.,
]x!kz).

Suppose we compress mass along a field line. T
causes local density clumping according to Eq.~B2!:

vr̃.kzrũz , ~B5!

where]x(rũx) is neglected in comparison withkzrũz , since
we assume short wavelength in thez direction. As the density
clumps, the extra weight causes the magnetic line to ben
balance the extra weight. This balance is Alfve´nically quasi-
static ~i.e., v!kzVA) and the corresponding equation
given by thex component of~B3!:

ikzBB̃x. r̃g, ~B6!

wherein the termsivrũx and]x(BB̃z) are neglected in view
of the quasistatic and short wavelength assumptions, to
checked self-consistently later. In the presence of magn
gradients, the field line bending results in constrictions a
distensions along the flux tube. This makes matter squirt
the distended parts of the flux tube, according to thez com-
ponent of~B3!:

2 ivrũz5]xBB̃x52
rg

B
B̃x , ~B7!

where in the last step Eq.~B1! is used for]xB. The new
matter squirted into the distension makesr̃ go up even more,
thus resulting in instability. The dispersion relation can
solved from Eqs.~B5! to ~B7! as

v2.2
g2

VA
2 . ~B8!

Notice that ifg is replaced by the centrifugal forcerV2, the
local dispersion relation~26! is recovered.

To check the self-consistency of the above-mention
derivation, we have to verify the three assumptions we h
made: ]x(rũx)! ikzrũy , ]x(BB̃y)!kzBB̃x , and v2

!kz
2VA

2 . Now we check them in order. First of all, elimina
ing B̃x in Eq. ~B7!, using thex component of Eq.~B4!, yields

ũx52
ig

kzVA
2 ũz , ~B9!

where we use the dispersion relation~B8! for v2. Hence,
the assumption ]x(rũx)! ikzrũz requires ]x(rũx)
!(kz

2rVA
2/g)ũx , which implies

kx!kz
2VA

2 /g. ~B10!

This can be satisfied as long askz is large enough. To check
the second assumption, notice that the constraint“"B̃50
gives the relation betweenB̃x and B̃z :
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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]xB̃x1 ikzB̃z50. ~B11!

Therefore, we require]x(B]xB̃x)!kz
2BB̃x , which implies

kx
2!kz

2. ~B12!

Again, this is consistent with the local approximation. F
nally, the Alfvénically quasistatic assumption requires@using
~B8!#

g!kzVA
2 , ~B13!

which can be also satisfied in the short wavelength lim
Notice that conditions~B12! and ~B13! imply condition
~B10!; therefore, only~B12! and ~B13! are necessary. Th
self-consistency conditions are satisfied in the short wa
length limit; in that limit, the growth rate is independent
the wavelength. However, the above-mentioned derivatio
good forkza@1 @a;VA

2 /g is the vertical length scale, from
Eq. ~B1!#, as a result of the quasistatic approximation.
kza&1, the Alfvénic restoring forces become more efficie
~or the gravity induced clumping becomes less efficient!; this
causes the growth rate to drop at long wavelengths. It sho
also be kept in mind that all the conclusions here are o
valid in the cold plasma limit. If the plasma has a nonze
temperature, the pressure will stabilize short wavelen
modes. The dependence of the dispersion relation on p
sure and wavelengths is the topic of the next appendix~see
also Sec. III D!.

APPENDIX C: LOCAL PARKER INSTABILITY
GROWTH RATE: THE GENERAL CASE

In this appendix we briefly outline the derivation of th
Parker instability local dispersion relation for a plasma w
nonzero temperature. For simplicity we assumep5const and
r5const in the equilibrium. The governing equations for
small perturbation from the equilibrium are still~B2!–~B4!,
except pressure has to be included in~B3!:

r] tũ52“~ p̃1B"B̃!1B"“B̃1B̃"“B1 r̃g, ~C1!

wherep̃5CS
2r̃. In the following derivation we only conside

perturbations with wavelengths much shorter than the c
acteristic length scale of the background variation such
the WKB approximation is appropriate. Under this assum
tion, we can assumer̃→ r̃ exp(ikxx1ikzz2ivt), etc. Taking
the y component of the curl of Eq.~C1! yields

vr~kxũz2kzũx!5k2BB̃x1 ikzr̃g, ~C2!

where k25kx
21kz

2. In deriving ~C2! we use the constrain
“"B̃50 and neglectB̃x]x

2B ~which is much smaller than
k2BB̃x by assumption! on the right-hand side. Thez compo-
nent of ~C1! yields

2 ivrũz52 ikzCS
2r̃2

rg

B
B̃x , ~C3!

where we use~B1! for ]xB. Next, with the WKB approxi-
mation Eq.~B2! becomes
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vr̃5r~kxũx1kzũz!. ~C4!

Finally, thex component of Eq.~B4! is

2vB̃x5kzBũx . ~C5!

Equations~C2!–~C5! form a closed set of variablesũx , ũz ,
r̃, and B̃x . The local dispersion relation can therefore
obtained, after some algebra, as

v42k2~CS
21VA

2 !v21kz
2~k2VA

2CS
22g2!50. ~C6!

The two solutions ofv2 represent the fast and slow magn
tosonic modes, respectively, under the effect of the grav
The fast mode is always stable whereas the slow mode c
be destabilized by the gravity; the stability criterion is

k2VA
2CS

22g2.0. ~C7!

The validity of the WKB approximation may be justified
kx , kz@(1/B)dB/dx5g/VA

2 . If we further assume thatCS

!VA , the dispersion relation for the slow mode can be e
pressed in a rather simple form:

v2.
kz

2~k2CS
2VA

2 2g2!

k2~CS
21VA

2 !
. ~C8!

Notice that in theCS→0 and kx!kz limit, the dispersion
relation ~B8! is recovered. As we can see from~C8!, the
nonzero pressure of a warm plasma stabilizes short wa
length modes. We can also apply Eq.~C7! to obtain a rough
stability criterion for the Dean flow model. Recall that th
Dean flow has a finite radial sizea, hencek.p/a, and grav-
ity is replaced by the centrifugal forceRV2; the schematic
stability criterion so obtained is

p2
R2

a2 .MS
2MA

2 , ~C9!

which is the same as what we obtained at the end of Sec
From Eq. ~C8!, for a high MS , high MA system ~i.e.
MSMA@pR/a), the ‘‘cutoff’’ to unstable modes occurs a
kz

ca;ga/CSVA;MSAa/R, and the maximum growth rate
occurs atkz

ma;Akz
ca.
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