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Magnetorotational and Parker instabilities in magnetized plasma Dean flow
as applied to centrifugally confined plasmas
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The ideal magnetohydrodynamics stability of a Dean flow plasma supported against centrifugal
forces by an axial magnetic field is studied. Only axisymmetric perturbations are allowed for
simplicity. Two distinct but coupled destabilization mechanisms are present: flow shear
(magnetorotational instabilifyand magnetic buoyandyParker instability. It is shown that the flow

shear alone is likely insufficient to destabilize the plasma, but the magnetic buoyancy instability
could occur. For a high Mach numbeMg), high Alfven Mach number §1,) system with

MsM a= mR/a (R/a is the aspect ratjpthe Parker instability is unstable for long axial wavelength
modes. Implications for the centrifugal confinement approach to magnetic fusion are also discussed.
© 2003 American Institute of Physic§DOI: 10.1063/1.1528937

I. INTRODUCTION Condition (1) can only be violated wheré, 22<0, which is
usually true for most astrophysical disks. In a centrifugally

An idea currently under investigation is to use the cenconfined plasma, a parabola-lik@ profile is expected?

trifugal force of a rotating plasma to augment magnetic conhence the MRl is possible in the outboard half of the system.

finement for thermonuclear fusion plasnids. this scheme, Condition (1) also indicates that a system with high Alfve

a magnetic mirror type plasma is made to rotate azimuthallyjach number MA~rQ/V,) and high elongatior{which

at supersonic speeds; thus, centrifugal forces confine thgiows smallerk) is more prone to the MRI. Since both at-

plasma to the central section. The central issue here is th@putes are desirable for centrifugal confinement schemes

ideal MHD (magnetohydrodynamigstability of the system. (high M , means highg, and elongation assists velocity shear

Previous studies indicate that the prevalent interchange modgpijization. see Ref.)8whether or not the MR is a funda-
can be stabilized by the strong velocity shear that accompasantal limit needs more investigation.

nies the rotatiod:®> However, all the previous studies are
based on the orderinG@s=u<V,, whereCg is the sound
speedu is the flow speed, and, is the Alfven speed. In that

Another possible destabilizing mechanism is magnetic
buoyancy. It was first pointed out by Parkéhat a magne-
. tized plasma partially supported against gravity by a mag-
"hetic field could be unstable. When the Parker instability

along th? field, and the calculanons_ were dong for nonaX'occurs, the plasma in a flux tube spontaneously fragments
symmetric flute modes. From the fusion viewpoint, however, . p »

. . ._into clumps, which are then pulled “downward” by the grav-
the output power is proportional to the square of the particle

density; for a device with a given magnetic field, a high 1ty. Me_anwhile, the dilute parts of the flux _tube bulge up-
(EZp/é2~C§/Vi) system withu~V,, is highly désirable. ward, in a way that resembles a buoyant light bubble in a

For such a system, the magnetic field may not be stronﬁea\/y.ﬂmdl Parker guggested this as an e_xplanation for the
enough to stabilize fluctuations along the field. Thus, idea onuniformity of the interstellar medium inside a galaxy. Al-

MHD instabilities with axial wave numbers need investiga—though there is no gr:?\vny in the centrifugal confmc_emept
tion. scheme, the plasma is supported by the magnetic field

An immediate concern is the magnetorotational instabil-29ainst the centrifugal force, which plays the role of the
ity (MRI).4~7 Since the recent work by Balbus and Hawfey gravity. It was pointed out in Ref. 10 that for rotating stellar
the MRI has attracted broad attention and is believed to b¥inds or accretion disks in which the magnetic pressure of
the cause of the turbulent angular momentum transport ifonuniform poloidal magnetic fields balance the combina-

accretion disks. Roughly speaking, the stability criteriontion of gravity and centrifugal forces, a poloidal buoyancy
based on a local analysis’ is mode resembling the Parker instability could occur. The

same instability would also be an issue for the centrifugal
confinement scheme.

In this paper, we study the above-mentioned issues in
more detail. To avoid the complication of the curved-field
geometry of the centrifugal confinement scheme, we model
the system with the straight-field Dean flow model, as we did

2

. 2 _
(k-Va)™> din(r)’

.Y

wherek is the wave number and is the angular frequency.

3Electronic mail: yopology@umd.edu in our previous study.The effect c_Jf a curyed field, though
PElectronic mail: hassam@umd.edu not fully understood at present, will be briefly assessed later.
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It is worth pointing out that although the MRI and the mag-
netic buoyancy instability involve different mechanisms,
they are inextricably coupled, and there is no way to clearly
distinguish one from the other.

This paper is organized as follows. In Sec. I, we set up
the Dean flow model and the governing equations. In Sec.
lll, we first linearize the equations about the equilibrium,
then numerically solve the eigenvalue equation so obtained
by a shooting code. Before solving the general equation, two
simple limiting cases, the cold plasma limit and the incom-
pressible limit, are considered. In Sec. IV, we confirm the
results of Sec. Il by a series of initial value simulations. In
Sec. V, We discuss the implications for centrifugally confined
plasmas. We conclude in Sec. VI.

B L
Il. THE DEAN FLOW MODEL
For simplicity, we consider only the axisymmetric case.
In the cylindrical coordinate systenm,(@,z), the most gen-
eral divergence-free magnetic field can then be written as
B=I1V¢+VpXVy=B,»+B, . (2
We decompose the flow velocity into the azimuthal compo-
nent and the perpendicular component: u,¢+u, . The
ideal MHD equations with an adiabatic equation of stébe i R
dAldp=0) are ‘ a
dp FIG. 1. A Dean flow model for the straight section of a centrifugally con-
a =—pV-u,, (€ fined plasma. A plasma within an annular box with innerAradiuwidth a,
and elongatiorL is threaded by a straight magnetic fieldzn
du V.12V ] u?
PGt = o2 —ﬁ—z‘p(vzw—z# +pT-Vip,
@ prQZZBarB:ﬁr—;’/j(aﬂp— M). (11)
dug, B -V, I  uuy, r r
Plat = P ®) The assumed flat density profile and pressure profile may
seem special. To be sure, the gradient of those profiles will
ﬂ _ rzBl-Vi(%) _|rzv,(u_§)’ (6) affect the stability criteria. However, this model captures the
dt r r essential physics: the sheared velocity profile allows MRI,
d and the compressibility allows a magnetic buoyancy instabil-
— =0, 7) ity. It is worth mentioning that in the centrifugal confinement
dt scheme, a hot plasma is supported by the magnetic field
dp against both the centrifugal force and the pressure gradient;
ot vpV-u,, (8)  for optimum confinement, a sonic Mach number Nifg
=4-5 is desired, which is to say that the centrifugal force
where dominates the pressure gradient provided the aspect ratio
d 9 R/a<M§~20. If the system has such a large aspect ratio
—=—+u,'V,, (9) (~20, which is unlikely, we can no longer neglect the pres-
dt 4t sure gradient in force balance, and accordingly the constant
V,=rd,+20,. (10)  pressure assumption is not appropriate.

Standard notation is useg.is the plasma density is the

pressure, ang is the adiabatic index. IIl. LINEAR STABILITY ANALYSIS

Figure 1 depicts the Dean flow model we used. The o _ _
plasma is contained in an annular box with inner radiys A Derivation of the eigenvalue equation
box width a, and elongatiornL. We assume the following We now linearize(3)—(8) about the above-mentioned
equilibrium: p=const, p=const, B=B(r)z=—(1/r)d,4z,  equilibrium. We assume perturbations of the fopm p(r)
and u=rQ(r)¢. The centrifugal force is balanced by the +p(r)exp(k,z—iwt), etc. The resulting linearized equations
magnetic force: are
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_ 0 finement scheme. The system is then characterized by three
u; +ik,u,+ T

) (120 parameters: the Mach numbéts=(R+a/2)Q,/Cs, the
Alfvén Mach numbeM ,=(R+a/2)Qq/(Valr:a), and the
pQ?~ ~ aspect ratioR/a. We took R/a=1/3 for most parts of the
T Y'+2pQuy study; the effect of the aspect ratio will be discussed briefly
later. The main task of this work is to assess the stability with
+prQ%-p’, (13)  respect to the parameter space.
Q2 The eigenvalue equatiof22) is quite complicated; nu-
—wpﬁfp—k;//— K,p, (14)  merical solutions are needed. A simple shooting code in
B MATHEMATICA is written for this purpose. The code allows
B. complex eigenvalue?; however, we found no solution with
—iwply= iszl —2pQU,—prQ'u,, (15)  complex eigenvalue in this studglthough we cannot prove
this in genergl Before tackling the general case, we will
—szkJQ’?/H erBD¢,, (16) consider some limiting cases first.

—iwp=—p

Tﬂ’

r

; ~ B I 27
~iwpil,=— | ¥~k

—iwy=rBT,, (17

) .~ U B. Cold plasma limit, Cs—0
u, +iku,+ —
r

—iwp=—yp : (18)

As a first limit, we assume the plasma to be cold. In the

where primes denote differentiation with respect t&limi- Cs—0 limit, Eq. (22) becomes

natingt,, Uy, p, P, ¥, andl from Egs.(12) to (18), after o - , 3 )
some algebra, we obtain the following eigenvalue equatiorﬁ“’z_szA) W?VRU"+| 0f—| kg + 4r2 w?V4
for U, :

e r2&)4(1)2

5 ool emn (FE) o —2rQ0' 0?+ ———k2r?0%|u| —40*Q%u=0.
(w°—kiVa)| Fu/+ ; u, +Gu, Va

~ (24)
—40°0%(0?—k2C2)U,=0, (19

, s The eigenvaluew? of (24) can be shown to be redkee
whereCg= yp/p, andV(r)=B*(r)/p are the square of the  Appendix A). In this casemw is either real or purely imagi-
sound speed and the Alfwespeed, respectively. The tWo nary, which means the transition from stable modes to un-
functionsF(w,k;,r) andG(w,k,,r) are defined as stable modes must occur through=0. Therefore, we can

F=(V,§+C§)w2— kgvicz, (20) Iqok for marginal stabilit.y by Iettingl).zo in Eq.(24}, which
simply yieldsk,=0 provided(Q)#0. Since no marginal mode
with nonzerok, exists, either the system is stable for lajl
wave numbers, or modes of &l] are unstable. Now consider
the short wavelength models,>1/a, 1/R, and for the mo-
—kirza”. (21)  ment assuméw|<k,V,, since we are not interested in the
those fast modes, which are stable. Under these approxima-
tions, Eq.(24) becomes

1
k§+r—2

G=w"- F+20202—2k2C40%-rQQ")

In deriving Egs.(12—(19), we use Eq.11) repeatedly to
expressB’(r) in terms of(}.

We can eliminate the first-order derivative term of Eq. r204
(19) by substitutingti, = (rF)("¥u. The eigenvalue equa- u'—k2 1+ W) u=0. (25)
tion for u is A
2_12\2 " 20020 112 _ 1L22)y— Sincek, is large by assumption, for any localized solution of
_ + _ _ — z
(0"=kzVR) (FU+HU) ~ 4070 (0"~ k;C5)u=0, (25) which peaks at a certain rading, we must have
(22)
r.2\014
where 1+ | =0; (26)
2, 3 22 @ Al
H=ow%—|k:+ 72| F (2K Co- w?)2rQQ’
r otherwise the second term on the left-hand side of (2§)
r20%(w?—k2C2)? will be very large. Equatior26) gives the local dispersion
+ = z —K2r20*. (23)  relation w?=—r2Q%V34, which corresponds to unstable

modes with growth rate=r Q?/V, . This is the well-known
We assume impenetrable hard wall boundary conditionsiocal Parker instability growth ratesee Refs. 9 and 10, also
therefore, Eq(22) has to be solved subject to the homoge-Appendix B, with the centrifugal acceleratia)? replacing
neous boundary condition§ R) =u(R+a)=0. the gravity in astrophysical systems. In this limit, the major
In this paper, we will take the parabolic angular fre- destablization mechanism comes from the centrifugal force,
quency profileQ=4Q,(r—R)(a+R—r)/a? as our basic and the differential rotatiof)’ is less important. The self-
model, which mimics what we expect in the centrifugal con-consistency condition|w|<k,V, requires rQ2<k,Va,
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which can be easily satisfied witk, large enough. The
above local dispersion relation is confirmed for the basic
model by numerical solutions with larde .

We have proved that short wavelength modes are unkEquation(29) indicates the key characteristic of the MRI—
stable provided)#0. From our previous marginal mode ar- the flow shear is destabilizing only whe'<0. For the
gument, we have actually proved the system to be unstablgarabolicQ) profile we assumed, only the outboard half of
for all k, wave numbers. The reason for this is not difficult to the system could be unstable. Equati@9) also indicates
understand. If the plasma is cold, we can always compreshat a system with a larger angular frequency and a weaker
the plasma along the field without consuming any work; thatmagnetic field is more likely to be unstable. However, the
means we can build up a local high density region simply byforce balance condition(11) relates the magnetic field
compression—with no cost. One can make the local densitgtrength to the angular frequency—they are no longer inde-
as high as needed until the magnetic tension can no longgendent. This fact makes the centrifugal confinement device
stop the centrifugal force from pulling it outward, Likewise, quite different from the accretion diSkand the proposed
the low density part will be pushing inward due to the excessVIRI experiment of liquid metat! where the centrifugal
of the magnetic pressure. As we will see, including theforce is mostly balanced by gravity in the formgteplerian
plasma temperature, thus restoring the sound wave, stabilizé®ew) and pressure gradient in the later. In those cases the
the Parker instability, especially for short wavelength modesmagnetic field could be arbitrarily weak, that makes the sys-
tems more prone to the MRI. Now we do a simple dimen-
sional analysis. Roughly speaking, in the outboard héﬂf,
~arQ? from Eq.(11), andQ’~ —Q/a. The minimum total
wave numbek is limited by the longest wavelength allowed

We next consider the incompressible limit. In this limit, by the system size, hen&e= 7/a. Substituting all these into
the system cannot have the magnetic buoyancy instability29), we can see the instability criterion is not satisfied. Al-
and MRl is the only mechanism of destabilization. Since thehough this is a very crude estimate, it indicates that the MRI
centrifugal confinement scheme, as we mentioned, requires likely not an issue for the centrifugal confinement scheme.
high M, this limit may not be realistic. However, this limit The reason for that is simple: for a system with parabola-like
can help us elucidate why the MRI is likely not an issue inangular frequency, the MRI is only possible in the outboard
the centrifugal confinement scheme. In hg— limit, Eq.  half, where the magnetic field is strong enough to stabilize

3
K+

y Va<—4VarQQ' +r204, (29)

C. Incompressible limit, Cg—x

(22) becomes the MRI. One might think that for a system in which the
3 angular frequency decreases all the way outward, e.g., the
(0?—K3V2)2u"+| — | K2+ — | (0?2 —k2V2)? Couette flow, the MRI could be possible. This is certainly
zVA z 4r2 zVA

true. In some cases of the Couette flow, we have found lo-

calized unstable modes about the inner wall, where the mag-
+4KA (2= KEVR)rQQ’ +k5r204+40°k302 | u=0. netic field is weak. However, for most cases this is not even

possible, as the magnetic field strength increases so quickly
(27 with the radiusr that no unstable mode can be found.

For variousM 5 and R/a we have tried, no unstable mode

was found for the basic model. This is confirmed by the

result of _the general case that Fhe system is always stablg Stability over the parameter range

whenMg is smaller than some critical valisee Sec. 11 D,

and direct simulations of the next sectiom order to gain We now numerically solve the system in the general case

some understanding of this fact, we consider the locaPy the shooting code. The code found no unstable modes for

Wertzel-Kramers—Brillouin(WKB) dispersion relation as low Mg systems, whereas for highls systems unstable

follows. It should be mentioned that the validity of the WKB modes were found in the region of largg, and smallk; .

dispersion relation for this kind of problem is questionable;Figure 2 shows the contour plot of the growth rates of the

nevertheless, previous studies show that it agrees with tH@0st unstable mode for the cabés=4 in the parameter

global result to a certain extent, therefore it can be used as@ace ofM, and the normalized wave numbkga. The

reasonable stability criteriésee, for example, Ref. 11By  System is more unstable for high, since the magnetic field
letting 9°— —k? in Eq. (27), the WKB dispersion relation is i weaker, and is stable for short wavelengths because of the
strong magnetic recovering force at short wavelengths. It is

K2+ iz w4—2k§<vi K2+ iz) +2(0%+ rQQ’)) ? falso i_mportant to see how the uqstable parameter range var-
4r 4r ies with respect to differerl 5. This can be done by solving
3 the marginal stability for differenMg. Since thew? of the
+ k;‘ K2+ — V4A+4VirQQ’ —r20%| =0, (29) unstable modes we found are real, we can solve for marginal
ar stability by settingw? to zero in Eq.(22), which gives(as-

with k?=k?+ k2. Equation(28) is quadratic inw?, and itis ~ sumek,#0)
easy to show that the determlnarlzt is positive, he_m&es 3 400’ 204 204
real. To have unstable modes, i.85<0, the coefficient of u'—| K2+ —— Y ——g— =3 | U=
»° has to be negative, or ar Va Va  VaCs

0. (30
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085 depicts the marginal stability curves for differevls, which

clearly shows the enlargement of the unstable regioMas
increases.

g0 — |
\A

081

IV. INITIAL VALUE SIMULATION

j So far our conclusions were obtained by solving the lin-
earized normal mode equation by the shooting code. How-
ever, it should be kept in mind that the normal modes could
07k 1 beincomplete, and some normal modes might even be diffi-
Stable cult to find by a shooting code, especially those solutions
involving cancellation of large terms in the equation. Even
o6sl- {  without the above-mentioned problems, one still cannot ex-
pect to obtain a complete answer by a shooting code. A
shooting code can find some normal modes, but certainly not
06y ' . s s all—usually for a givenk, there exists infinite number of
ka normal modes. Therefore, it is desirable to check the result
by direct simulation.
FIG. 2. Normalized growth rates _of the most unstablc_e modes for the case For this purpose, we solved the time-dependent two-
Ms=4, R/a=1/3. The growth rate is normalized to the inverse of the sound . . . .
time scaleCe/a. dlmen5|on_al MHE_) equations for our basm model. The code
we used is nonlinear although for this work we are only
interested in linear stability. The numerical algorithm is de-

Equation(30) is a Schrdinger-type eigenvalue equationwof SCribed in detail in Ref. 12. The code has viscosity and re-
with eigenvaluekf. If Eq. (30) has no positive eigenvalue sistivity explicitly. In addition to those physical transports, it

- - - 3 -
k2, then the system is stable. Before we solve it numerically@/S® Nas hyperviscositjproportional toAx®, whereAx is

a general observation can be made as follows. If wer let the grid size for numerical stability. In order to have an ideal
R, Q'——0/a in (30), and notice that’~ — (/a)%u MHD equilibrium, the steady state is “frozen-inbtherwise

for a solution with the longest wavelength in thelirection resistivity will flatten the magnetic field profile and viscosity
we have the schematic stability criterion: will slow down the flow and the code steps only the devia-
) . s tion from the steady state; therefore the nonideal effect of the
w3 4ML My n MaM S_o 31 code is limited to those perturbed quantities. Periodic bound-
' (3D ary conditions are assumed in thdirection, which quantize

" R Ra RTR
. . the allowable wave numbers in tlzeaxis. The steady state
The last term of the left-hand side of B@1) is the only one was initially seeded with a random perturbation of the size

rl\t/lalzated tol\:l Srﬁ anﬁehtihﬁt t;i”? |smpc;5|t|\;]e ?T;lj pr_?ﬁior?onalnto 10 *Cgin u,, uy, andu, to see if the system goes unstable
s asyste gneWls IS more unstable. ThiS 1S CoN- ., e eyolution. We wish to confirm{l) that the mode

sistent with our pr_evious resul_ts_that the system_is unStab|8rowth rate obtained by the shooting code agrees with the
f(Trtalll MtAb?”(_j kfhm_the cold “mk')tl (l\l(l 5;/"00) gndF|§ com?: direct simulation in the linear stage, af®) that the system
Pletely stable in the incompressible limis—0). Figure is indeed stable in the parameter range where no unstable
modes were found. To calculate the growth rate for each
wave number from the simulation data, first we perform Fou-

075

08 L s - i rier transformation oru, to obtain the amplitude of each
e g wavelength as a function of
e e .
/// // //// L
// L A(k,,r)= jo u,(r,z)exp(ik,z)dz, (32
// / //
L ’ / J
06 S 7 then average the log of the norm Afk,,r) over radius:
7/ e
=< .7 s
E L7 // ya —_ M.=3 1 R+a
il //' ............ Mz=4 <|n|A|>:5 R |n|A(kzir)|dr- (33
O ---- M=6
04p-7 7 —=- M= ] By plotting {In|A]) with respect to time, one can then obtain
- —-— M=10
7 s the growth rate for each wave number by means of a least-
2 squares fit during the linear growing period. This test has
been run for various Mach numbers, Alfvéach numbers,
0.2 . ) elongation, and resolution. In terms of stability, the simula-
0 5 10 5 tion results agree with the shooting code ones for all the
ka A
z cases we have tested, as summarized in Table I.
FIG. 3. Marginal stability curves foM¢=3,4,6,8,10, withR/a=1/3. The Figure 4 shows the t|me_ evolution ¢f|Al) for_ the Six
region above the curve is unstable. longest wavelength modes in model 1a. According to linear
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TABLE I. A comparison between the normal mode shooting code results and the initial value simulation results.

Model (r,z) Grid L/a Mg Ma Shooting code Simulation
la 45<133 2 6 0.75 Unstable Unstable
1b 45x<133 1.2 6 0.75 Stable Stable
1c 45x133 1.3 6 0.75 Unstable Unstable
1d 60x261 2 6 0.75 Unstable Unstable
2a 45<133 2 6 0.6 Unstable Unstable
2b 45x<133 2 6 0.6 Stable Stable
3a 45<133 2r 4 0.75 Unstable Unstable
3b 45x<133 2 4 0.75 Stable Stable

analysis,k,a=1-5 will be unstable. The simulation shows tially a high resolution version of model 1a, but the resistiv-
thatk,a=6 is also unstable, aftér=4. An obvious possible ity and the viscosity are decreased by a factor of 2. The
reason for this is the nonlinear coupling between modes. Asesulting growth rates are closer to the ones from the shoot-
we can see from Fig. 4, the mode wkja=1 has two stages ing code, as also shown in Fig. 6.
of “linear growing,” with a smaller growth rate withirt The agreement between the linear analysis and the simu-
=2-5, followed by a sudden boost &=5. This sudden lation lays a solid foundation for the results obtained in the
boost also indicates nonlinear coupling. For the same reasoprevious section. In particular, the stable region found by the
although thek,a=5 mode should be weakly unstable ac- shooting code is indeed so.
cording to linear analysis, we cannot trust the “linear
growth” of that mode shown in Fig. 4, since 'the behQV|orV_ IMPLICATIONS EOR CENTRIFUGALLY
resembleg that df,a= 6. To verify the hypo'.[he5|s of nqnlm- CONFINED PLASMAS
ear coupling, we tested the model 1b, with elongation 1.2,
which limits the smallest wave number tga=5.24. Ac- As we mentioned in Sec. |, a high system is desirable
cording to linear analysis, this wave number will be stablefor a fusion device. Since8=2p/B?=(2/y)M3/M3, to
which is confirmed by the simulation. Model 1b has been rurachieve high3 we have to achieve highl , . As we can see
for t=30 to ensure that no slowly growing modes exist. As afrom Fig. 3, for a plasma wittM =4, the maximum stable
comparison to model 1b, model 1c, with a slightly longerMa=0.66, which yields3=3.3%(y=5/3 is assumedHow-
elongation 1.3, has the smallest wave numkgr=4.83, ever, the above-mentioned estimate is based on infinite elon-
which is unstable according to the linear analysis. This lineagation, which allows all possibli,a down to zero. For a
growth is clearly shown in Fig. 5. system with finite elongatioh, we havek,a=wa/L, which

The mode growth rates calculated from models 1a—1dnakes the system more stable. However, elongation only
are plotted in Fig. 6 and compared with the growth rate fromslightly affects the stability. For example, the maximum
the shooting code. We found that the growth rate from simustableM ,=0.7 whenL/a=2, which is not much different
lation agrees with the shooting code result but is slightlyfrom the infinite elongation case. Notice that while our pre-
lower, which is clearly due to the nonideal terms in the codeVvious stud§ shows that large elongation is desirable for ve-
To test this possibility, we have to decrease the viscosity antpcity shear stabilization of the interchange instability, the
resistivity. This can be done in a simulation with higher reso-present study indicates that a system with long elongation is
lution, which also reduces hyperviscosity. Model 1d is essen-

0 : , : , : , : , :
T I T T
0 ’ i
A
oL 3 5 =
=} =1
= =
s s 5 1
[ 3
o
3 £
£ €10 _
g
v -10 »
-15
15 . L . | . 0 10
0 2 4 6
t (/Cg)

FIG. 5. Time evolution ofIn|A|) for various wave numbers of model 1c.
FIG. 4. Time evolution of In|A|) for various wave numbers of model 1a. The growth of the mod&,a=9.67 is due to nonlinear coupling.
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VI. SUMMARY AND DISCUSSION

In this paper, we studied the linear ideal MHD stability
of a Dean flow plasma supported by an axial magnetic field.
We found that the system is likely to be free of the MRI;
however, the magnetic buoyancy instability could occur. The
effect of aspect ratio on the MHD stability is also studied.
Large aspect ratio is found to be stabilizing for the centrifu-
gal confinement scheme. We conclude our study by discuss-
ing some issues and open questions in the present study.

(1) We considered only axisymmetric stability in this
study. The primary manifestation of the MRI s
two-dimensionaf,” as is the Parker instabilifyThus, our
axisymmetric stability is an informative starting point. In ad-
dition, for M,<<1, we have done a fully three-dimensional
stability of the centrifugé® and found stability for larg® 5.

With the foregoing information, a fairly clear picture of the
parameter space can be discerned. To complete this picture,

however, anM,~1, three-dimensional stability analysis
needs to be done.

(2) In this paper, we model a centrifugally confined
plasma via the Dean flow model, which certainly lacks some
important features. In addition to the special choices for the
density, the pressure, and the flow profile, an obvious omis-
more prone to the magnetic buoyancy instability. Howeversion is the lack of the curved magnetic field, which is essen-
since elongation only slightly affects the maximuhy, , tial to the centrifugal confinement scheme. At first sight,
large elongation could be possible. curved field lines would seem more prone to the buoyancy

Another “knob” that could change the maximuM , is instability. However, whether the buoyancy instability is
the aspect ratio. From the force balance equafiti), Vi catastrophic is not clear. It is well known in astrophysics that
scales asR(?, which meandvi; scales af/a. Therefore, the plasma eventually saturates to several localized clumps
a large aspect ratio seems to be desirable to achieve gghighafter the onset of the Parker instabifffywhereas the MRI
system. From the magnetic buoyancy stability point of view,usually results in turbulent behavibSince we have shown
a large aspect ratio is also desirable. This is seen as follow#hat the MRI will likely not destabilize the system, saturation
The magnetic buoyancy instability is driven by the centrifu-is expected. In fact, we have run the nonlinear simulation
gal forceRO2, which scales aM3C%R. For a centrifugally ~beyond the linear growing stage. Firs=4, saturation was
confined fusion p|asma(| o= 4, andT=10keV are required_ achieved, and the final state has localized plasma ClUmpS that
Therefore M2C3 is fixed and the centrifugal force is propor- In fact look like centrifugally confined plasmas. For higher
tional to 1R. For exactly the same reason, a large aspecMs. the plasma was compressed to a thin disk that made
ratio also helps the velocity shear stabilization of interchangéunning the simulation very difficult. A full discussion of this
modes, as we have shown beférsince the interchange
mode is also driven by the centrifugal force. Figure 7 depicts
the marginal stability curves for variold g with aspect ratio B - -
R/a=1. When compared with Fig. 3 fd/a=1/3, the ben- - o
efit of large aspect ratio is clearly evident. Rdis=4, M4 ) ,/ v e
=1.05 can be achieved, which yielgs=8.3%. 1r P / o ]

It should be mentioned that there are two limits on the ./ 4 d
achievableM . The first limit is set by the MHD equilib- S
rium: from Eg.(11), we haveM2=<R/a. The other limit is <oa b , e
set by the MHD stability. For a highl s centrifugal confined = °° [ S 1
plasma, the schematic criterig®1) is mainly a competition ’ K
between the first term and the last term of the left-hand side L~ « ——- M-8
Hence, the stability limit is, roughly speakingl,\/l,i 06 I e —-— Mg=10 _
<(m/Mg)?(R/a)2. Since the equilibrium limit scales &a -
and the stability limit scales af(a)?, it is possible that the
latter exceeds the former in a large aspect ratio system, an
the system is stable up to the equilibrium limit. For example, 0.4 h L .

FIG. 6. A comparison of the linear growth rate obtained by simulation and
by linear analysis.

. . : 5 10
aMg=3 system is stable to all 5 in the caséR/a= 1 (Fig. k a
7), whereas it is unstable at larg¢, whenR/a=1/3 (Fig. z
3). FIG. 7. Marginal stability curves foM s=4,6,8,10, withR/a=1.
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issue is beyond the scope of this paper. However, if the sys- 55— — v (B-B)+B-VB+B-VB+75g, (B3)
tem indeed saturates, the buoyancy instability might not be _
catastrophic, and the estimate of the maximiy in the 9B=VX(UXB). (B4)

previous section may be pessimistic. It should also be men- Lo . . .
. P L or simplicity, we only consider two-dimensional perturba-
tioned that Ref. 13 assumed perfect “frozen-in” of the mag-.. . . :

tions(i.e., d,=0). Since the system has translational symme-

netic field. If the system is allowed to last longer than the S
L ry along thez direction, we can assume normal modes of the
resistive time scale, as one would expect for a steady sta ~ ) o
orm p(x)exp(k,z—iwt), etc. As we did in Sec. IlIB, we

fusion device, then we can no longer neglect the effect o X o
L . . e assume the wavelength in taalirection to be much shorter
resistivity. The numerical simulation in Ref. 14 showed that

on the resistive time scale, after the onset of the Parker int-han the length scale of any fluctuation in theirection(i.e.,

. T . Ix<ky).
stability, the magnetic field relaxes to a nearly uniform pro- ' . .
. . : . Suppose we compress mass along a field line. This
file and the plasma is supported against gravity almost by theauses local density clumping according to EBQ):
pressure gradient only. In fact, this is also what one would” y ping 9 '
expect for a resistive Dean flow, even without the Parker  wp=Kk,pu,, (B5)
instability. Furthermore, it is still not clear how an externally whered

imposed curvature in the field affects the relaxation of theWe assé%):xs)hlsrtn \?\g\?gf: 'tr;] ?ﬁgzﬁzzggnwgﬁﬁé’ dsézgﬁ
magnetic field. Further work is necessary to clarify the . 9 o y
above-mentioned problems clumps, the extra weight causes the magnetic line to bend to

' balance the extra weight. This balance is Atfically quasi-
ACKNOWLEDGMENT sFatlc (i.e., w<k,V,) and the corresponding equation is
given by thex component o{B3):

This work was supported by the DOE. o~
ik,BBx=pg, (B6)

. 2 ~ ~ . .
APPENDIX A: A PROOF OF THE REALITY OF ® FOR wherein the termswpu, andd,(BB,) are neglected in view

THE COLD PLASMA CASE of the quasistatic and short wavelength assumptions, to be

In this appendix, we will prove the eigenvalug to be  checked self-consistently later. In the presence of magnetic
real in the cold plasma limit as follows. First we divide Eq. gradients, the field line bending results in constrictions and
(24) by (w?—k2V3)w?V3, then operate the result by distensions along the flux tube. This makes matter squirt into
SR*adru*. Integrating by parts and applying the homoge-the distended parts of the flux tube, according tozltem-
neous boundary conditions, we obtain ponent of(B3):

w? 3 2rQQ’ r20* Kr?of
(WW={|gz-K—g2= vzt~ =2
Va 4r Va Vi w NV,
40202 ) where in the last step EqB1) is used ford,B. The new

IUI2>,

- V_Wz_—k\/) (A1) matter squirted into the distension malgego up even more,
Al zTA thus resulting in instability. The dispersion relation can be

@_.

—iwpl,=d,BB,= — 5 Bx. (B7)

where( )= [R*2dr. The imaginary part ofAl) is solved from Eqs(B5) to (B7) as
1 Kr20* 40°%k? 9°
Im(w2)< st + 5| |ul?) =0 w?=— 7. (B89)
V1wt T/ VZ

(A2) Notice that ifg is replaced by the centrifugal fore€)?, the
Since the coefficient of Imf’) in (A2) is positive definite, |ocal dispersion relatiofi26) is recovered.

we must have Im(?)=0. To check the self-consistency of the above-mentioned
derivation, we have to verify the three assumptions we have
APPENDIX B: A SIMPLE DERIVATION OF THE made: 3,(pUy) <ik,ply, x(BB,)<k,BB,, and 2

PARKER INSTABILITY GROWTH RATE IN THE COLD

<k?V2. Now we check them in order. First of all, eliminat-
PLASMA LIMIT oA

ing B, in Eq. (B7), using thex component of Eq(B4), yields
In this appendix, we present a simple derivation of the .
local Parker instability growth rate in the cold plasma limit. U= — izaz, (B9)
Suppose a cold plasma is supported against a constant grav- kVa

ity g= —gx by a magnetic fiel®=B(x)z. The equilibrium where we use the dispersion relatit®8) for »?. Hence,

satisfies the force balance equation the assumption d,(pU,)<ik,pU, requires d,(pUy)
d [B? <(k2pV2/g)U,, which implies
x|\ 2= P9 (B1) oo
ky<ksVa/g. (B10)

For small perturbations about the equilibrium, the linearize

dThis can be satisfied as lon is large enough. To check
ideal MHD equations are g s d d 5

the second assumption, notice that the constr&i=0
dip=—V-(pl), (B2)  gives the relation betweeB, andB,:
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9,B,+ik,B,=0. (B11) wp=p(kly+kl,). (CH

Therefore, we requiréy(Bd,B,) <k?BB,, which implies . _
Finally, thex component of Eq(B4) is

k2<k2. (B12)

Again, this is consistent with the local approximation. Fi- —w~BX=kZBTJX. (CH
nally, the Alfvenically quasistatic assumption requifesing

(B8)] Equations(C2)—(C5) form a closed set of variablas, U,,

g<kZVi, (B13) p, andBy. The local dispersion relation can therefore be

. e .. Obtained, after some algebra, as
which can be also satisfied in the short wavelength limit.

Notice that conditions(B12) and (B13) imply condition

(B10); therefore, only(B12) and (B13) are necessary. The 0*—K3(CE+V32) 02+ K2(k?VECE—g?) =0. (Co)
self-consistency conditions are satisfied in the short wave-

length limit; in that limit, the growth rate is independent of
the wavelength. However, the above-mentioned derivation i
good fork,a>1 [a~Vf\/g is the vertical length scale, from
Eqg. (B1)], as a result of the quasistatic approximation. If
k,a<1, the Alfvenic restoring forces become more efficient
(or the gravity induced clumping becomes less effigighis
causes the growth rate to drop at long wavelengths. It should k?VaC3—g?>0. (C7)
also be kept in mind that all the conclusions here are only

valid in the cold plasma limit. If the plasma has a nonzero - L TR
. i The validity of the WKB approximation may be justified if
temperature, the pressure will stabilize short wavelengthx’ kz>(1/B)dB/dx=g/Vi. If we further assume thaCe

modes. The dependence of the dispersion relation on prels<

sure and wavelengths is the topic of the next appers <Va, th(_a dlspersmn.relatlon fo.r the slow mode can be ex-
also Sec. Il D. pressed in a rather simple form:

The two solutions ofv? represent the fast and slow magne-
tosonic modes, respectively, under the effect of the gravity.
The fast mode is always stable whereas the slow mode could
be destabilized by the gravity; the stability criterion is

o k2(k?C2Vi—g?)
APPENDIX C: LOCAL PARKER INSTABILITY k?(C5+V3)
GROWTH RATE: THE GENERAL CASE

(C8)

In this appendix we briefly outline the derivation of the Notice that in theCs—0 andk,<k, limit, the dispersion
Parker instability local dispersion relation for a plasma withrelation (B8) is recovered. As we can see fro(@8), the
nonzero temperature. For simplicity we assyseconst and nonzero pressure of a warm plasma stabilizes short wave-
p=const in the equilibrium. The governing equations for alength modes. We can also apply EG7) to obtain a rough
small perturbation from the equilibrium are stiB2)—(B4),  stability criterion for the Dean flow model. Recall that the
except pressure has to be included &3): Dean flow has a finite radial size hencek> m/a, and grav-

_ _ - - _ ity is replaced by the centrifugal ford®Q?; the schematic
pdiu=—V(p+B-B)+B-VB+B-VB+pg, (C1)  stability criterion so obtained is

where’|5=C§~p. In the following derivation we only consider

perturbations with wavelengths much shorter than the char- ) R? 5 o

acteristic length scale of the background variation such that ™ ¥>MSMA' (C9)
the WKB approximation is appropriate. Under this assump-

tion, we can assump— p exp(k,x+ik,z—iwt), etc. Taking

the y component of the curl of E¢C1) yields which is the same as what we obtained at the end of Sec. V.
~ From Eg. (C8), for a high Mg, high M, system (i.e.
wp(k,—k,U,) =k>BB,+ik,pg, (C2) MgM,>mR/a), the “cutoff” to unstable modes occurs at

kfa~ga/CgVa~Mgya/R, and the maximum growth rate

2_ 12412 i ;
wherek“=ki+ k3. In_deriving (C2 we use the constraint occurs atkMa~ \kCa.

V-B=0 and neglecBXaiB (which is much smaller than
k?BB, by assumptionon the right-hand side. Thecompo-
nent of (C1) yields

L~ . P9~
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