
PHYSICS OF PLASMAS VOLUME 10, NUMBER 5 MAY 2003
Trapped ion effect on shielding, current flow, and charging of a small
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The problem of electrostatic shielding around a small spherical collector immersed in nonflowing
plasma, and the related problem of electron and ion flow to the collector, date to the origins of
plasma physics. Calculations have typically neglected collisions, on the grounds that the mean free
path is long compared to the Debye length. However, it has long been suspected that
negative-energy trapped ions, created by occasional collisions, could be important. This paper
presents self-consistent analytic calculations of the density and distribution function of trapped and
untrapped ions, the potential profile, the ion and electron current to the collector, and the floating
potential and charge of the collector. Under typical conditions for dust grains immersed in a
discharge plasma, trapped ions are found to dominate the shielding near the grain, substantially
increase the ion current to the grain, and suppress the floating potential and grain charge, even when
the mean free path is much greater than the Debye length. ©2003 American Institute of Physics.
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I. INTRODUCTION

When a small object is immersed in plasma, both el
trons and positive ions flow to the object and are absorbed
its surface. If the object is electrically floating, it will acquir
a negative charge, due to more rapid bombardment by e
trons than by ions. In recent years, there has been a great
of interest in the physics of dusty plasmas, i.e., plasmas
contain many particulates~‘‘dust grains’’! with radii that are
small compared to the Debye length. In typical laborato
experiments, particulate sizes are 1–10mm, and the grain
charge is on the order of thousands of electron charge
variety of interesting collective behaviors occur because
the very strong plasma-mediated interaction between
grains. However the most fundamental issue of dusty pla
physics is the response of the plasma to the presence
single dust grain, i.e., the shielding around the charged gr
the electron and ion current to the grain, and the steady s
floating potential and charge on the grain. Analyses of du
plasma1–8 have drawn on the theories developed in ear
times for Langmuir probes and spacecraft charging.9–15 This
body of work comprises an enormous literature, beginn
with Langmuir and collaborators9 in the 1920s, followed by
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many classic papers. Theoretical work on dusty plasma
most often assumed that~if there is no plasma streamin
relative to the dust grains! the charge and shielding of eac
grain are given by the orbital-motion-limited~OML!
theory,1–6,9,11–16or by simpler approximations to the OML
result such as the Debye-shielded potential.

OML theory, and nearly all of the theoretical treatmen
dating back to Langmuir,9 neglect collisions in treating the
plasma response near the object. This would seem to be q
a reasonable assumption, since the mean free paths for
lisional processes are typically long compared to the De
length ~the characteristic length of the shielding clou
around the object! in laboratory, space, and astrophysic
plasmas. If the plasma is collisionless, then ions coming
toward the object from the ambient plasma will either co
tact the object~in which case it is usually assumed they a
absorbed!, or miss the object and fly back out to the ambie
plasma. If the plasma potential is taken to be zero, all
these ions have positive energy and cannot be confined
the object. However, Bernstein and Rabinowitz11 commented
in 1959 that if there are occasional collisions near the obj
ions can lose energy and be unable to escape from the n
tive potential well. The density of these trapped ions can t
0 © 2003 American Institute of Physics
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slowly build up until it reaches an appreciable level, whi
could play a very important role in the dynamics. Since th
found the population of trapped ions to be ‘‘determined
collisions and most difficult to calculate,’’ Bernstein an
Rabinowitz carefully specified that ‘‘in order to obtain a tra
table problem’’ their calculation would be restricted to o
jects larger than a specified size, for which trapped ions c
not occur. Down through the years, a number of ot
authors commented that trapped ions could be important,
that the trapped ion problem would probably not
tractable.2,11,17,18 Collisionless theories were thus genera
used for dusty plasma, even though trapped ions shoul
important for the small dust grains.18

In 1992, Goree17 made a most remarkable observatio
He noted that once a trapped ion is created, it will orbit
grain and remain in the potential well until it has anoth
collision which either kicks it out of the well, or causes it
fall onto the grain and be absorbed. Since the creation ra
trapped ions is proportional to the collision frequencyn, and
the loss rate is also proportional ton, the density of trapped
ions must beindependentof n in steady state. Goree als
confirmed in a Monte Carlo simulation that the total numb
of trapped ions can be quite significant. In 2000 Zobn
et al.18 performed a more detailed Monte Carlo simulatio
actually calculating the trapped ion density profilent(r ) and
the self-consistent potentialf(r ). They also found thatnt(r )
is indeed large.

In a recent Letter,19 we sketched out a fully analytic
method for calculating the distribution of trapped as well
untrapped ions, and solved self-consistently fornt(r ), f(r ),
and the untrapped ion densitynu(r ). We showed that unde
typical conditions the inner part of the shielding cloud
made up primarily of trapped ions, and thatf(r ) is thus
different from the results of the collisionless OML theory.
the present paper, we give the complete derivation of th
results, and we calculate in addition the ion distribution fun
tion and the collisional ion current to the grain. We find th
the collisional current is usually dominant, even in regim
of fairly low collisionality, because in steady state th
trapped ion density is very large and essentially all trap
ions eventually fall onto the grain~after a sequence of colli
sions!. Since collisionality substantially increases the i
current, the negative floating potentialf f of the grain is re-
duced to as little as 50% of the widely used OML result. T
grain charge is proportional tof f , and thus can also b
substantially smaller than the OML result.

The outline of the paper is as follows: In Sec. II, w
introduce the model and its assumptions, and derive
equations that determinent(r ), nu(r ), f(r ), and the ion
distribution functionf i(r ,v). In Sec. III we derive the colli-
sional contribution to the ion current, and show how to c
culatef f fully self-consistently. In Sec. IV, we give the re
sults for some specific cases, and discuss the general n
of the solutions. In Sec. V we summarize and discuss so
future directions for research. In the Appendix we evalu
the validity of one of our key assumptions, the neglect
centrifugal potential barriers to the radial motion.
Downloaded 21 Jul 2003 to 128.8.86.10. Redistribution subject to AIP
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II. SELF-CONSISTENT CALCULATION
OF THE POTENTIAL AND THE TRAPPED
ION DISTRIBUTION

A. Model and assumptions

We consider a steady state consisting of a single stat
ary spherical grain of radiusa, immersed in a plasma, with
no magnetic field. The grain is assumed to be small co
pared to the Debye lengthlD[@4pn0e2(Te

211T21)#21/2.
The plasma consists of positive ions, assumed for con
nience to be singly-charged, electrons, and neutral m
ecules. In the ambient plasma, all species are assumed
Maxwellian, with temperaturesTe for electrons andT for
both ions and neutrals.~The calculation can easily be ex
tended to the case where the ion and neutral temperature
not equal.! We assume that none of the plasma species
flowing. The present calculation thus applies to dust grain
bulk plasma, e.g., grains that may be slowly settling throu
a discharge, or in a microgravity situation grains which p
manently reside in the plasma. It should be noted tha
typical dusty plasma laboratory experiments, the dust gra
levitate at the edge of a sheath, where a strong electric fi
balances gravity. In this region, ions stream by the dust
velocity of the order of the ion sound speed, and this ion fl
has important consequences. The present calculation
not apply here, although we are looking into the possibil
of extending it to this case.

We consider weakly-ionized discharges, where the do
nant types of ion collision are normally charge-exchange
elastic collisions with neutrals. We include in our model on
charge-exchange collisions, which we define as collisio
that transfer an electron from the neutral to the ion, witho
any exchange of momentum. Thus a charge-exchange c
sion near the grain simply replaces a fast incoming ion w
a slow ion whose velocity is chosen from the neutral m
ecule distribution. These collisions are particularly effecti
in creating trapped ions, or in causing a trapped ion to
onto the grain. We shall neglect ion–ion collisions and el
tic ion–neutral collisions.20 We assume that the charge
exchange collision frequencyn is energy-independent.21 This
is an important simplification which enables us to develop
analytic model. Furthermore, we assume thatn is small, in
the sense that the probability of a collision is small duri
the time for an untrapped ion to traverse the potential w
or for a trapped ion to make one rotation in its orbit. Rough
speaking, this is equivalent to the assumption that the m
free pathlmfp@lD .

Finally, we make an assumption that has been wid
used as the basis of the orbital-motion-limited~OML!
theory.1–6,11–15 Our system is spherically symmetric abo
the grain, so~in between collisions! the energye and angular
momentumJ of an ion are conserved. In spherical coord
nates, the radial equation of motion for an ion can be writ

mr̈52U8~r !, ~1!

where

U~r ![ef~r !1
J2

2mr2 ~2!
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp



a

on

m

he

er

ll

it
e

ix.

n
p
n
n
r-

ing
el
bl
os
d

ar
d
c

at

l
o-

la-
n

e
a-
sible

lli-
c-

re

med

no

it

ga-

lar
rain
ort
ec-
nd

y to
ast

y to
of
ent

1502 Phys. Plasmas, Vol. 10, No. 5, May 2003 Lampe et al.
is an effective potential energy for radial motion, including
centrifugal force term. The first term of~2! is attractive,
while the centrifugal force term is repulsive. Depending
the value ofJ and the details off(r ), U(r ) can have no
extrema, one minimum, or one minimum and one maximu
as shown in Fig. 1. Our assumption is thatU(r ) has no
maximum. It follows that, in the absence of a collision, t
trajectory of an ion passes through all values ofr such that

ef~r !1
J2

2mr2 <e. ~3!

For positive-energy ions, this means all values ofr that lie
between somer min and`. Negative-energy ions, on the oth
hand, are trapped between somer min andr max. The assump-
tion thatU(r ) has no maximum is not exactly correct for a
ions.5 However it has been shown6 that it is a good approxi-
mation, because a maximum inU(r ) occurs only for ions in
a small range ofJ, and the maximum is always so low that
blocks the trajectories of only a small number of ions. W
shall elaborate further on this assumption in the Append

B. Distribution of ions created at a single location r 8

Trapped ions are created by ion-neutral charge-excha
collisions. Every time a collision occurs, the old ion disa
pears, and a new ion is created whose velocity is chose
random from the neutral molecule distribution functio
exp(2mv2/2T). An ion from the ambient plasma is accele
ated as it falls into the negative potential well surround
the grain, so the result of a collision within the potential w
is to replace a fast ion by a much slower ion, which proba
cannot escape from the well. The new ion will either be l
promptly by falling onto the grain, or will become a trappe
ion which orbits the grain. We begin our calculation by p
titioning the trapped ion population into separate classes
pending on the location where the previous collision o
curred. Consider the class of trapped ions which were cre
by collisions at radial locationr 8, and leth(r ,v,u;r 8) be the
phase-space distribution function of these ions. Herer is the
present location andv[(v,u) is the present velocity of the
ion; u is the angle betweenr and v. Because of spherica
symmetry,h(r ,v,u;r 8) does not depend on the angular c

FIG. 1. Possible shapes for the radial effective potentialU(r ).
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ordinates ofr and r 8, nor on the azimuthal coordinate ofv.
If trapped ions were collisionless, then the steady-state V
sov equation would tell us that the distribution functio
h(r ,v,u;r 8), for a given birthplacer 8, is a function only of
the constants of the motion, energye[ 1

2mv21ef(r ) and
angular momentumJ[mvr sinu. @Here we have used th
assumption thatU(r ) has no maxima, so that there are tr
jectories connecting all phase-space points that are acces
to an ion with specifiede and J.# Since the ions are born
Maxwellian, this distribution must be of the form,

h~r ,v,u;r 8!5C~r 8!expS 2
mv2

2T
2

ef~r !

T D . ~4!

Actually, trapped ions do undergo charge-exchange co
sions, and we do not want to neglect this. If a collision o
curs atr 9, the ion is lost fromh(r ,v,u;r 8), and a new ion is
added to a different classh(r ,v,u;r 9). But we have assumed
that the collision frequencyn is energy-independent, so the
is no correlation between the value ofv and the probability
that a collision has occurred. Furthermore, we have assu
that the time between collisionsn21 is long compared to the
orbit period of a trapped ion. Thus there is essentially
correlation between the value ofr 2r 8 and the probability
that an ion created atr 8 has had another collision before
gets tor. It follows that any ion inh(r ,v,u;r 8) is equally
likely to have been lost to a collision. Thereforeh(r ,v,u;r 8)
must be of the form~4!, even with collisions.

However, the Maxwellian distribution~4! is not popu-
lated by trapped ions for every value ofv and u. Several
conditions must be satisfied. First, the ion must have ne
tive total energy, i.e.,

1
2mv2,2ef~r !; ~5a!

otherwise it can escape tor 5` and is not a trapped ion. A
second condition is that the total energye must be greater
thanef(r 8), since the ion was born atr 8 with positive ki-
netic energy, i.e.,

ef~r 8!2ef~r !, 1
2mv2. ~5b!

A third condition is that the ion must have enough angu
momentum so that its trajectory does not intercept the g
radius a. ~Since we assume that the orbital period is sh
compared to the collision time, we treat ions whose traj
tory intercepts the grain as if they are lost immediately, a
just delete them from the trapped ion distribution.! Using
conservation of energy and angular momentum, it is eas
show that if the ion is to miss the grain, it must have at le
a minimum kinetic energy specified by

@ef~r !2ef~a!#
a2

r 22a2,
1

2
mv2. ~5c!

If the ion does not satisfy~5c!, it does not have enough
energy to avoid falling onto the grain. But even if~5c! is
satisfied, the ion must have enough perpendicular velocit
avoid falling onto the grain. Again using conservation
energy and angular momentum, this leads to a requirem
on u,
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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a

r
A11

2@ef~r !2ef~a!#

mv2 [sinu0~r ,v !,sinu. ~5d!

Note that 0<sinu0<1 if ~5c! is satisfied. We can combin
~5a!–~5c! into a condition

v0
2~r ,r 8!,v2,v1

2~r !, ~6!

where

1
2mv1

2~r ![2ef~r !, ~7!

and v0(r ,r 8) is the larger of the two minima specified b
Eqs. ~5b! and ~5c!. To summarize, Eq.~6! states that a
trapped ion which was created atr 8 but is now atr must
have~i! at least as much energy as it gained by falling fro
r 8 to r; ~ii ! at least enough energy to avoid falling onto t
grain; but~iii ! not so much energy that it can escape from
potential well. It is also possible to show that ifr is small
enough, condition~i! determines the minimum velocityv0 ,
but if r is larger it is condition~ii ! that is the controlling
factor. Specifically,

1

2
mv0

2~r ,r 8![H @ef~r 8!2ef~r !#, if r 0~r !<r 8,

@ef~r !2ef~a!#
a2

r 22a2 , if r 8<r 0~r !,

~8!

wherer 0 is a function ofr defined as the solution of

f~r 0!5
r 2f~r !2a2f~a!

r 22a2 . ~9!

We note that~6! can only be satisfied ifv0
2(r ,r 8)<v1

2(r ),
which requires that

@ef~r !2ef~a!#
a2

r 22a2,2ef~r !, ~10!

or equivalently

r 2f~r !,a2f~a!. ~11!

Equation~11! is easily satisfied for small grains (a!lD) and
small values ofr !lD , wheref(r ) is roughly the bare Cou
lomb potential, and we recall thatf,0. But for r .lD

shielding becomes strong, and eventually Eq.~11! fails for r
greater than some radius which we shall callr 1 . Trapped
ions cannot exist forr .r 1 , because in this region the pote
tial well is very shallow, and negative-energy ions cann
have enough angular momentum to escape falling onto
grain.22 Thus there are no orbiting trapped ions if the gra
size is very large,a.r 1 .

Taking account of all of the constraints~6!–~11!, we see
thath(r ,v,u;r 8) is a function that is Maxwellian inv and in
ef(r ), but with many voids in phase space whe
h(r ,v,u;r 8)50. The presence of these voids can be ma
explicit by including appropriate step functions in the de
nition of h(r ,v,u;r 8), i.e., by rewriting Eq.~4! as
Downloaded 21 Jul 2003 to 128.8.86.10. Redistribution subject to AIP
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h~r ,v,u;r 8!5C~r 8!expS 2
mv2

2T
2

ef~r !

T D
3Q~r 12r 8!Q~r 12r !Q@v1~r !2v#

3Q@v2v0~r ,r 8!#Q@sinu2sinu0~r ,v !#,

~12!

where

Q~x![H 1, if x>0,

0, if x<0.

C. Calculation of the coefficient C„r 8…

We can use the steady state condition to determine
coefficientC(r 8). As a first step, we define a quantityg(r 8)
such that in steady state 4pr 82g(r 8)dr8 is the total number
of trapped ions which were born in the volume element
tween r 8 and r 81dr8. g(r 8) is thus the integral of
h(r ,v,u;r 8) over r, v, andu,

g~r 8!5C~r 8!Q~r 12r 8!E
a

r 1
4pdrr 2e2@ef~r !/T#

3E
v0~r ,r 8!

v1~r !

2pdvv2e2~mv2/2T!E
00~r ,v !

p2u0~r ,v !

du sinu

[16p2C~r 8!Q~r 12r 8!E
a

r 1
drr 2G~r ,r 8!, ~13!

where

G~r ,r 8!5
1

2
e2@ef~r !/T#E

v0~r ,r 8!

v1~r !

dvv2e2~mv2/2T!

3E
u0~r ,v !

p2u0~r ,v !

du sinu

5e2@ef~r !/T#E
v0~r ,r 8!

v1~r !

dvv2e2~mv2/2T!

3A12
a2

r 22
2a2

r 2

ef~r !2ef~a!

mv2

5S 2T

m D 3/2Ar 22a2

r 2 expS 2r 2ef~r !1a2ef~a!

~r 22a2!T D
3E

u0~r ,r 8!

u1~r !

duu2e2u2
. ~14!

In the last step of Eq.~14!, the integral is reduced to an erro
function form by using the new variable,

u[Amv2

2T
2

a2

r 22a2

ef~r !2ef~a!

T
, ~15!

and u0(r ,r 8), u1(r ) are given by Eq.~15! with v0(r ,r 8),
v1(r ) substituted forv.

An ion is lost fromg(r 8) every time one of these ion
has a collision, i.e., the loss rate is
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Fdg~r 8!

dt G
loss

52ng~r 8!. ~16!

In steady state, this loss rate must be equal to the rat
which ions are added tog(r 8) by collisions atr 8. The rate of
collisions at r 8 is simply n@nu(r 8)1nt(r 8)#, and each of
these collisions creates a new ion. But the new ion i
trapped ion which contributes tog(r 8) only if conditions
~5d!, ~6!, and~11! are satisfied, withr 85r . Thus the creation
rate is

Fdg~r 8!

dt G
creation

5nQ~r12r8!@nu~r8!1nt~r8!#

3

*
v0~r8,r8!

v1~r8!
dvv2e2~mv2/2T!*

u0~r 8,v !

p2u0~r 8,v !
du sinu

*0
`dvv2e2~mv2/2T!*0

pdu sinu

54p21/2nS 2T

m D 23/2

Q~r 12r 8!

3@nu~r 8!1nt~r 8!#e@ef~r 8!/T#G~r 8,r 8!.

~17!

Using Eqs.~13!–~17!, we can solve forC(r 8), giving

h~r ,v,u;r 8!5
1

4p5/2 S 2T

m D 2~3/2!

@nu~r 8!1nt~r 8!#e2~mv2/2T!

3e@ef~r 8!2cf~r !#/T
G~r 8,r 8!

*a
r 1dr9r 92G~r 9,r 8!

3Q~r 12r 8!Q~r 12r !Q@v1~r !2v#

3Q@v2v0~r ,r 8!#Q@sinu2sinu0~r ,v !#.

~18!

D. Calculation of the trapped ion density
and the potential

We can now calculate the trapped ion densitynt(r ) by
integratingh(r ,v,u;r 8) over (v,u;r 8). Sincent(r 8) also ap-
pears as a source term on the RHS of Eq.~18!, this procedure
actually yields a linear integral equation fornt(r ),

nt~r !5E
a

r 1
dr8K~r ,r 8!nt~r 8!1E

a

r 1
dr8K~r ,r 8!nu~r 8!,

~19!

where

K~r ,r 8!5
4

p1/2 S 2T

m D 23/2

3
r 82e@ef~r 8!/T#G~r 8,r 8!G~r ,r 8!

*a
r 1dr9r 92G~r 9,r 8!

Q~r 12r !. ~20!

To complete the calculation, it is necessary to solve Eq.~19!
self-consistently with Poisson’s equation,

1

r 2

d

dr
r 2

df

dr
54pe@nu~r !1nt~r !2ne~r !#. ~21!
Downloaded 21 Jul 2003 to 128.8.86.10. Redistribution subject to AIP
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In Eq. ~21!, the trapped ion density is determined from t
self-consistent solution of~19!. The electron densityne(r )
can be accurately approximated by a Boltzmann factor,14

ne~r !5n0 exp@ef~r !/Te#. ~22!

The untrapped ion densitynu(r ) is specified as an explici
functional off(r ) by the OML theory,4

nu~r !

n0
5

2

Ap
expS 2

ef~r !

T D E
A2ef~r !/T

`

dtt2e2t2

3F11A12
a2

r 2 S 11
e@f~r !2f~a!#

Tt2 D G
5

2

Ap
e2ef~r !/TE

A2ef~r !/T

`

dtt2e2t2

1
2

Ap
Ar 22a2

r 2 expS 2r 2ef~r !1a2ef~a!

~r 22a2!T D
3E

A@2r 2ef~r !1a2ef~a!#/~r 22a2!T

`

dtt2e2t2, ~23!

where the first integral is taken only over values oft such
that the argument of the square root is positive.

Finally, it is necessary to specify boundary conditions
Eq. ~21! at r 5a and r 5`. The boundary condition is atr
5` is of coursef(`)50. The boundary condition atr 5a
depends on the physical situation. If the collector is a pro
biased to a specified potentialf0 , the boundary condition is
simply f(a)5f0 . If the collector is a dust grain,f(a) is set
equal to the floating potentialf f , i.e., the potential for which
the electron fluxFe to the grain is equal to the ion fluxFi ,

Fe5Fi . ~24!

Taking a velocity moment over the Maxwell–Boltzmann d
tribution, the electron flux is found to be

Fe5n0A Te

2pme
eef f /Te. ~25!

In the limit n→0, Fi is entirely due to untrapped ions, an
the ion flux is given by OML theory,8

FOML5n0A T

2pm S 2
ef f

T
11D . ~26!

Using ~25! and~26! in ~24!, we obtain the well-known OML
result thatf f is the solution of

S 12
ef f

T DexpS 2
ef f

Te
D5S mTe

meT
D 1/2

. ~27!

Typically Eq.~27! givesef f'2Te to 23Te , depending on
the ion mass. However, we shall see that for finite values
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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n, Fi is usually dominated by trapped ions, and is often s
stantially larger thanFOML from ~26!. Thus it is necessary to
evaluateFi from the trapped ion distribution and solve~24!
numerically forf f . This will be discussed in Sec. III below

E. Solution procedure

A procedure for solving Eqs.~19!–~27! is as follows:
~i! Rewrite Poisson’s equation, together with the boun

ary conditionf~`!50, in the form of Gauss’ law,

f~r !52ZeF1

r
1E

r

` dr8@Qt~r !1Qu~r !1Qe~r !#

r 82 G ,
~28!

where2Ze is the grain charge,ZeQt(r ) is the trapped ion
charge contained within radiusr, ZeQu(r ) is the deviation of
the untrapped ion charge contained within radiusr from the
ambient value (4p/3)r 3n0e, andZeQe(r ) is the deviation of
the electron charge within radiusr from the ambient value.

~ii ! Begin with the OML solution4 for f(r ) andnu(r ),
i.e., the solution of Eqs.~21!–~23!, with boundary condition
~27!. This includes no trapped ions. Call thesef (0)(r ) and
nu

(0)(r ). Use f (0)(r ) in Eqs. ~14! and ~20! to evaluate
K(r ,r 8).

~iii ! Calculate a first approximationnt
(1)(r ) to the

trapped ion density from Eq.~19!, neglecting the first term
on the RHS.nt

(1)(r ) can be interpreted as the population
‘‘first generation’’ trapped ions created by collisions of u
trapped ions. Integratent

(1)(r ) to obtainQt
(1)(r ).

~iv! Recalculatef(r ) from Eq. ~28!, choosingZ so that
the boundary condition~24! is satisfied. In the limit of small
n, this just meansf f must satisfy~27!. For finite n, it is
necessary to explicitly calculate the electron and ion flux
the grain and chooseZ so that they are equal. This will b
discussed in Sec. III. Using the newf (1)(r ), recalculate
G(r ,r 8), K(r ,r 8), nu(r ), and ne(r ) from Eqs. ~14!, ~20!,
~22!, ~23!.

~v! Calculate a second iteratent
(2)(r ) by usingnt

(1)(r ) in
the first term on the RHS of~19!. nt

(2)(r ) can be regarded a
the population of trapped ions created by either the collis
of an untrapped ion, or of a first-generation trapped ion.

~vi! Go back to step~iv! and proceed with this iteration
scheme to convergence. To prevent overshoots in the it
tion process, it is sometimes useful to subdivide the itera
@adding in only a fraction of the correction tont(r ) at each
iteration step#, but in practice the solution converges aft
only a few iterations.

In Sec. IV, results will be shown in a variety of cases f
nt(r ), nu(r ), f(r ), and for the ion fluxFi and the grain
potentialf f as a function of collision frequencyn.

F. Distribution function of trapped ions

After solving for f(r ), we can write down an explici
expression for the trapped ion distribution functionf t(r ,v,u)
by integratingh(r ,v,u;r 8) over the source locationr 8. Tak-
ing account of all of the step functions in Eq.~18! for
Downloaded 21 Jul 2003 to 128.8.86.10. Redistribution subject to AIP
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f t(r ,v,u), and both requirements onv0(r ,r 8) from ~8!, this
gives

f t~r ,v,u!5Q~r 12r !Q@v1~r !2v#

3QF1

2
mv22

a2@ef~r !2ef~a!#

r 22a2 G
3Q@sinu2sinu0~r ,v !#S m

2pTD 3/2

e2~mv2/2T!

3E
a

r 1
dr8r 82QF1

2
mv21ef~r !2ef~r 8!G

3
@nu~r 8!1nt~r 8!#G~r 8,r 8!

*a
r 1dr9r 92G~r 9,r 8!

e@ef~r 8!2ef~r !#/T.

~29!

The results forf t(r ,v,u) will be shown in Sec. IV.

III. COLLISIONAL CONTRIBUTION TO THE ION
CURRENT

Equation ~26! from OML theory gives the ‘‘collision-
less’’ flux of untrapped ions to the grain,FOML . More pre-
cisely, OML theory assumes that the mean free path is
large that essentially all collisions occur far from the gra
where the potential is zero. It is further assumed that the
distribution is Maxwellian in the ambient plasma, i.e., at s
ficiently larger. As Bernstein and Rabonowitz11 pointed out,
there must be collisions which maintain the Maxwellian d
tribution, but it is not necessary in OML theory to take the
collisions explicitly into account, since the ions which d
posit on the grain are assumed to come in from the Maxw
ian ambient plasma without having any additional collision

In reality an ion may have a charge-exchange collis
near the grain, on its way in from the ambient plasma. I
charge-exchange collision occurs, the energy of the ne
created ion is on average less than that of the ion tha
replaces, and therefore the new ion is statistically more lik
to fall onto the grain. Thus collisions increase the ion flux
the grain. It is easy to see that this increase can be v
substantial, even when the mean free path is quite large
estimate the collisional effect, it is useful to think of th
radius r T , such thatef(r T)523T/2, as the outer edge o
the sheath around the grain. Normally,r T is in the vicinity of
lD to 2lD . If an incoming untrapped ion undergoes a co
lision within r ,r T , a fast ion~which probably would not
have hit the grain! is removed, and a slow ion is create
which probably cannot escape from the potential well. T
ion may fall onto the grain immediately if it happens to ha
low angular momentum. If the ion has enough angular m
mentum, it will orbit the grain rather than contacting it, b
eventually will have another charge-exchange collision.
average, each collision brings the ion to a lower-energy s
closer to the grain, and eventually the resulting ion will fa
onto the grain. Thus, essentially every collision of an u
trapped ion withinr ,r T results in an ion depositing on th
grain. The collection area of the sheath ispr T

2, which is very
large compared to the cross-sectionpa2 of the grain. How-
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ever this area must be weighted by the probability that
ion–neutral charge-exchange collision occurs while the
is in the sheath. Roughly speaking this probability is of ord
r T /lmfp , wherelmfp is some average mean free path. Th
the ion flux to the grain, due to charge-exchange collision
r ,r T , is

Fcoll'
r T

3

a2lmfp
F th , ~30!

where F th is the thermal flux in the ambient plasma,F th

5n0(T/2pmi)
1/2. This should be added to the OML flux, t

obtain an approximate expression for ion flux to the gr
that is accurate to first order inr T /lmfp ,

Fi'S 12
ef f

T
1

r T
3

a2lmfp
D F th ~31!

for ions of energyT. An approximate version of this expres
sion ~not including the effect of shielding! was given by
Natanson23 in 1960. For dusty plasmas with a!lD , the
collisional contribution~30! is usually larger. It should be
noted that Eq.~30! is actually an underestimate of the col
sional deposition, because a collision which occurs on
fringes of the potential well atr .r T also slightly increases
the probability that the ion will deposit on the grain. Th
cumulative effect of these distant collisions~over a large
volume! also contributes to the collisional deposition.

We shall now calculate the ion fluxFi to the grain. Our
calculation includes both the OML flux and the ‘‘collisiona
flux in a unified way; we shall show explicitly that the OM
flux is the result of collisions within the ambient plasm
while the ‘‘collisional’’ flux is the result of collisions within
the potential well around the grain. Assuming that the plas
dimensions are large compared to the mean free path,
ion that reaches the grain will have had a collision at so
time in its past. Letr 8 be the place at which the last collisio
occurred. We can writeFi as an integral over the rate a
which collisions occur at pointr 8, multiplied by the prob-
ability p(r 8) that the new ion created by a collision atr 8 will
deposit on the grain without having another collision,

Fi5
n

4pa2 E
a

`

dr84pr 82@nt~r 8!1nu~r 8!#p~r 8!. ~32!

To calculatep(r 8), let us first consider an ion created atr 8
with velocity v, on a trajectory that will intersect the grain
The probability that this ion will reach the grain withou
having another collision is

Pcoll~r 8,v!5expF2nE
a

r 8
dr/uv r~r !uG , ~33a!

wherev r(r ) is the ion’s radial velocity when it is at positio
r. Exact evaluation ofPcoll(r 8,v) would require numerica
calculation of all of the phase space trajectories, but fo
nately a simple and accurate approximation is possi
Pcoll(r 8,v) plays an important role at larger 8 (r 8.lmfp),
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where it prevents a divergence due to multiple counting
ions which undergo many collisions in the large volume o
side the potential well. ButPcoll(r 8,v) is close to unity for
collisions within the potential well,r 8,r T , since the plasma
has been assumed to be weakly collisional, i.e.,r T;lD

!lmfp . Thus it is sufficient to write an approximate expre
sion for Pcoll(r 8,v) which becomes exact in the large-r 8
limit, and goes to unity atr 8!lmfp . To do this, we note tha
an ion that starts atr 8.lmfp , and whose trajectory intersec
the grain without a collision, will necessarily follow a trajec
tory that is nearly radial.24 The length of the trajectory will
thus be close tor 8–a, and in fact it is good enough to
approximate it asr 8. Furthermore, almost all of the time o
the trajectory will be spent atr 8.r T , wherev is close to its
initial value. Thus it is sufficiently accurate to approxima
the~energy-dependent! mean free path aslmfp'v/n. We can
then write

Pcoll~r 8,v!5e2nr 8/v. ~33b!

Next, we note that, according to Eqs.~5c! and ~5d!, an
ion’s trajectory will intersect the grain if it satisfies any of th
following four conditions:

~a! Incoming ions with low initial kinetic energy:

mv2

2
<

a2

r 822a2 @ef~r 8!2ef~a!#,
p

2
<u0<p. ~34a!

~b! Incoming ions with higher kinetic energy but low
angular momentum:

a2

r 822a2 @ef~r 8!2ef~a!#<
mv2

2
, p2u0<u<p.

~34b!

~c! Outgoing trapped ions with low initial kinetic
energy:

mv2

2
<

a2

r 822a2 @ef~r 8!2ef~a!#,

mv2

2
<2ef~r 8!, 0<u<

p

2
. ~34c!

~d! Outgoing trapped ions with higher kinetic energy
but low angular momentum:

a2

r 822a2 @ef~r 8!2ef~a!#<
mv2

2
<2ef~r 8!,

u <u0 . ~34d!

In Eq. ~34!, u0 is given by Eq.~5d!. The probabilityp(r 8) is
thus given by

p~r 8!5

**Advv2du sinu expS 2
mv2

2T
2

nr 8

v D
*0

`dvv2e2mv2/2T*0
pdu sinu

, ~35!

whereA is the area ofv –u space which satisfies condition
~34!. After doing the u-integral and collecting terms, th
double integral in Eq.~35! becomes
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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p~r 8!5
2

Ap
E

0

`

duu2 expS 2u22
nr 8

v thu
D 1

2

Ap
E

0

A2ef~r 8!/Tduu2 expS 2u22
nr 8

v thu
D

2
2

Ap
Ar 822a2

r 82 EAa2@ef~r 8!2ef~a!#/~r 822a2!T

`

duuexpS 2u22
nr 8

v thu
DAu22

a2@ef~r 8!2ef~a!#

~r 822a2!T

2
2

Ap
Q@a2f~a!2r 82f~r 8!#Ar 822a2

r 82 EA$a2@ef~r 8!2ef~a!#/~r 822a2!T

A@ef~r 8!/T# duu

3expS 2u22
nr 8

v thu
DAu22

a2@ef~r 8!2ef~a!#

~r 822a2!T
, ~36!
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l

t
e

n.
e

an

l

e
to

ng

d

to
ns

ork

on

e

re
ger.
ty
f

ll
wherev th[(2T/m)1/2.
Equations~32! and ~36! specify the ion current to the

grain. Results will be shown in Sec. IV. We find that f
typical small but finite values ofn, the dominant contribution
to Eq. ~32! is from collisions that occur within the potentia
well, at r 8,r T , and thatFi is larger thanFOML . This is
because the density of trapped ions is very large near
grain, and a charge-exchange collision near the grain is v
likely to yield an ion that falls immediately onto the grai
Thus, for realistic values ofn it is necessary to calculate th
floating potentialf f by settingFi from ~32!, ~36! equal toFe

from ~25!. Since the ion current is substantially larger th
the OML value, the floating potentialf f is significantly re-
duced as compared to the OML result~27!.

However, Eqs.~32! and ~36! also reduce to the usua
OML result in the limit n→0. In this limit, the dominant
contribution to the integral in~32! is from collisions that
occur in the ranger 8.v th /n, i.e., one or more mean fre
paths away from the grain. Let us separate the integral in
range froma to s, and a range froms to `, wheres is some
point such that

r T!s!v th /n, ~37a!

euf~s!u!T, ~37b!

a2uf~a!u
s2T

!1. ~37c!

Clearly, in Eq. ~32! the contribution toFi from the range
from a,r 8,s vanishes asn→0, and thus in this limit

Fi5
n

4pa2 E
s

`

dr4pr 82@nt~r 8!1nu~r 8!#p~r 8!. ~38!

The inequalities~37! are satisfied for allr .s. Expanding
Eq. ~36! in all of the small parameters, and additionally usi
the fact11,15,4thatf(r )}r 22 asr→`, we find that to lowest
order

p~r 8!5
a2

Apr 2 E0

`

duu2 expS 2u22
nr 8

v thu
D

2
a2ef~a!

Apr 2T
E

0

`

du expS 2u22
nr 8

v thu
D . ~39!
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Inserting~39! in ~32!, reversing the order of integration, an
usingn(r 8)'n0 for r @r T , we find

Fi'
nn0a2

Ap
E

0

`

duFu22
ef~a!

T Ge2u2E
s

`

dr8 expS 2
nr 8

v thu
D

5
n0a2v th

Ap
E

0

`

duuFu22
ef~a!

T Ge2u2
expS 2

ns

v thu
D

'
n0a2v th

Ap
E

0

`

duuFu22
ef~a!

T Ge2u2

5n0A T

2pm F12
ef~a!

T G , ~40!

which is the OML flux. Notice that the coefficientn canceled
out of Eq.~38!, because the integral in~38! is itself propor-
tional to n21 as n→0. The lower bounds of the integral,
which was chosen somewhat arbitrarily, also drops out
lowest order. In essence, the OML flux arises from collisio
that occur in a region of the plasma wheref(r 8)50, i.e.,
where the presence of the grain has no influence. Our w
extends the theory to first order inn by including collisions
which occur near the grain, wheref(r 8)Þ0, but still requir-
ing thatlD!lmfp .

IV. RESULTS AND DISCUSSION

A. Nearly collisionless limit

The theory developed in Secs. II and III depends
three dimensionless parameters,T/Te , a/lD , and a measure
of the collisionality which we choose to benlD /v th . ~Note
that we have assumed thatn is constant, and therefore th
mean free pathv/n is proportional tov. The ratio oflD to
the mean free path is thus of ordernlD /v th in the ambient
plasma, but within the potential well the ion velocities a
much larger, and thus the mean free path is much lar
ThusnlD /v th is actually an overestimate of the collisionali
of the plasma.! We shall present solutions for a variety o
parameter choices, listed in Table I.

We consider first the situation in the limit of very sma
~but nonzero! nlD /v th . Then the ion current is given by
FOML of Eq. ~26!, the floating potential is given by Eq.~27!,
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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andnt(r ) andf(r ) are given by the self-consistent solutio
of Eqs.~19!–~23!. The solution for a floating dust grain, fo
Case 1:n→0 and

T/Te50.01, a/lD50.015, ~41!

is shown in Figs. 2–5. Figure 2 shows the densitynt(r ) of
trapped ions~solid curve!; the deviation of the untrapped io
density from the ambient value,Dnu(r )[nu(r )2n0 ~dashed
curve!; and the negative of the deviation from the ambie
electron density, 2Dne(r )[n02ne(r ) ~dotted–dashed
curve!. Notice that nt@Dnu@uDneu near the grain, i.e.
trapped ions dominate the shielding near the charged g
In Fig. 3 we show the integrated charge densitiesQt(r ),
Qu(r ), and Qe(r ), respectively the integrals ofent(r ),
eDnu(r ), and 2eDne(r ) from a to r, each scaled to the
grain chargeZe. Note that atr 52lD , the grain charge is
68% neutralized, with 41% due to trapped ions, 27% due
untrapped ions, and,1% due to electrons. Atr→`, 47% of
the shielding is due to trapped ions, 52% to untrapped io
and ,1% to electrons. In Fig. 4, we plotrf(r ). On this
semilog plot, the unshielded Coulomb potential would a
pear as a horizontal straight line, and the Debye-shiel
potential would appear as the oblique dotted line. We plot
complete solution as the solid curve, and the OML solut
~with no trapped ions! as the dashed curve. Note that t
inclusion of the trapped ions increases the shielding

FIG. 2. Trapped ion density@nt(r ), solid#, deviation of untrapped ion den
sity from ambient@Dnu(r ), dashed#, and deviation of electron density from
ambient@2Dne(r ), dotted–dashed#, all scaled to ambient densityn0 , for
Case 1:T/Te50.01,a/lD50.015,n→0.

TABLE I. Parameters for the numerical solutions. For Case 1, the e
value ofnlD /v th does not matter in Figs. 2–7, as long as it is small, but
Figs. 10–12 we use the explicit value 531025.

Case number Figure numbers T/Te a/lD nlD /v th

1 2–7 0.01 0.015 →0
1 10–12 0.01 0.015 531025

2 6,7 0.01 0.1 →0
3 6,7 0.04 0.015 →0
4 10–12 0.01 0.015 0.037
5 10–12 0.01 0.015 0.47
Downloaded 21 Jul 2003 to 128.8.86.10. Redistribution subject to AIP
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brings the potential to within 25% of the Debye-shield
potential for r ,5lD . For larger, f(r ) is proportional to
r 22, as has been discussed previously.11,15,4

In Fig. 5, we show ion distribution functions at thre
locations,~5a! r 52a, close to the grain;~5b! r 510a, mid-
way in the sheath;~5c! r 5lD566.6a, close to the outer
limit of the sheath. The distribution function consists
trapped ions for12mv2(r ),2ef(r ) ~negative total energy!
and untrapped ions for12mv2(r ).2ef(r ) ~positive total en-
ergy!. Both the trapped and untrapped portions of the dis
bution functionf i(r ,v,u) are isotropic functionsf (r ,v), ex-
cept that there are voids for certain ranges ofu, representing
ions whose trajectories intersect the grain. In Fig. 5 we h
plotted the isotropic functionf (r ,v) as a solid curve in the
trapped ion region, and as a dashed curve in the untrap
ion region. These curves are on an arbitrary scale. We h
also plotted the critical angleu0(r ,v) which defines the
voids, as will be explained below. This is the dotted curv
and it is on the scale shown at the left of the figure. We n

FIG. 3. Integrated trapped ion charge fromr 5a to r @Qt(r ), solid#, devia-
tion of the integrated untrapped ion charge from ambient@Qu(r ), dashed#,
and deviation of the integrated electron charge from ambient@Qe(r ),
dotted–dashed#, all scaled to the charge on the grain, for Case 1.

FIG. 4. Plot of2(r /a)ef(r )/Te for Case 1: self-consistent potential includ
ing trapped ions~solid!, potential with trapped ions neglected~dashed!,
Debye potential~dotted!.

ct
r

 license or copyright, see http://ojps.aip.org/pop/popcr.jsp



f
n-

io

ad
h

f
-
fro

s
ion
s
th
e

ve
n
m

gl
h

s

th
it

ar

lli

n

o

fo
o-

e

tate

ld-
ner-
is
ew
ath
hat

as

t
at

tial
ce

e

e

1509Phys. Plasmas, Vol. 10, No. 5, May 2003 Trapped ion effect on shielding, current flow . . .
that in all cases there is a discontinuity inf (r ,v) at the
zero-energy point12mv2(r )52ef(r ), and that the nature o
the distribution is very different for the trapped and u
trapped ions.

Consider first the untrapped ions. Since the ambient
distribution is Maxwellian, Liouville’s equation indicates4

that the untrapped part of the ion distribution at locationr is
also a Maxwellian

f ~r ,v !5const3expS 2
mv2

2T
2

ef~r !

T D ,

except that outgoing ions whose trajectories have alre
intersected the grain are removed from the distribution. T
forms a void in the Maxwellian foru,u0(r ,v), where
u0(r ,v) is a monotonically decreasing function of bothr and
v which is defined by Eq.~5d!.

For 1
2mv2(r ),2ef(r ) we have the trapped ion part o

the distribution, given by Eq.~29!. Outgoing ions whose tra
jectories have already intersected the grain are removed
the trapped ion distribution; hence there is a void foru
,u0(r ,v). But in addition, incoming ions whose trajectorie
will intersect the grain are removed from the trapped
distribution. As explained in Sec. II B, this is done becau
these ions have a very short lifetime as compared to
orbiting trapped ions. Thus, for negative-energy ions, ther
also a void in the distribution forp2u,u0(r ,v). Note that
f (r ,v) has a spike for trapped ions with slightly negati
total energy. There are many such ions because they ca
created by collisions that occur anywhere in the large volu
at the edge of the potential well, wheref(r ) is slightly nega-
tive. Smaller velocities in Fig. 5 correspond to more stron
trapped ions, which are created by collisions deeper wit
the sheath. The volume available for these collisions
smaller, but on the other hand there are many collision
small r because the ion density there is large~see Fig. 2!. As
a result of the balance between these opposing trends,f (r ,v)
generally decreases at small values ofv, but there is a gentle
peak at moderate values ofv for the casesr 52a and r
510a. Notice also that for very smallv, u0(r ,v) becomes
larger thanp/2. This means that the void has eaten up
entire distribution, and there are no trapped ions at all w
these small values ofv. The condition for this is that in-
equality ~5c! is violated.

The results shown in Figs. 2–5 appear to present a p
dox: we have assumed that the collision frequencyn is van-
ishingly small, and yet trapped ions, created only by co
sions, are a dominant feature of the solution. Indeed,f(r ),
nt(r ), and f i(r ,v,u) do not depend on the value ofn, in this
limit of small n. How can this be possible, since there are
trapped ions ifn50? The explanation of then→0 limit is
that for any small but nonzero value ofn the creation rate of
trapped ions is proportional ton and the loss rate is als
proportional ton, so the steady state is independent ofn.
However, the time necessary to reach steady state is
versely proportional ton, so steady state is never reached
n50. In practice,n is always very fast compared to macr
scopic times such as the lifetime of the discharge, or tim
Downloaded 21 Jul 2003 to 128.8.86.10. Redistribution subject to AIP
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characterizing the motion of a dust grain, so a steady s
treatment is indeed appropriate.

Trapped ions clearly are a dominant player in the shie
ing around the grain, for Case 1. One may ask more ge
ally under what conditions the density of trapped ions
large? The essential requirement is that nearly all of the n
ions created by charge-exchange collisions within the she
become trapped ions. There are two conditions for this: t
the new ion does not escape tor→`, nor does it fall onto
the grain. The potentialf f at the grain is of the order ofTe ,
while new ions are born with energy of the order ofT. Thus,
very few of the new ions can escape from the well, ifT/Te

!1. Provided this is true, the sheath can be regarded
extending roughly to the pointr T ~typically about lD to
2lD) where ef(r T)523T/2. Equations~34! specify the
conditions under which the new ion created at a poinr
,r T will fall onto the grain. These equations indicate th
this is unlikely to happen ifa2/r T

2!T/Te . When both of
these conditions are satisfied,

a2/r T
2!T/Te!1, ~42!

the steady state trapped ion population within the poten
well greatly exceeds the untrapped ion population, sin

FIG. 5. The ion distribution functionf (r ,v,u) is an isotropic function
f (r ,v) which has voids for certain ranges ofu, as discussed in the text. W
show f (r ,v) for Case 1 at~a! r 52a, ~b! r 510a, ~c! r 5lD566.6a. f (r ,v)
is shown as a solid curve for the rangemv2/2,2ef(r ) ~trapped ions!, and
as a dashed curve formv2/2.2ef(r ) ~untrapped ions!. These curves are
on arbitrary scale. The quantityu0(r ,v) which characterizes the voids in th
distribution is shown as the dotted curves, with scale at left. Forv less than
a critical value defined by Eq.~5c!, u0(r ,v)>p/2, which means the distri-
bution function is entirely void.
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nearly every collision of an untrapped ion atr ,r T results in
the creation of a trapped ion, but only a small fraction of t
collisions of trapped ions result in the disappearance o
trapped ion. IfT/Te,a2/r T

2, the trapped ion population fall
off because many of the newly born ions have low angu
momentum and immediately fall onto the grain. In the opp
site limit whereT/Te approaches unity, the trapped ion pop
lation again falls off, because many of the newly born io
have enough energy to escape tor 5`. Figure 6 shows the
trapped ion density for Case 1 and for two cases withn→0
that test the limits~42!. In Case 2,a/lD50.1 andT/Te

50.01, and in Case 3a/lD50.015 andT/Te50.04. Note
that the trapped ion density in these cases is appreci
smaller than in Case 1, wherea/lD50.015 and T/Te

50.01.
In Fig. 7 we plotrf(r ) for each of the three cases. I

Cases 1 and 3,a/lD50.015 is quite small, andf(r ) is very
close to the simple Debye-shielded potential, out tor
;5lD . ~For largerr, f(r );r 22. This behavior at larger is
due to ion absorption on the grain.11,4! In Case 2, where

FIG. 6. Trapped ion densitynt(r ), scaled ton0 , for Case 1 (a/lD

50.015,T/Te50.01, solid curve!, Case 2 (a/lD50.1, T/Te50.01, dashed
curve!, and Case 3 (a/lD50.015,T/Te50.04, dotted curve!. In all three
cases,n→0.

FIG. 7. rf(r ) for the three cases of Fig. 6. Case 1: solid curve. Case
dashed curve. Case 3: heavy dotted curve. The Debye potential is sho
the light dotted line.
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a/lD50.1 is larger, the potential still shows a Debye-ty
form out tor;5lD , but with a shielding length that is abou
20% larger thanlD . In general, the old OML theory~which
omits trapped ions! shows Debye-type shielding out tor
;5lD , but with a shielding length that is longer than D
bye. Including trapped ions in our theory decreases
shielding length, and brings the potential closer to Deb
But for large grains, the OML shielding is significantl
weaker than Debye,2,4 and even with trapped ions remain
noticeably weaker than Debye. Actually, it is a bit of a my
tery as to why the Debye form works as well as it doe
especially whenr ,r T . The usual derivation of Debye
shielding proceeds by linearizing an assumed Boltzm
form for the ion density,

ni~r !5n0 expS 2
ef~r !

T D ~43a!

.n0S 12
ef~r !

T D ~43b!

and inserting Eq.~43b! and the equivalent expression fo
electrons into the Poisson equation~21!. However, the non-
linear Boltzmann form~43a! is grossly wrong forr ,r T ; it
givesni(r ).e100n0 near the grain! The linearization is als
completely invalid, asni(r )@n0 and uef(r )u@T near the
grain. Nonetheless, the linearized form~43b! works pretty
well in deriving the shielded potential from Poisson’s equ
tion.

B. Small but finite collision frequency

For nonzero collision frequencyn, we must determine
the floating potentialf f by setting the ion flux to the grain
Fi , from ~32! and ~36!, equal to the electron fluxFe from
~25!. The determination off f is done self-consistently with
the solution fornt(r ). Figure 8 showsFi /FOML as a function
of the collisionality measurenlD /v th , for a/lD50.015,
T/Te50.01. We see that collisionality increasesFi substan-
tially even whennlD /v th is small. The grain potentialf f is
shown as a function ofnlD /v th in Fig. 9. The floating po-
tential is suppressed by up to 50%, as a result of the co
sional increase in ion current to the grain. To a very go

:
as

FIG. 8. Fi /FOML as a function of collisionality indexnlD /v th .
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approximation, the charge on the grain is2Ze5af f ; thusZ
is also reduced by up to 50% as compared to the usu
accepted OML value.

It should be noted that there are two contrary effects
work in determining the dependence ofFi on n. For a speci-
fied grain potentialf f , collisions near the grain strongl
increaseFi . But collisionality also decreasesuf f u, and this
in turn reducesFi somewhat. In Fig. 8 we showFi scaled to
the OML ion fluxFOML from Eq.~26!. HereFOML means the
OML flux to a grain whose potential is the OML floatin
potential given Eq.~27!. In some earlier work,25 we com-
paredFi to an intermediate benchmark, the OML flux fro
~26!, to a grain whose potential is the full self-consiste
value of f f , including the effect of collisions. This differ
ence in the definition ofFOML explains the apparent differ
ence between Fig. 8 and some of the results quoted in
25.

In Fig. 10, we show the trapped ion densitynt(r ) for
several values ofnlD /v th : Case 1,nlD /v th→0; Case 4,
nlD /v th50.037; Case 5,nlD /v th50.47. In all cases,T/Te

50.01 anda/lD50.015. Curiously enough, the trapped io
density is seen todecreaseas n increases. This may seem
paradoxical since trapped ions are created by collisions.

FIG. 9. Floating potentialf f , as a function of collisionality indexnlD /v th .

FIG. 10. Trapped ion densitynt(r ) for Case 1,nlD /v th5531025 ~solid
curve!; Case 4,nlD /v th50.037 ~dashed curve!; Case 5,nlD /v th50.47
~dotted curve!.
Downloaded 21 Jul 2003 to 128.8.86.10. Redistribution subject to AIP
lly

t

t

ef.

he

explanation is thatuf f u decreases with increasing collision
ality, i.e., the potential well becomes shallower and hen
traps fewer ions. We show the complete potential pro
f(r ) for Cases 1, 4, 5 in Fig. 11. In all of these casesnt(r )
significantly exceedsDnu(r ) near the grain, so trapped ion
are a dominant factor in shielding.

In Fig. 12, we plot the integrand of Eq.~32!, I (r 8)
[4pr82@nt(r8)1nu(r8)#p(r8). This plot shows the distribution
of locations r 8 where an ion had its last collision befor
hitting the grain. The result is shown for Case 1,nlD /v th

5531025 ~i.e., essentially zero, solid curve!; Case 4,
nlD /v th50.037 ~dashed curve!; and Case 5,nlD /v th

50.47 ~dotted curve!. This is a log–log plot, so that we ca
display both the spatial scaler;lD of the sheath and the
much longer collisional scaler;v th /n. Note that in all cases
there is a peak inI (r 8) that occurs atr ,lD . This is due to
the occasional collisions that occur within the sheath. T
peak occurs for two reasons: The trapped ion density is v
large in this range ofr, and if a collision occurs within the
sheath, the resulting ion is quite likely to hit the grain. T

FIG. 11. Potential profilef(r ) for Case 1,nlD /v th5531025 ~solid curve!;
Case 4,nlD /v th50.037 ~dashed curve!; Case 5,nlD /v th50.47 ~dotted
curve!.

FIG. 12. The integrandI (r 8) of Eq. ~32!, for T/Te50.01,a/lD50.015, and
nlD /v th5531025 ~solid curve!, nlD /v th50.037 ~dashed curve!,
nlD /v th50.47 ~dotted curve!. I (r 8) is the relative contribution to the ion
flux to the grain, from collisions atr 8.
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shape of the peak is roughly independent ofn and the am-
plitude of the peak is roughly proportional ton; hence the
contribution toFi is roughly proportional ton. For the cases
nlD /v th50.037 and 0.47, this is the dominant contributi
to Fi . In addition,I (r 8) has a broad plateau that extends o
to several times the mean free pathv th /n, and then falls off
exponentially~because if a collision occurs at such large
dius, the resulting ion is likely to have another collision b
fore it can reach the grain!. This contribution toI (r 8) has an
amplitude that is proportional ton, and a spatial range that i
inversely proportional ton; hence its contribution toFi is
independent ofn. This is in fact the OML current. For the
casesnlD /v th5531025 and 0.037, the collisional contribu
tion from the peak atr ,lD is clearly distinguished from the
OML contribution from the plateau atr;v th /n, but for the
cases nlD /v th50.47 the two regimes are beginning
merge. This case pushes the limits of validity of our theo
which assumesn to be small.

V. CONCLUSIONS

We have found that trapped ions created by char
exchange collisions can dominate both the shielding aro
a charged grain and the ion current to the grain, which
termines the floating potential. In the limit where the col
sion frequencyn→0, the trapped ion density in the shieldin
cloud around the grain can be over an order of magnit
larger than the untrapped ion density. The conditions for
trapped ion density to be large areT!Te , so that nearly all
the newly created ions are trapped in the potential well,
a2/lD

2 !T/Te , so that very few newly created ions fall im
mediately onto the grain. Forn finite but small, the ion cur-
rent Fi to the grain increases. This increase is roughly p
portional ton, but nonetheless very large. The increased
flow to the grain suppresses the floating potentialf f . In the
absence of collisions,ef f is typically 2Te to 23Te , but we
have seen trapped ion/collisional effects reduce2ef f by as
much as 50%. Self-consistently including this reduction
the well depth reduces the density of trapped ions sligh
thus the trapped ion density is actually largest in the lim
n→0.

The presence of a large population of trapped ions p
foundly changes the nature of the interaction of a grain w
other grains, and with external forces. We have previou
argued4 that shielding by untrapped ions cannot lead to a
attractive electrostatic force between negatively-char
grains. But a grain with its trapped ion cloud can beha
like a ‘‘classical atom;’’ the trapped ion cloud can be pola
ized, thereby shielding the grain from electric fields,2,17 and
possibly leading to van der Waals type attractive forc
between grains. We are studying these effects at the pre
time.

This paper has been concerned with trapped ion and
lisional effects for a spherical dust grain which is at floati
potential. It has recently been shown,26,27 both theoretically
and experimentally, that the same effects can also be im
tant in connection with the ion current to a cylindrical Lan
muir probe, either biased or floating.
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APPENDIX: VALIDITY OF THE OML ASSUMPTION
„NO POTENTIAL BARRIERS …

If the effective potentialU(r ;J), defined in Eq.~2!, has
a maximumUmax.0 which occurs atr 5r m , then phase
space for ions with angular momentum J and energye
,Umax is partitioned into two regions: trapped ions forr
,r m , and untrapped ions forr .r m . There are no collision-
less trajectories connecting the two regions, so it is poss
that the distribution function has a different form in ea
region. We have avoided significant mathematical compli
tions by assuming that there are no such barriers, or m
precisely that if there is a maximum inU(r ) it is so low or
occurs in such a limited range ofJ that it affects a negligible
number of ions. It follows then that trapped ions are simp
synonymous with negative-energy ions.

The neglect of centrifugal potential barriers has a lo
history, and is one of the key assumptions of the orbit
motion-limited ~OML! theory of probes. There has been r
newed interest recently in the question of validity of th
assumption. Bernstein and Rabinowitz11 showed long ago
that in the limita!lD , there are no potential barriers if th
ambient ion distribution is monoenergetic. It was genera
assumed, over the years, that potential barriers could be
glected if a!lD , even if the distribution is Maxwellian
However, Allen, Annaratone and de Angelis5 showed re-
cently that for a Maxwellian distribution, there are alwa
some ions subject to potential barriers, even ifa/lD is small.
We subsequently calculated6,7 the actual magnitude of the
potential barriers, under the assumption thatf(r ) has the
Debye form,

f~r !5f f

a

r
e2r /lD, ~A1!

at least forr out to severallD . As we have seen in Sec. IV
Eq. ~A1! appears to be a good qualitative approximation,
it forms a reasonable basis for estimating the effect of pot
tial barriers. We concluded in Ref. 6 that the most signific
potential barriers occur forJ in the range,

1

2
alDf f,

J2

m
,

3

4
alDf f , ~A2!

where U(r ) does indeed have a maximumUmax and the
value of the maximum is in the range

0.01
a

lD

euf f u
T

,
Umax

T
,0.02

a

lD

euf f u
T

. ~A3!

Only a fraction of order 0.01(a/lD)uef f /Tu of those ions
whose angular momentum satisfies~A2! are stopped by the
potential barrier. Althoughuef f /Tu is a large quantity (f f
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;2Te to 23Te , which can be.100T!, a/lD is typically
small in dusty plasmas, and in most cases only a small f
tion of the ions are reflected at the barrier.

There is an additional consideration that limits the nu
ber of trapped ions that can be reflected by a potential bar
Consider an ion newly created by a collision atr 8. The typi-
cal value ofJ2 is mr82T, and thus condition~A2! can be
estimated as

1

2

a

lD

euf f u
T

,
r 82

lD
2 ,

3

4

a

lD

euf f u
T

, ~A4!

Umax is large enough to reflect a substantial number of io
only in cases where

a

lD

euf f u
T

.20. ~A5!

In these cases, Eq.~A4! reduces approximately to

3,
r 8

lD
,4. ~A6!

So even in those unusual cases where the barrier is f
strong, its primary effect is to trap a few ions with slight
positive energy, created in a limited spatial region. In
sence, the potential barrier slightly alters the perimeter of
potential well. Neglecting the effect of potential barriers ge
erally appears to be quite a reasonable approximation
dusty plasmas.
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