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The problem of electrostatic shielding around a small spherical collector immersed in nonflowing
plasma, and the related problem of electron and ion flow to the collector, date to the origins of
plasma physics. Calculations have typically neglected collisions, on the grounds that the mean free
path is long compared to the Debye length. However, it has long been suspected that
negative-energy trapped ions, created by occasional collisions, could be important. This paper
presents self-consistent analytic calculations of the density and distribution function of trapped and
untrapped ions, the potential profile, the ion and electron current to the collector, and the floating
potential and charge of the collector. Under typical conditions for dust grains immersed in a
discharge plasma, trapped ions are found to dominate the shielding near the grain, substantially
increase the ion current to the grain, and suppress the floating potential and grain charge, even when
the mean free path is much greater than the Debye length20@3 American Institute of Physics.
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I. INTRODUCTION many classic papers. Theoretical work on dusty plasma has
When a small object is immersed in plasma, both elecMost often assumed thalf there is no plasma streaming

trons and positive ions flow to the object and are absorbed off!ative to the dust grainghe charge and shielding of each

its surface. If the object is electrically floating, it will acquire 9rain are given by the orbital-motion-limited OML)

a negative charge, due to more rapid bombardment by elegheory,***~*®or by simpler approximations to the OML
trons than by ions. In recent years, there has been a great degbult such as the Debye-shielded potential.

of interest in the physics of dusty plasmas, i.e., plasmas that OML theory, and nearly all of the theoretical treatments
contain many particulate§dust grains”) with radii that are  dating back to Langmuit,neglect collisions in treating the
small compared to the Debye length. In typical laboratoryplasma response near the object. This would seem to be quite
experiments, particulate sizes are 14, and the grain 5 reasonable assumption, since the mean free paths for col-
charge is on the order of thousands of electron charges. f\iqna processes are typically long compared to the Debye

variety of interesting collective behaviors occur because Ofength (the characteristic length of the shielding cloud
the very strong plasma-mediated interaction between dust

. . around the objegtin laboratory, space, and astrophysical
grains. However the most fundamental issue of dusty plasm . 2 . o
physics is the response of the plasma to the presence ofPlasmas. If thg plasma is colllspnless, then pns _commg in
single dust grain, i.e., the shielding around the charged graifoWard the object from the ambient plasma will either con-
the electron and ion current to the grain, and the steady stat@Ct the objectin which case it is usually assumed they are
floating potential and charge on the grain. Analyses of dust@bsorbeyl or miss the object and fly back out to the ambient
plasma~® have drawn on the theories developed in earlierplasma. If the plasma potential is taken to be zero, all of
times for Langmuir probes and spacecraft chardifgThis  these ions have positive energy and cannot be confined near
body of work comprises an enormous literature, beginninghe object. However, Bernstein and Rabinowizommented
with Langmuir and collaboratotsn the 1920s, followed by in 1959 that if there are occasional collisions near the object,
ions can lose energy and be unable to escape from the nega-
dElectronic mail: lampe@ppd.nrl.navy.mil tive potential well. The density of these trapped ions can thus
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slowly build up until it reaches an appreciable level, whichll. SELF-CONSISTENT CALCULATION
could play a very important role in the dynamics. Since theyOF THE POTENTIAL AND THE TRAPPED
found the population of trapped ions to be “determined byION DISTRIBUTION

collisions and most difficult to calculate,” Bernstein and A. Model and assumptions

Rabinowitz carefully specified that “in order to obtain a trac-

; . : W nsider a steady stat nsisting of a single station-
table problem” their calculation would be restricted to ob- € consider a steady state consisting of a single statio

ary spherical grain of radiug, immersed in a plasma, with

ho magnetic field. The grain is assumed to be small com-

not occur. Down through the years, a number of otherpared to the Debye IengﬂnDE[47-rnOez(Tg1+T’l)]’l’z.

authors commented_ that trapped ions could be important, b"\the plasma consists of positive ions, assumed for conve-
that the ' trapped ion problem would probably not bepjance to be singly-charged, electrons, and neutral mol-
tractable’**"*® Collisionless theories were thus generally gcyles. In the ambient plasma, all species are assumed to be
used for dusty plasma, even though trapped ions should b@axwellian, with temperatured, for electrons andr for
important for the small dust grairi8. both ions and neutralgThe calculation can easily be ex-

In 1992, Gore¥ made a most remarkable observation.tended to the case where the ion and neutral temperatures are
He noted that once a trapped ion is created, it will orbit thenot equal. We assume that none of the plasma species are
grain and remain in the potential well until it has anotherflowing. The present calculation thus applies to dust grains in
collision which either kicks it out of the well, or causes it to bulk plasma, e.g., grains that may be slowly settling through
fall onto the grain and be absorbed. Since the creation rate &f discharge, or in a microgravity situation grains which per-
trapped ions is proportional to the collision frequengyand  manently reside in the plasma. It should be noted that in
the loss rate is also proportional to the density of trapped typical dusty plasma laboratory experiments, the dust grains
ions must beindependenbf v in steady state. Goree also levitate at the edge of a sheath, where a strong electric field
confirmed in a Monte Carlo simulation that the total numberPalances gravity. In this region, ions stream by the dust at a
of trapped ions can be quite significant. In 2000 Zobninvelocity of the order of the ion sound speed, and this ion flow
et al!8 performed a more detailed Monte Carlo simulation,"@S important consequences. The present calculation does
actually calculating the trapped ion density profilér) and not apply here, although we are looking into the possibility

the self-consistent potentiai(r). They also found that,(r) ~ ©f €xtending it to this case. . .
is indeed large. We consider weakly-ionized discharges, where the domi-

In a recent Lettel? we sketched out a fully analytic nant types of ion collision are normally charge-exchange and

method for calculating the distribution of trapped as well aselastlc collisions with neutrals. We include in our model only

untrapped ions, and solved seli-consistentlyrigr), (1), charge-exchange collisions, which we define as collisions

. ) that transfer an electron from the neutral to the ion, without
anq the untrg_pped lon .densm(r). we shovyed .that under' any exchange of momentum. Thus a charge-exchange colli-
typical conditions the inner part of the shielding cloud is

sion near the grain simply replaces a fast incoming ion with
made up primarily of trapped ions, and thafr) is thus g Py rep g

it ¢ h s of th licion! h a slow ion whose velocity is chosen from the neutral mol-
different from the results of the collisionless OML theory. In o¢1e distribution. These collisions are particularly effective

the present paper, we give the complete derivation of thosg, creating trapped ions, or in causing a trapped ion to fall
results, and we calculate in addition the ion distribution func-yntg the grain. We shall neglect ion—ion collisions and elas-

tion and the collisional ion current to the grain. We find thatjc jon—neutral collision€® We assume that the charge-

the collisional current is usually dominant, even in regimesexchange collision frequenayis energy-independeft This
of fairly low collisionality, because in steady state theis animportant simplification which enables us to develop an
trapped ion density is very large and essentially all trappe@nalytic model. Furthermore, we assume thas small, in
ions eventually fall onto the graitafter a sequence of colli- the sense that the probability of a collision is small during
siong. Since collisionality substantially increases the ionthe time for an untrapped ion to traverse the potential well,
current, the negative floating potentia} of the grain is re-  or for a trapped ion to make one rotation in its orbit. Roughly
duced to as little as 50% of the widely used OML result. Thespeaking, this is equivalent to the assumption that the mean
grain charge is proportional te;, and thus can also be free path\ n>\p.
substantially smaller than the OML result. Finally, we make an assumption that has been widely
The outline of the paper is as follows: In Sec. ll, we used as the basis of the orbital-motion-limité®ML)
introduce the model and its assumptions, and derive ththeory’ ®*~*Our system is spherically symmetric about
equations that determine,(r), n,(r), #(r), and the ion the grain, sdin between collisionsthe energye and angular
distribution functionf;(r,v). In Sec. Ill we derive the colli- momentumJ of an ion are conserved. In spherical coordi-
sional contribution to the ion current, and show how to Ca|_nates, the radial equation of motion for an ion can be written
culate ¢ fully self-consistently. In Sec. IV, we give the re- . ,

o . mr=—U"(r), (N)
sults for some specific cases, and discuss the general nature
of the solutions. In Sec. V we summarize and discuss somg@here
future directions for research. In the Appendix we evaluate
the validity of one of our key assumptions, the neglect of
centrifugal potential barriers to the radial motion.

J2

U(r)Ee¢(r)+W (2
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ordinates ofr andr’, nor on the azimuthal coordinate of
If trapped ions were collisionless, then the steady-state Vla-
sov equation would tell us that the distribution function
h(r,v,6;r"), for a given birthplace’, is a function only of
U : L
the constants of the motion, energy=smv“+e¢(r) and
angular momentund=mur sind. [Here we have used the
assumption that(r) has no maxima, so that there are tra-
L —
\_/ r

jectories connecting all phase-space points that are accessible
to an ion with specifiece and J.] Since the ions are born
Maxwellian, this distribution must be of the form,

mu? e¢(r)) @

h(r,v,0;r’)=C(r’)exr<—?— T

Actually, trapped ions do undergo charge-exchange colli-
FIG. 1. Possible shapes for the radial effective potetfi@d). sions, and we do not want to neglect this. If a collision oc-
curs atr”, the ion is lost fromh(r,v,6;r'), and a new ion is
. ) i i o ) added to a different clasqr,v, 6;r"). But we have assumed
is an effective potential energy for radial motion, including aiyat the collision frequency is energy-independent, so there
centrifugal force term. The first term dR) is attractive, s no correlation between the value wiand the probability
while the centrifugal force term is repulsive. Depending Ony4¢ 4 collision has occurred. Furthermore, we have assumed
the value ofJ and the details oip(r), U(r) can have no  hai the time between collisions ! is long compared to the
extrema, one minimum, or one minimum and one MaximMuMg it period of a trapped ion. Thus there is essentially no
as shown in Fig. 1. Our assumption is tHa{r) has no  coqrelation between the value of-r’ and the probability
maximum. It follows that, in the absence of a collision, thein5t an ion created at’ has had another collision before it
trajectory of an ion passes through all values slch that gets tor. It follows that any ion inh(r,v,6:r') is equally
J2 likely to have been lost to a collision. Therefdrér,v,0;r")
7€ (3 must be of the forn(4), even with collisions.
However, the Maxwellian distributioid) is not popu-
For positive-energy ions, this means all values dhat lie  |ated by trapped ions for every value ofand 6. Several

between some,, and~. Negative-energy ions, on the other conditions must be satisfied. First, the ion must have nega-
hand, are trapped between somg, andr 5. The assump-  tive total energy, i.e.,

tion thatU(r) has no maximum is not exactly correct for all
ions® However it has been shoWithat it is a good approxi- IMu2<—ed(r); (5a)
mation, because a maximum ih(r) occurs only for ions in

a small range o8, and the maximum is always so low that it

blocks the trajectories of only a small number of ions. We
shall elaborate further on this assumption in the Appendix.

e<f>(r)+2

mr

otherwise it can escape te=« and is not a trapped ion. A
second condition is that the total energymust be greater
thaneg(r’), since the ion was born at with positive ki-
netic energy, i.e.,

!

B. Distribution of ions created at a single location r ed(r')—ed(r)<imv? (5b)

Trapped ions are created by ion-neutral charge-exchangg yhirg condition is that the ion must have enough angular
collisions. Every tlme a collision occurs, the (,)Id ‘on disap- momentum so that its trajectory does not intercept the grain
pears, and a new ion is created whose velocity is chosen &l jiysa (Since we assume that the orbital period is short
random from the neutral molecule distribution function compared to the collision time, we treat ions whose trajec-

- 2 i i 1 - - . . ! . .
exp(—mu/2T). An ion from the ambient plasma is acceler- v, intercepts the grain as if they are lost immediately, and
ated as it falls into the negative potential well surroundmgjust delete them from the trapped ion distributiohising

the grain, so the result of a collision within the potential well conservation of energy and angular momentum, it is easy to
is to replace a fast ion by a much slower ion, which probablygy, .y that if the ion is to miss the grain, it must have at least
cannot escape from the well. The new ion will either be Iosta minimum kinetic energy specified by

promptly by falling onto the grain, or will become a trapped

ion which orbits the grain. We begin our calculation by par- a?

titioning the trapped ion population into separate classes de- [8¢()—ed(@)] z—2<5 mo?. (50)
pending on the location where the previous collision oc-

curred. Consider the class of trapped ions which were creatdél the ion does not satisfy5c), it does not have enough
by collisions at radial location’, and leth(r,v,8;r") be the  energy to avoid falling onto the grain. But even(8c) is
phase-space distribution function of these ions. Hesethe  satisfied, the ion must have enough perpendicular velocity to
present location and=(v, ) is the present velocity of the avoid falling onto the grain. Again using conservation of
ion; @ is the angle between andv. Because of spherical energy and angular momentum, this leads to a requirement
symmetry,h(r,v,0;r") does not depend on the angular co-on 6,
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a \/1+ 2led(n—ed(a)]

r my?

. . mu?  ed(r)
=sinfy(r,v)<sing. (5d) h(r,v,0;r")=C(r")ex ~o7 T

Note that G<sinfy<1 if (5¢) is satisfied. We can combine XO(ry=r)0(r,—r)0fvy(r)—v]

(5a—(5¢) into a condition XO[v—vp(r,r")]O[sinf—sinby(r,v)],
va(r,r)<v?<vi(r), (6) (12
where
where
L, 1, if x=0,
moZ(r)=—ea(r), ™ O0=1o, it x=0.

anduvy(r,r’) is the larger of the two minima specified by
Egs. (5b) and (5¢). To summarize, Eq(6) states that a C. Calculation of the coefficient C(r’)
trapped ion which was created @&t but is now atr must
have(i) at least as much energy as it gained by falling from
" tor; (ii) at least enough energy to avoid falling onto the
graln but(iii) not so much energy that it can escape from the
potential well. It is also possible to show thatrifis small
enough, conditior(i) determines the minimum velocity,,
but if r is larger it is condition(ii) that is the controlling
factor. Specifically,

We can use the steady state condition to determine the
coefficientC(r’). As a first step, we define a quantiyr’)
€such that in steady stater4'2g(r’)dr’ is the total number
Cof trapped ions which were born in the volume element be-
tween r’ and r’+dr’. g(r’) is thus the integral of
h(r,v,6;r") overr, v, andé,

g(r')IC(r’)®(r1—r’)fr147rdrr2e*[e‘/’“)”]
[e(r)—ed(n)], if ro(n=r’, :

1
- 2 Y — 2 v1(r) m—6g(r,v)
moug(r,r')= a . f L 2 —(muzlzT)J' 0 ;

270 _ - r< X 2mdvvee désing

[ed(r)—ed(@)] . if r'=ro(r), sy 2TV o)

® y
— 2 ’ — 2 ’
wherer is a function ofr defined as the solution of =16mC(r)olr,—r )L drrGr.r), (13
r2¢(r)_ a2¢(a) where
d(ro)=——7—77—- ©)

r’—a
G(r,r )— e~[e¢(D) ’T]j ) dvp2e (M?/2D)
1

O(rr)

7= 0p(r,v) .
xf désing
Oo(r,v)

We note that(6) can only be satisfied ib3(r,r’')<uv?(r),
which requires that

2
[eg(r)—ed(a)] z—z<—ed(r), (10
:e—[e¢(r)/T]JDl(r) dpp2e(Mv?/2T)

or equivalently vo(r.r’)

a® 2a’ed(r)—ed(a)

r2g(ry<a’¢(a). (11 X\ 1= T

Equation(11) is easily satisfied for small graina{\p) and 312 _

small values of <\, whereg(r) is roughly the bare Cou- ZT) \/ ;{ ' e¢(r +2af¢(a)

lomb potential, and we recall thap<<0. But for r>\p )

shielding becomes strong, and eventually 84) fails for r 1(0)

greater than some radius which we shall agll Trapped XJ

ions cannot exist for>r,, because in this region the poten- !

tial well is very shallow, and negative-energy ions cannofin the last step of E(14), the integral is reduced to an error

have enough angular momentum to escape falling onto thginction form by using the new variable,

grain?? Thus there are no orbiting trapped ions if the grain

size is very largea>r. \/mv2 a’ ed(r)—ed(a)
Taking account of all of the constraint§)—(11), we see U=V o7 =22 T

thath(r,v,8;r") is a function that is Maxwellian i and in

eop(r), but with many voids in phase space whereandug(r,r’), u,(r) are given by Eq(15) with vy(r,r’),

h(r,v,6;r')=0. The presence of these voids can be made(r) substituted fow.

explicit by including appropriate step functions in the defi- An ion is lost fromg(r’) every time one of these ions

nition of h(r,v,0;r"), i.e., by rewriting Eq.(4) as has a collision, i.e., the loss rate is

duwte v, (14

O(r,r )

(15
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dg(r’)
dt

=—vg(r'). (16)

loss

In steady state, this loss rate must be equal to the rate

which ions are added t@(r’) by collisions atr’. The rate of
collisions atr’ is simply v[n,(r')+n,(r’)], and each of

Lampe et al.

In Eq. (21), the trapped ion density is determined from the
self-consistent solution of19). The electron densityg(r)
can be accurately approximated by a Boltzmann faétor,

at

Ne(r)=noexged(r)/Te]. (22

these collisions creates a new ion. But the new ion is ahe untrapped ion density,(r) is specified as an explicit

trapped ion which contributes tg(r’) only if conditions
(5d), (6), and(11) are satisfied, witlm’ =r. Thus the creation
rate is

[dg(r’)}

=vO(ry—r")[ny(r

creation

dt + nt(r )]

2 6
r,r,)dvv e (M ’ZT)I” O(r 4o sing

fodUU e

V!
><f J
~(mu%2T) fgdasma

2T —3/2
=47Tl/21/<ﬁ) O(ry—r')

X[ny(r")+ny(r")]eleer TG r).
7
Using Eqgs.(13)—(17), we can solve foC(r’), giving

1

2T 3/2) ,
““""H””ZW(F) [y +n(r ) Je~ (™20

ropt
L)
fraldr”r,,ZG(r”,r,)

X e[e(/’(r’)

XO(ry=r")0(r—r)0fvy(r)—v]
XO[v—vo(r,r')]O[sind—sinfy(r,v)].
(18
D. Calculation of the trapped ion density
and the potential

We can now calculate the trapped ion densiffr) by
integratingh(r,v,6;r") over (v, 6;r"). Sincen(r’) also ap-
pears as a source term on the RHS of @@), this procedure
actually yields a linear integral equation foy(r),

nt(r):farldr’K(r,r')nt(r’)JrLrldr’K(r,r’)nu(r’),

(19
where
4 (21| "%
K(H'FT/?(;)
rrZe[ed)(r')/T]G(rr,r/)G(r,rr)
O(ry—r). (20

M1 ,.n2 "ot
S G(r",r’)

To complete the calculation, it is necessary to solve (Ef).
self-consistently with Poisson’s equation,

td ¢—47-re[nu(r)+nt(r) Ne(r)].

d 21
ot dr @D

functional of ¢(r) by the OML theory!
ny(r) 2

= _EX[< — M) foc dtt267t2
no Jm T G

2
y 1+\/1__(1 ORI

= i e~ edl r)/Tjw dtt2e~ 2
f =ednIT

rZ—a2 ;{—r ed(r)+a’ep(a)
+_ (rZ—a?d)T

dtt2e—t,

(23

X
f [7r2e</>(r)+a2e¢(a)]/(r27a2)T

where the first integral is taken only over valuestafuch
that the argument of the square root is positive.

Finally, it is necessary to specify boundary conditions for
Eqg. (21) atr=a andr=o. The boundary condition is at
= is of course¢(=)=0. The boundary condition at=a
depends on the physical situation. If the collector is a probe
biased to a specified potentigh, the boundary condition is
simply ¢(a) = ¢. If the collector is a dust grainp(a) is set
equal to the floating potential;, i.e., the potential for which
the electron flux=, to the grain is equal to the ion fluk; ,

Fo=F;. (29
Taking a velocity moment over the Maxwell—-Boltzmann dis-
tribution, the electron flux is found to be

T
— - equ /T
Fe=no \ 271-me

In the limit »—0, F; is entirely due to untrapped ions, and
the ion flux is given by OML theor$,

T eds
Fow="o N gzm| = 7 *1

Using (25) and(26) in (24), we obtain the well-known OML
result thatg; is the solution of

ox eds
1- —|exg — =—|=

T Te

Typically Eq.(27) giveseg;~—T, to —3T,, depending on
the ion mass. However, we shall see that for finite values of

(25

(26)

mTe 1/2
) . 27)

meT
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v, F; is usually dominated by trapped ions, and is often sub{,(r,v, ), and both requirements any(r,r") from (8), this

stantially larger tharr o), from (26). Thus it is necessary to
evaluateF; from the trapped ion distribution and soly24)
numerically for¢; . This will be discussed in Sec. Il below.

E. Solution procedure

A procedure for solving Eqg19)—(27) is as follows:

(i) Rewrite Poisson’s equation, together with the bound-

ary conditiong(«)=0, in the form of Gauss’ law,

%+ F dr'[Qu(r)+Qu(r)+Qe(r)]

r 12 ’
(28)

d(r)=—2e

where —Ze is the grain chargeZeQ(r) is the trapped ion
charge contained within radiusZe Q,(r) is the deviation of
the untrapped ion charge contained within radidsom the
ambient value (4/3)r3nye, andZeQ,(r) is the deviation of
the electron charge within radiusfrom the ambient value.

(i) Begin with the OML solutiof for ¢(r) andn(r),
i.e., the solution of Eq921)—(23), with boundary condition
(27). This includes no trapped ions. Call the#&)(r) and
nO(r). Use ¢©(r) in Egs. (14) and (20) to evaluate
K(r,r'").

(i) Calculate a first approximatiom{*)(r) to the
trapped ion density from Eq19), neglecting the first term

gives
fu(r,v,0)=0(r;—r)0vy(r)—v]

1 a’leg(r)—ep(a)]
X6 E Uz_ r2_a2

312
m e~ (M 2/2T)
27T

X O[sind—sinby(r,v)]

M
xf dr'r'20

a

1 2
Emv +e¢(r)—e¢(r’)}

[ny(r")+n(r")1G(r',r")

e[e¢(r’)—e¢(r)]/T
M qernen2 "o .
S e G(r",r")

(29
The results forf(r,v, #) will be shown in Sec. IV.

Ill. COLLISIONAL CONTRIBUTION TO THE ION
CURRENT

Equation (26) from OML theory gives the “collision-
less” flux of untrapped ions to the graift,oy_ . More pre-
cisely, OML theory assumes that the mean free path is so
large that essentially all collisions occur far from the grain,
where the potential is zero. It is further assumed that the ion

on the RHS.ngl)(r) can be interpreted as the population of distribution is Maxwellian in the ambient plasma, i.e., at suf-
“first generation” trapped ions created by collisions of un- ficiently larger. As Bernstein and Rabonowlzpointed out,

trapped ions. Integratel™)(r) to obtainQ{*(r).

(iv) Recalculatep(r) from Eq.(28), choosingZ so that
the boundary conditiof24) is satisfied. In the limit of small
v, this just meansp; must satisfy(27). For finite v, it is

there must be collisions which maintain the Maxwellian dis-
tribution, but it is not necessary in OML theory to take these
collisions explicitly into account, since the ions which de-
posit on the grain are assumed to come in from the Maxwell-

necessary to explicitly calculate the electron and ion flux tdan ambient plasma without having any additional collisions.

the grain and choosg so that they are equal. This will be
discussed in Sec. lIl. Using the new(!)(r), recalculate
G(r,r"), K(r,r'), ny(r), andng(r) from Egs.(14), (20),
(22), (23

(v) Calculate a second iteraté?(r) by usingn{*)(r) in

In reality an ion may have a charge-exchange collision
near the grain, on its way in from the ambient plasma. If a
charge-exchange collision occurs, the energy of the newly
created ion is on average less than that of the ion that it
replaces, and therefore the new ion is statistically more likely

the first term on the RHS dfl9). n{?)(r) can be regarded as to fall onto the grain. Thus collisions increase the ion flux to
the population of trapped ions created by either the collisiorthe grain. It is easy to see that this increase can be very
of an untrapped ion, or of a first-generation trapped ion.  substantial, even when the mean free path is quite large. To
(vi) Go back to steggiv) and proceed with this iteration estimate the collisional effect, it is useful to think of the
scheme to convergence. To prevent overshoots in the iter&adiusry, such thate¢(r)=—3T/2, as the outer edge of
tion process, it is sometimes useful to subdivide the iteratioihe sheath around the grain. Normally,is in the vicinity of
[adding in only a fraction of the correction my(r) at each Ap t0 2\p. If an incoming untrapped ion undergoes a col-
iteration step, but in practice the solution converges after lision within r<r, a fast ion(which probably would not
only a few iterations. have hit the grainis removed, and a slow ion is created
In Sec. 1V, results will be shown in a variety of cases for which probably cannot escape from the potential well. This
ny(r), ny(r), ¢(r), and for the ion fluxF; and the grain ion may fall onto the grain immediately if it happens to have
potential ¢; as a function of collision frequency. low angular momentum. If the ion has enough angular mo-
mentum, it will orbit the grain rather than contacting it, but
eventually will have another charge-exchange collision. On
average, each collision brings the ion to a lower-energy state

F. Distribution function of trapped ions closer to the grain, and eventually the resulting ion will fall

After solving for ¢(r), we can write down an explicit
expression for the trapped ion distribution functiq(r,v, 0)
by integratingh(r,v,6;r’) over the source locatior'. Tak-
ing account of all of the step functions in E¢L8) for

onto the grain. Thus, essentially every collision of an un-
trapped ion withinr <r results in an ion depositing on the
grain. The collection area of the sheathis?, which is very
large compared to the cross-sectina? of the grain. How-
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ever this area must be weighted by the probability that amwhere it prevents a divergence due to multiple counting of
ion—neutral charge-exchange collision occurs while the iorions which undergo many collisions in the large volume out-
is in the sheath. Roughly speaking this probability is of orderside the potential well. BuP . (r’,v) is close to unity for
r'1/Nmip, Whereh g, is some average mean free path. Thuscollisions within the potential well," <r, since the plasma
the ion flux to the grain, due to charge-exchange collisions ahas been assumed to be weakly collisional, irg5-\p

r<rs, is <Amfp- Thus it is sufficient to write an approximate expres-
sion for Py (r’,v) which becomes exact in the largé-
r% limit, and goes to unity at’ <\ ,s,. To do this, we note that
Fcon= - Fih, (300 anion that starts at’' >\, and whose trajectory intersects

. _ _ the grain without a collision, will necessarily follow a trajec-
where Fy, is the thermal flux in the ambient plasmBy, tory that is nearly radial? The length of the trajectory will
=no(T/2mrm;) 2. This should be added to the OML flux, to thus be close ta’—a, and in fact it is good enough to

obtain an approximate expression for ion flux to the grainapproximate it ag’. Furthermore, almost all of the time on

that is accurate to first order /Ay, the trajectory will be spent at >r, wherev is close to its
initial value. Thus it is sufficiently accurate to approximate
ey r% tEe(ene.rgy—depende)wmean free path as,,~v/v. We can
F~l1-—4+ ——|F 1 then write
1 ( T az)\mfp) th (3 )

Peor(r',v)=e~""'"". (33b)

Next, we note that, according to Eq&c) and (5d), an
ion’s trajectory will intersect the grain if it satisfies any of the
following four conditions:

(a) Incoming ions with low initial kinetic energy:

for ions of energyl. An approximate version of this expres-
sion (not including the effect of shieldingwas given by
Natansof® in 1960. For dusty plasmas with &\p, the
collisional contribution(30) is usually larger. It should be
noted that Eq(30) is actually an underestimate of the colli-

sional deposition, because a collision which occurs on the 2 2

fringes of the potential well at>r also slightly increases m_U\ —2a—2[e¢(r’)—e¢(a)], T e fo<m. (34
the probability that the ion will deposit on the grain. The 2 r'"-a 2

cumulative effect of these distant collisiorisver a large (b) Incoming ions with higher kinetic energy but low
volume also contributes to the collisional deposition. angular momentum:

We shall now calculate the ion flux; to the grain. Our
calculation includes both the OML flux and the “collisional” a’® , mu?
flux in a unified way; we shall show explicitly that the OML 72— g2 eI ~ed(@)]< —=, 7= fo=O=<m.
flux is the result of collisions within the ambient plasma, (34b)
while the “collisional” flux is the result of collisions within
the potential well around the grain. Assuming that the plasm
dimensions are large compared to the mean free path, any

(c) Outgoing trapped ions with low initial kinetic
ergy:

ion that reaches the grain will have had a collision at some P 2

o , . L mu a

time in its past. Let’ be the place at which the last collision ——<-——[ed(r')—ep(a)],

occurred. We can writd=; as an integral over the rate at 2 .

which collisions occur at point’, multiplied by the prob- mo?2 -

ability p(r") that the new ion created by a collisionratwill T$ —ep(r’'), 0=s6< > (340

deposit on the grain without having another collision,
(d) Outgoing trapped ions with higher kinetic energy
v but low angular momentum:

47a?

Fi:
2

fxdr’47-rr’Z[nt(r’)+nu(r’)]p(r’). (32
a a mv
r—,z_—az[e¢(r')—e¢(a)]< T<—9¢(f').

To calculatep(r’), let us first consider an ion createdrat

with velocity v, on a trajectory that will intersect the grain.

The probability that this ion will reach the grain without 0=0o. (340

having another collision is In Eq. (34), 6, is given by Eq.(5d). The probabilityp(r’) is
thus given by

r!
Peon(r’,v)=ex —vj dr/|v.(r)||, 33 mv?  wr’
coII( ) F{ a | r( )@ ( a) ffAdvvszSinﬁeXF<—ﬁ—T)
. . . . o " (r')y= = - , (39
wherewv,(r) is the ion’s radial velocity when it is at position p fodvvze_mUZIZngdﬁslnﬂ

r. Exact evaluation oP .. (r’,v) would require humerical

calculation of all of the phase space trajectories, but fortuwhereA is the area ob—6 space which satisfies conditions
nately a simple and accurate approximation is possible(34). After doing the ¢-integral and collecting terms, the
Peon(r',v) plays an important role at largel (r'>X\pyg), double integral in Eq(35) becomes
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2 (= vr' 2 = vr'’
p(r’)=—f duuzex%—uz—— +—f Bial )/Tduuzexp(—uz——>
\/; 0 Uthu \/; 0 Uthu
2 r'2—a? (e vr’ a’ep(r')—e¢p(a)]
-— —zf duuexp —u?— — u— PR
Jr r’ Valea(r')—ep(a)li(r'2—a®)T VU (r'2=a?®)T
2 r12_a2 -
__®[a2¢(a)_r/2¢(r/)]1 / — fv[e¢(r )IT] duu
V7 r Via2lep(r')—ed(a)li(r'2—a2)T
vr! a’leq(r')—ep(a)]
xexpg —u?— —| \/u?- , (36)

v (r'2—a®T

wherev = (2T/m)2,

Equations(32) and (36) specify the ion current to the
grain. Results will be shown in Sec. IV. We find that for
typical small but finite values af, the dominant contribution
to Eq. (32 is from collisions that occur within the potential
well, atr'<r;, and thatF; is larger thanF gy, . This is

because the density of trapped ions is very large near the _ Noa’v
grain, and a charge-exchange collision near the grain is very

likely to yield an ion that falls immediately onto the grain.
Thus, for realistic values of it is necessary to calculate the
floating potentiakps by settingF; from (32), (36) equal toF,
from (25). Since the ion current is substantially larger than
the OML value, the floating potentiap; is significantly re-
duced as compared to the OML res(2f).

However, Eqs.(32) and (36) also reduce to the usual
OML result in the limit »—0. In this limit, the dominant
contribution to the integral in32) is from collisions that
occur in the range’' >vy,/v, i.e., one or more mean free
paths away from the grain. Let us separate the integral into
range fromato s, and a range frors to «, wheres is some
point such that

rr<s<vy/v, (379
e|o(s)|<T, (37b
a%|¢(a)l

?<1. (370

Clearly, in Eq.(32) the contribution toF; from the range
from a<r'<s vanishes ag—0, and thus in this limit

V oo
Fi:FaZL drdar2[n(r")+ny(r')Ip(r’). (39
The inequalities(37) are satisfied for alf>s. Expanding
Eq. (36) in all of the small parameters, and additionally using
the fact®*®*that ¢p(r)ocr ~2 asr— o, we find that to lowest
order

a? (= vr'
r'y=—— duuzex;{—uz——)
p(r) \/;rzfo Uihl
a’ed(a) (= r'
—A)f duex;{—uz— V—) (39
Jar2T Jo VU

Inserting(39) in (32), reversing the order of integration, and
usingn(r’)~nq for r>r1, we find

vnoa’ (= ed(a * r'

i 2 f du uz—ﬂe‘uzf dr’exp(——)

Jm Jo T s VU

% ed(a s
J duu[uz— i )}e‘uzexr{—v—)

Jr Jo T UhU
_ Npavy, (= W ep(a) o2

Vo Jo T

ep(a)

“MNoNorm T

which is the OML flux. Notice that the coefficientcanceled

out of Eq.(38), because the integral it38) is itself propor-
tional to v~ as »—0. The lower bounds of the integral,
which was chosen somewhat arbitrarily, also drops out to
lowest order. In essence, the OML flux arises from collisions
that occur in a region of the plasma whegér’)=0, i.e.,
where the presence of the grain has no influence. Our work
extends the theory to first order inby including collisions
which occur near the grain, whegg(r ") # 0, but still requir-

ing that A p<\ppp -

(40)

IV. RESULTS AND DISCUSSION
A. Nearly collisionless limit

The theory developed in Secs. Il and Il depends on
three dimensionless parameters] ., a/\p, and a measure
of the collisionality which we choose to be\p /vy,. (Note
that we have assumed thatis constant, and therefore the
mean free pathv/v is proportional tov. The ratio ofAp to
the mean free path is thus of ordexp /vy, in the ambient
plasma, but within the potential well the ion velocities are
much larger, and thus the mean free path is much larger.
ThuswAp /vy, is actually an overestimate of the collisionality
of the plasma. We shall present solutions for a variety of
parameter choices, listed in Table I.

We consider first the situation in the limit of very small
(but nonzerd v\p/vy,. Then the ion current is given by
Fom. Of EQ. (26), the floating potential is given by ER7),
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TABLE |. Parameters for the numerical solutions. For Case 1, the exact 0.756 T T
value of vAp /vy, does not matter in Figs. 2—7, as long as it is small, but for
Figs. 10—12 we use the explicit value<a o>,
Case number Figure numbers T/T, a/\p vAp /v A
g, 050 a L eem T T T
1 2-7 0.01 0.015 —0 © =
1 10-12 0.01 0.015 %10°° S e
2 6,7 001 01 -0 ° P
3 6,7 0.04 0015 -0 © L7
4 10-12 0.01  0.015 0.037 D 025 ’Q i
5 10-12 0.01 0.015 0.47 k=
Q
0.00 ¢/ ol PEPY I IY ET IR T3 .—._.3 ........ ]
. . . 0 2 4 6
andn,(r) and ¢(r) are given by the self-consistent solution (ra) /4

of Egs.(19)—(23). The solution for a floating dust grain, for
Case 1v—0 and

T/T,=0.01, a/\p=0.015,

is shown in Figs. 2—-5. Figure 2 shows the densitfr) of
trapped iongsolid curve; the deviation of the untrapped ion
density from the ambient valuan,(r)=n,(r) —ny (dashed ) ) o )
curve; and the negative of the deviation from the ambientPrings the potential to within 25% of the Debye-shielded
electron density, —Ang(r)=ny—ne(r) (dotted—dashed potential forr<5)\D_. For larger, .¢>(r) |3 proportional to
curve. Notice thatn>An,>|An,| near the grain, i.e., r? as has been discussed prev_m&_%&?* .

trapped ions dominate the shielding near the charged grain. !N Fig. 5, we show ion distribution functions at three
In Fig. 3 we show the integrated charge densit@g¢r),  locations,(5a) r=2a, close to the grain(Sb) r=10a, mid-
Qu(r), and Qg(r), respectively the integrals oén(r), way in the sheath(5c) r=\p=66.6a, close to the outer
eAny(r), and —eAng(r) from a to r, each scaled to the limit of the sheath. The distribution function consists of
grain chargeZe Note that atr =2\, the grain charge is trapped ions formuv?(r)< —eg(r) (negative total energy
68% neutralized, with 41% due to trapped ions, 27% due t&nd untrapped ions fmu?(r)>—ed(r) (positive total en-
untrapped ions, ane 1% due to electrons. At—c, 47% of erg_y). Both 'Fhe trapped and .untrapped por.tions of the distri-
the shielding is due to trapped ions, 52% to untrapped iond2ution functionfi(r,v, 6) are isotropic function$(r,v), ex-

and <1% to electrons. In Fig. 4, we platé(r). On this  Cept that there are voids for certain rangegofepresenting
semilog plot, the unshielded Coulomb potential would a|O_ions whose trajectories intersect the grain. In Fig. 5 we have
pear as a horizontal straight line, and the Debye-shieldeﬂ'mted the isotropic functiori(r,v) as a solid curve in the
potential would appear as the oblique dotted line. We plot thérapped ion region, and as a dashed curve in the untrapped
complete solution as the solid curve, and the OML solutionlOn région. These curves are on an arbitrary scale. We have
(with no trapped ionsas the dashed curve. Note that the also plotted the critical angl®y(r,v) which defines the

inclusion of the trapped ions increases the shielding any©ids, as will be explained below. This is the dotted curve,
and it is on the scale shown at the left of the figure. We note

FIG. 3. Integrated trapped ion charge frama to r [Q,(r), solid], devia-
(42) tion of the integrated untrapped ion charge from ambj&hi(r), dashed

and deviation of the integrated electron charge from ambj&pg(r),
dotted—dashégdall scaled to the charge on the grain, for Case 1.

3
10 T T 10 T T T
1
[72]
2 o
G
1
g’
g
0.01 |
10" ; L
0 1 2 3 1E'3 1 i 1 2 L n
(r-a)/ a, 0 2 4 6 8

(r-a) /1,
FIG. 2. Trapped ion densityn,(r), solid], deviation of untrapped ion den-

sity from ambien{An,(r), dashed, and deviation of electron density from FIG. 4. Plot of—(r/a)e¢(r)/T, for Case 1: self-consistent potential includ-
ambient[ — Ang(r), dotted—dashddall scaled to ambient density,, for ing trapped ions(solid), potential with trapped ions neglectédashed,

Case 1T/T.=0.01,a/\p=0.015,»—0. Debye potentialdotted.
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that in all cases there is a discontinuity fifr,v) at the characterizing the motion of a dust grain, so a steady state

zero-energy poinfmu?(r)=—e¢(r), and that the nature of treatment is indeed appropriate.

the distribution is very different for the trapped and un- Trapped ions clearly are a dominant player in the shield-

trapped ions. ing around the grain, for Case 1. One may ask more gener-
Consider first the untrapped ions. Since the ambient iorally under what conditions the density of trapped ions is

distribution is Maxwellian, Liouville’s equation indicates large? The essential requirement is that nearly all of the new

that the untrapped part of the ion distribution at locatias  ions created by charge-exchange collisions within the sheath

also a Maxwellian become trapped ions. There are two conditions for this: that
the new ion does not escapere-«, nor does it fall onto
2 the grain. The potentiab; at the grain is of the order df,,
mus  ead(r) ; . .
f(r,v)=consxexp — —=—— , while new ions are born with energy of the orderTofThus,
2T T very few of the new ions can escape from the wellJ ¢

<1. Provided this is true, the sheath can be regarded as

except that outgoing ions whose trajectories have alreadgxtending roughly to the point; (typically about\p to
intersected the grain are removed from the distribution. Thi£\p) where e¢(r1)=—3T/2. Equations(34) specify the
forms a void in the Maxwellian ford<#éy(r,v), where conditions under which the new ion created at a point
6,(r,v) is a monotonically decreasing function of batand ~ <r will fall onto the grain. These equations indicate that
v which is defined by Eq(5d). this is unlikely to happen i®%/r2<T/T,. When both of

For imu?(r)< —e¢(r) we have the trapped ion part of these conditions are satisfied,
Fhe di;tribution, given py Eq29). Outgoing ions whose tra- a2/r$<T/Te<1, 42)
jectories have already intersected the grain are removed from
the trapped ion distribution; hence there is a void for the steady state trapped ion population within the potential
< #,(r,v). Butin addition, incoming ions whose trajectories well greatly exceeds the untrapped ion population, since
will intersect the grain are removed from the trapped ion
distribution. As explained in Sec. Il B, this is done because
these ions have a very short lifetime as compared to the ' T ' v T T T T
orbiting trapped ions. Thus, for negative-energy ions, there is . .
also a void in the distribution fofr— 6< 6o(r,v). Note that (@) r=2a
f(r,v) has a spike for trapped ions with slightly negative
total energy. There are many such ions because they can be e 7
created by collisions that occur anywhere in the large volume y v‘\f(r,v)
at the edge of the potential well, whe¢€r) is slightly nega- . . . . f . \
tive. Smaller velocities in Fig. 5 correspond to more strongly 40 60 80, 100 120
trapped ions, which are created by collisions deeper within mv /2T
the sheath. The volume available for these collisions is " ) ’
smaller, but on the other hand there are many collisions at 2
smallr because the ion density there is lafgee Fig. 2. As
a result of the balance between these opposing tré(ds)
generally decreases at small values pbut there is a gentle
peak at moderate values of for the cases=2a andr
=10a. Notice also that for very small, 6y(r,v) becomes 0
larger thanm/2. This means that the void has eaten up the
entire distribution, and there are no trapped ions at all with
these small values af. The condition for this is that in-
equality (5¢) is violated.

The results shown in Figs. 2—5 appear to present a para-

%
.o....... 0o (r,v)

[

dox: we have assumed that the collision frequendy van- 1t - -

ishingly small, and yet trapped ions, created only by colli- eeeen Bolr) T - - _ -
sions, are a dominant feature of the solution. Indeg@,), ) 'I"‘ . ' > o

n(r), andf;(r,v, #) do not depend on the value of in this 0.0 0.8 1.6

limit of small ». How can this be possible, since there are no mv?/2T

trapped ions ifv=07? The explanation of the—0 limit is . N ) . . ) i

. FIG. 5. The ion distribution functiorf(r,v,6) is an isotropic function
that for ajny small but no_nzero value othe creation r.ate of f(r,v) which has voids for certain ranges @fas discussed in the text. We
trapped ions is proportional to and the loss rate is also showf(r,v) for Case 1 ata) r=2a, (b) r=10a, (c) r =\p=66.6. f(r,v)
proportional tov, so the steady state is independentyof is shown as a solid curve for the range%/2< —eg(r) (trapped ionj and
However, the time necessary to reach steady state is iffs @ dashed curve fonv?/2> —e(r) (untrapped ions These curves are

. . on arbitrary scale. The quantitiy(r,v) which characterizes the voids in the
Versely proportlonal to,, so Steady state is never reached fordistribution is shown as the dotted curves, with scale at leftoHess than

VZO-_ In _practice,v is alwaY_S very fast com_pared to MACrO- 3 critical value defined by Ed50), 6,(r ,v)= /2, which means the distri-
scopic times such as the lifetime of the discharge, or timesution function is entirely void.
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Densities
I:i/FOML

0 0.1 0.2 0.3 0.4 0.5
V}\.D/Vth

(r-a)/ }‘D

FIG. 8. F; /Fom. as a function of collisionality index\p /vy, .
FIG. 6. Trapped ion density(r), scaled ton,, for Case 1 &/\p
=0.015,T/T,=0.01, solid curvg Case 2 & \p=0.1,T/T,=0.01, dashed

curve, and Case 3d/Ap=0.015, T/T,=0.04, dotted curve In all three . . .
casezv_)(,_ o ¢ ve a/Np=0.1 is larger, the potential still shows a Debye-type

form out tor ~5\, but with a shielding length that is about

20% larger tham\ . In general, the old OML theorgwhich
nearly every collision of an untrapped ionratr results in ~ OMits trapped ionsshows Debye-type shielding out to
the creation of a trapped ion, but only a small fraction of the™5Ap . but with a shielding length that is longer than De-
collisions of trapped ions result in the disappearance of &ye. Including trapped ions in our theory decreases the
trapped ion. IfT/T,<a?/r2, the trapped ion population falls Shielding length, and brings the potential closer to Debye.
off because many of the newly born ions have low angulaBut for large grains, the OML shielding is significantly
momentum and immediately fall onto the grain. In the oppo-Weaker than Deby& and even with trapped ions remains
site limit whereT/ T, approaches unity, the trapped ion popu- noticeably weaker than Debye. Actually, it is a bit of a mys-
lation again falls off, because many of the newly born ionstery as to why the Debye form works as well as it does,
have enough energy to escapertox. Figure 6 shows the especially whenr<r;. The usual derivation of Debye
trapped ion density for Case 1 and for two cases with0 shielding pr(_)ceeds by linearizing an assumed Boltzmann
that test the limits(42). In Case 2,a/A\p=0.1 andT/T,  form for the ion density,

=0.01, and in Case 8/Ap=0.015 andT/T,=0.04. Note ed(r)
that the trapped ion density in these cases is appreciably nj(r)=ng eXﬁ( T ) (438
smaller than in Case 1, whera/\p=0.015 and T/T,
=0.01. egp(r)
In Fig. 7 we plotr ¢(r) for each of the three cases. In =MNo| 1~ T (43b

Cases 1 and 3/\p=0.015 is quite small, aneh(r) is very . ) ) i
close to the simple Debye-shielded potential, outrto @nd inserting Eq(43b and the equivalent expression for
~5\p. (For largerr, ¢(r)~r 2. This behavior at large is electrons into the Poisson equati(#1). However, the non-

due to ion absorption on the grdihy In Case 2, where linear Boltzmann form(43g is grossly wrong for <r¢; it
givesn;(r)>e'%, near the grain! The linearization is also

completely invalid, as;(r)>n, and |e4(r)|>T near the
! . v . . r r Y grain. Nonetheless, the linearized for@#3b) works pretty
well in deriving the shielded potential from Poisson’s equa-
tion.

B. Small but finite collision frequency

For nonzero collision frequency, we must determine
the floating potentialp; by setting the ion flux to the grain
Fi, from (32) and (36), equal to the electron fluk, from
(25). The determination ofp; is done self-consistently with
the solution fom,(r). Figure 8 shows; /F oy as a function
of the collisionality measurev\p/vy,, for a/Ap=0.015,
T/T,=0.01. We see that collisionality increagéssubstan-
tially even whenvp /vy, is small. The grain potentiap; is
shown as a function ob\p /vy, in Fig. 9. The floating po-

FIG. 7. r¢(r) for the three cases of Fig. 6. Case 1: solid curve. Case 2: C 0 .
dashed curve. Case 3: heavy dotted curve. The Debye potential is shown %n“al is suppressed by up to 50%, as a result of the colli-

the light dotted line. sional increase in ion current to the grain. To a very good

(r/a)/(-e o/T,)

(r-a)/ XD
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FIG. 9. Floating potentiad; , as a function of collisionality index\p, /vy, .
FIG. 11. Potential profiles(r) for Case 1p\p /v="5X 105 (solid curve;
Case 4,v\p/vy,=0.037 (dashed curye Case 5,v\p/vy=0.47 (dotted
approximation, the charge on the graini€e=ad; ; thusz ~ curve.

is also reduced by up to 50% as compared to the usually

accepted OML value. explanation is thate¢;| decreases with increasing collision-

It should be noted that there are two contrary effects ajiw, j e the potential well becomes shallower and hence
work in determining the dependencefgfon v. For a Speci- - ya05 fewer jons. We show the complete potential profile
fied grain potential¢;, collisions near the grain strongly #(r) for Cases 1, 4, 5 in Fig. 11. In all of these casgs)

!ncreaseFdi. But coII|S|onr?I|ty alsg decreasﬁﬁ:d, a”? (tjh|s significantly exceedan,(r) near the grain, so trapped ions
in turn reduces-; somewnhat. In Fig. 8 we shoW; scaled to o 5 qominant factor in shielding.

the OML ion quxFQML from Eq.(26)..He.reFOML means th.e In Fig. 12, we plot the integrand of Eq32), I(r')
OML f_qu tp a grain whose potentlal' is theﬁ?ML floating —4ar'2n(r")+n,(r)]p(r’). This plot shows the distribution
potential given Eq.(27)..|n some earlier work; we com- of locationsr’ where an ion had its last collision before
paredF; to an intermediate benchmark, the OML flux from hitting the grain. The result is shown for Case g /vy,
(26), to a grain whose potential is the full self-consistent _g;4-5 (ie., essentially zero, solid curyeCase 4
value of ¢, including the effect of collisions. This differ- Whp/vg=0 037 (dashed curve a’md Case 5 VAD/Uth,
ence in the definition of oy explains the apparent differ- _ ' - (dotted curve This is a log—log plot, so that we can

ence between Fig. 8 and some of the results quoted in Re&isplay both the spatial scale-\p of the sheath and the
25. . . ) much longer collisional scale~v,/v. Note that in all cases

In Fig. 10, we show the trapped ion densitr) for there is a peak im(r') that occurs at <Ap. This is due to
several values ob\p/vy: Case 1,vhp/vyp—0; Case 4, yhe gecasional collisions that occur within the sheath. The

ZAD/vchO.O(S?;_Case SPAp/uw=0.47. In all casesT/Te — yaay occurs for two reasons: The trapped ion density is very
=0.01 anda/Ap=0.015. Curiously enough, the trapped ion large in this range of, and if a collision occurs within the

density IS seen tcoiecreaser_as v increases. This may S€eM sheath, the resulting ion is quite likely to hit the grain. The
paradoxical since trapped ions are created by collisions. The

N Vg =0.47
R

r)

Densities

(r-a)/ Ap
(r-a)/ Ap
FIG. 12. The integrant(r") of Eq.(32), for T/T,=0.01,a/A,=0.015, and
FIG. 10. Trapped ion density,(r) for Case 1,v\p/v=5X%10"° (solid vAplvn=5%X10"% (solid curvd, v\p/vy=0.037 (dashed curve
curve); Case 4,v\p/vy,=0.037 (dashed curve Case 5,v\p/vy,=0.47 v\p /vy,=0.47 (dotted curve 1(r") is the relative contribution to the ion
(dotted curve. flux to the grain, from collisions at’.
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shape of the peak is roughly independentvadind the am- ACKNOWLEDGMENTS
plitude of the peak is roughly proportional @ hence the
contribution toF; is roughly proportional ta. For the cases
vAp /vy, =0.037 and 0.47, this is the dominant contribution
to F;. In addition,I (r") has a broad plateau that extends out
to several times the mean free path/v, and then falls off
exponentially(because if a collision occurs at such large ra-
dius, the resulting ion is likely to have another collision be-
fore it can reach the grainThis contribution td (r’) has an
amplitude that is proportional ta, and a spatial range that is APPENDIX: VALIDITY OE THE OML ASSUMPTION
inversely proportional to; hence its contribution té; is  (NO POTENTIAL BARRIERS)

independent ofv. This is in fact the OML current. For the ) ) ) )
cases\p /vy, =5%10"° and 0.037, the collisional contribu- If the effective potentiall(r;J), defined in Eq(2), has
tion from the peak at<\p is clearly distinguished from the & MaXiMumU ,5,>0 which occurs ar=ry, then phase
OML contribution from the plateau at~v,/v, but for the ~SPace for ions with angular momentum J and eneegy
cases vAp/vy,=0.47 the two regimes are beginning to <U nax IS partitioned into two regions: trapped ions for

merge. This case pushes the limits of validity of our theory,~"m» &nd untrapped ions for>r,. There are no collision-
which assumes to be small. less trajectories connecting the two regions, so it is possible

that the distribution function has a different form in each
region. We have avoided significant mathematical complica-
tions by assuming that there are no such barriers, or more
precisely that if there is a maximum ld(r) it is so low or

We have found that trapped ions created by Chargeg)ccurs in such a limited range dfthat it affects a negligible

exchange collisions can dominate both the shielding arounaumber of 1ons. r': follows then that. trapped ions are simply
a charged grain and the ion current to the grain, which deSYN"YmMous with negative-energy ions.
The neglect of centrifugal potential barriers has a long

termines the floating potential. In the limit where the colli- hi qi ¢ the K . £ th bital
sion frequencyw—0, the trapped ion density in the shielding Istory, and Is one of the key assumptions of the orbital-

cloud around the grain can be over an order of magnitud@nmion'"rnited (OML) theory of probes. There has been re-

larger than the untrapped ion density. The conditions for thé‘ewe‘j ipterest recently indthe t()q.uejéitonh of vglildity of this
trapped ion density to be large afe<T,, so that nearly all assumption. Bemstein and Rabinowitshowed long ago

the newly created ions are trapped in the potential well, an('fihat in th? I|m|Fa§AD_, there are no potentlal barriers if the
az/)\%<T/Te, so that very few newly created ions fall im- ambient ion distribution is monoenergetlc. It. was generally
mediately onto the grain. For finite but small, the ion cur- assumed, over the years, that potential barriers could be ne-

o . . lected if a<\ even if the distribution is Maxwellian.
rentF, to the grain increases. This increase is roughly proY D .
! 9 . gnly p. H—|owever, Allen, Annaratone and de Angéllshowed re-

cently that for a Maxwellian distribution, there are always

some ions subject to potential barriers, evea/if is small.

absence of collisiong¢; is typically — T, to —3T,, but we !
have seen trapped ion/collisional effects reducp; by as we sqbsequqntly calculatetithe actuql magnitude of the
potential barriers, under the assumption tiigr) has the

much as 50%. Self-consistently including this reduction in
the well depth reduces the density of trapped ions inghtIyPebye form,
thus the trapped ion density is actually largest in the limit a
v—0. ¢(r)= e e, (A1)

The presence of a large population of trapped ions pro- )
foundly changes the nature of the interaction of a grain with@t I€ast for out to severakp . As we have seen in Sec. 1V,
other grains, and with external forces. We have previousiFd- (A1) appears to be a good qualitative approximation, so
argued that shielding by untrapped ions cannot lead to a nett forms_a reasonable baS|s.for estimating the effect.of poten-
attractive electrostatic force between negatively-charged@ barriers. We concluded in Ref. 6 that the most significant
grains. But a grain with its trapped ion cloud can behavePotential barriers occur fof in the range,
like a “classical atom;” the trapped ion cloud can be polar- 1 32 3
ized, thereby shielding the grain from electric fiefd<,and Fahpdr<—<zakper, (A2)
possibly leading to van der Waals type attractive forces
between grains. We are studying these effects at the presewhere U(r) does indeed have a maximuby,, and the
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tributing some good ideas early in the work.
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V. CONCLUSIONS

flow to the grain suppresses the floating potential In the

time. value of the maximum is in the range
This paper has been concerned with trapped ion and col- U
. . . . . . a e| ¢f| max a e| ¢f|
lisional effects for a spherical dust grain which is at floating 0.01)\— T < T <0.02)\— T (A3)
D D

potential. It has recently been sho@it’ both theoretically
and experimentally, that the same effects can also be impo®nly a fraction of order 0.0H/\p)|e¢;/T| of those ions
tant in connection with the ion current to a cylindrical Lang- whose angular momentum satisfi@?) are stopped by the
muir probe, either biased or floating. potential barrier. AlthougHe;/T| is a large quantity ¢;
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