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Enhancement of Turbulence in Tokamaks by Magnetic Fluctuations
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Three-dimensional nonlinear simulations of drift-ballooning modes in a torus including electrom
netic effects are described. When diamagnetic effects are weak, the self-consistent magnetic fluct
in the model lead to a drastic enhancement of the transport well below the ideal ballooning insta
limit. [S0031-9007(97)03596-5]

PACS numbers: 52.30.Jb, 52.25.Fi, 52.35.Ra, 52.55.Fa
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The ability to predict fluctuation driven heat and pa
ticle transport in tokamaks is vital to the accurate desi
of future fusion machines of practical interest. As a resu
intense effort (see, e.g., Refs. [1–9]) has been focused
the development of realistic numerical models of the tu
bulent processes leading to this transport. These mod
are conventionally based on the electrostatic approxim
tion, in which the fluctuations of the magnetic field gen
erated by the plasma turbulence are neglected. We sh
here that in the edge region of tokamaks these fluctu
tions are essential to the description of high-performan
discharges, and can lead to drastic enhancements in
predicted transport rates unless diamagnetic effects
sufficiently strong. This enhancement is caused by t
influence of magnetic field line bending and shear on se
generated radial plasma flows in the system. In an el
tromagnetic model, such motions create radial magne
field perturbations, which effectively stiffen the flow an
inhibit its tendency to break up and become turbulent. A
a result, stronger flows, and thus stronger transport,
sustained.

The simulations are carried out in a poloidally and rad
ally localized, flux-tube-like domain that winds around th
torus [7]. Assuming a shifted-circle magnetic geometr
the equations for perturbations of the densityn, potential
f, magnetic fluxc , and parallel flowyk are as follows:

dtn 1 ≠yf 2 enCsf 2 adnd 1

s1 1 tdaden=kJ 1 ey=kyk  0 , (1)

=' ? dt='sf 1 tadnd 1 Cn 1 =kJ  0 , (2)

s2pd2as≠tc 1 ad≠ycd 1 =ksf 2 adnd  J , (3)

dtyk 1 eyf=kn 2 s2pd2a≠ycg  0 , (4)

where J  =
2
'c, C  fcoss2pzd 1 hszd sins2pzd 2

eg≠y 1 sins2pzd≠x is the curvature operator,hszd 
2p ŝz 2 a sins2pzd, dt  ≠t 1 ẑ 3 =f ? =, =k 
≠z 2 s2pd2aẑ 3 =c ? =, =

2
'  f≠x 1 hszd≠yg2 1 ≠2

y.
For simplicity,Ti andTe are assumed to be constant in th
simulations described here. However, further simulatio
including the contribution of thehi mode (for example)
0031-9007y97y79(2)y229(4)$10.00
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have been carried out, and the main results we disc
exhibit no qualitative change. The coordinatez lies along
the equilibrium magnetic field$B0, and the ambient density
gradient is in thex direction. The parallel, perpendicula
and time normalization scales are, respectively,Lz 
2pqR, L0  2pqsneiRrsy2Ved1y2s2RyLnd1y4, andt0 
sRLny2d1y2ycs (the ideal ballooning time), where
c2

s  Tes1 1 tdymi , rs  csyvci , and t  TiyTe.
Other parameters are the magnetic shearŝ  rsdqydrdyq,
the magnetohydrodynamic (MHD) ballooning parame
a  2Rq2dbydr , the diamagnetic parameterad 
rscst0yLnL0, e  ryR, en  2LnyR, ey  cst0yLz ,
with Ln the equilibrium density (or pressure) scale leng
Unless otherwise noted, we consider the typical valu
ŝ  1, t  1, e  0.2, en  0.05, ey  0.02. In these
units nyn0 , yzycs , L0yLn, f , BL2

0yct0, and c ,
2paB0L2

0yqR. Realistic diffusive dissipation terms ar
added to each equation.

Aside from thea term in hszd that arises from the
Shafranov shift of the flux surfaces, the terms prop
tional to a in Eqs. (1)–(4) represent the contribution
the magnetic field perturbations. These terms underlie
ideal MHD ballooning instability threshold, which occur
for a , 1. For a ø 1 the magnetic terms can be ne
glected, and the system becomes effectively electrosta
A main finding of this study is the magnetic fluctuation
can have a large impact on the nonlinear behavior eve
modest values ofa , 0.1 2 0.2.

The strong a dependence of the simulations aris
from an inherently nonlinear effect, and is not consiste
with expectations based on linear theory. To demonst
this, we describe the results of a linear ballooning mo
stability analysis of Eqs. (1)–(4). We address first a ca
in which diamagnetic effects are weak withad  0.1.
The solid curves shown in Fig. 1(a) are the growth ra
versusa for two values of the poloidal wave numbe
ku  7 (upper curve) andku  1 (lower curve). The
dashed curves in Fig. 1(a) show the electrostatic resu
Finally, the dotted curve shows the ideal growth ra
with ad °! 0. This curve defines the firstsa , 0.8d
and secondsa . 2.1d stability regions obtained in the
ideal limit of our model. A comparison of the solid an
dashed curves shows that electromagnetic effects, w
© 1997 The American Physical Society 229
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FIG. 1. (a)g vs a at ad  0.1; (b) g vs ku at ad  0.5.

having little impact on shorter wavelengthsl , 1, can be
strongly destabilizing at longer wavelengths fora , 1.

The growth rates at higher values of the diamagne
parameter and their dependence ona are substantially
reduced. Figure 1(b) showsg versusku at ad  0.5,
for two different values ofa: 0 (dot-dashed curve)
and 0.7 (solid curve—electromagnetic; dashed curve
electrostatic). These curves show thatg in the electro-
magnetic model (below the ideal threshold) is a mos
decreasing function ofa, and exhibits only a modest en
hancement at smallku relative to the electrostatic limit
even fora  0.7.

We now turn to nonlinear simulations of Eqs. (1)
(4), which show ana dependence stronger than tha
just described. These simulations are started from sm
amplitude random perturbations, which develop into
coherent pattern of radial streams consistent with t
structure of a dominant, linearly unstable mode. As
the example shown in Fig. 2, at some point [t . 23
in Fig. 2(a)] these streams break up due to the on
of a secondary instability [see Fig. 2(b)], which quickl
leads to saturation and fully developed turbulence. W
focus on thea dependence of the radial particle fluxG

in this turbulent state, averaged over time and poloid
angle. An expression for this quantity may be obtained

FIG. 2. (a) Typical evolution ofkn2l; (b) density perturba-
tions att . 23.
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integrating Eq. (1) overy and z, and in the general case
contains some terms proportional to≠yc (i.e., Bx). These
magnetic terms, however, are found to make a negligi
contribution toG in the nonlinear simulations that follow
(much smaller than would be expected on the basis
test-particle estimates, for example), soG . knVxl with
Vx  2≠yf.

The results forG are shown in Fig. 3. The solid
curves represent electromagnetic simulations, while
dashed curves show the electrostatic results. The t
sets of curves are forad  0.1 (squares) andad 
0.5 (triangles). Forad  0.1, the electromagnetic and
electrostatic models produce comparable fluxes fora ,

0.1. As a is raised, however, the particle (and energ
fluxes in the electromagnetic model increase dramatica
At a  0.3, still less than 50% of the ideal mode
threshold, these fluxes have increased by about a fa
of 6 above the electrostatic values.

As seen from thead  0.5 results in Fig. 3 (tri-
angles), the flux levels in the electromagnetic model a
very sensitive to diamagnetic effects. Ata  0.3, the
large enhancement inG found for ad  0.1 is eliminated
(although a residual 40% enhancement ofkn2l is still ob-
served). Simulations at other values ofTiyTe (not shown)
indicate this reduction is due mainly tovpe rather than
vpi . (We findvpi effects become increasingly importan
at still higher levels ofad anda —this will be addressed
in a future article.) At the larger value ofa  0.5 in
Fig. 3, a fourfold enhancement inG returns. The electro-
magnetic simulations at both small and largead also dis-
play a shift in the dominant modes to longer wavelengt
relative to the electrostatic case. This is visible in Fig.
which shows the density perturbations in the electroma
netic [Fig. 4(a)] and electrostatic [Fig. 4(b)] models fo
a  0.3, ad  0.1.

We now address the mechanisms underlying this b
havior. It might seem the enhancement of transport co
be a reflection of the destabilizing influence of the ide
mode in the linear system. This is not the case. O
indication of this is the early onset of the enhanceme

FIG. 3. Normalized particle fluxG vs a.
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FIG. 4. Density perturbations: (a) electromagnetic, (b) ele
trostatic.

which can become large for values ofa , 0.2 at which
the change in the linear mode for anyku is small. The
real proof, however, is that the enhancement can be vir
ally eliminated by excluding the purely nonlinear contr
bution of the magnetic perturbations to=k in the vorticity
equation (2) and Ohm’s law (3). Since saturation of th
system is initially caused by secondary instabilities lik
those in Fig. 2, these magnetic terms for smallad must
delay the onset of such instabilities and thereby allow t
fundamental modes to reach larger amplitudes before
break-up process is triggered. Conversely, at largerad,
the relative insensitivity of the saturation amplitudes toa

indicates the secondary modes relevant to this case ha
different character, and depend more weakly on the m
netic perturbations.

To gain some qualitative insight into this behavio
we apply Eqs. (1)–(4) to the stability analysis of a on
dimensional model, similar to the radially streaming co
figuration of Fig. 2, i.e., an unstable ballooning mod
with characteristic wave numberkb and growth rategb .
We takef , c , n , expsikbyd, with amplitude coef-
ficients fb, cb, etc. obtained from a numerical solutio
of the linear ballooning mode equation. We eliminate th
z dependence of the linear solution by an effective av
age alongz. Thus, the model configuration depends ony
only, and we consider the behavior of linear perturbatio
that vary asfs yd expsgt 1 ikxx 1 ikzzd.

Linearizing Eqs. (1)–(4) about an arbitrary, realy-
dependent configuration, we find

gysf̃00 2 k2
xf̃d 2 g00

yf̃  2 ikksc̃ 00 2 k2
x c̃d

1 ik00
k c̃ 2 Cñ , (5)

c̃ 00 2 k2
x c̃  ikksf̃ 2 adñd 1 âgyc̃ ,

gyñ  2ikxn0f̃ ,
(6)

where primes denotedydy, â ; s2pd2a, gy  g 1

ikxVx , kk  kz 1 kxBx, Vx  2f0, Bx  âc 0. For
simplicity, we exclude terms arising from the ambien
density gradient and takeey  en  t  0. We have
analyzed Eqs. (5) and (6) numerically for the configur
tion described above with periodic boundary condition
At small ad , this analysis shows the strongest seconda
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modes are driven by the velocity shear [g00
y in Eq. (5)],

the magnetic curvature [Cñ in (5)], and magnetic recon
nection [k00

k in (5)]. As expected from the simulations, th
system in this regime is controlled by the stabilizing e
fect of the magnetic field mentioned earlier, and displa
an instability criterion with a strong dependence on t
magnetic terms inkk. In contrast, at largerad , 1 the
strongest mode is a drift wave instability [driven by then0

term in Eq. (6)]. This mode has a different dependence
kk than those at smallad, and is influenced in a weaker
more complex way by the background magnetic pertur
tion. Consistent with the simulations, the strong enhan
ment in the transport found at smallad is therefore not
expected in this case.

We first analyze the case in which only the veloci
gradient instability is present, and then consider
addition of the electromagnetic terms. For simplicit
we exclude the contribution of the magnetic curvature
this analysis, although our results indicate it is in gene
competitive with the velocity shear effects, and depen
on magnetic line bending in a similar way. Finally, w
address the regime of largerad.

When the curvature, electromagnetic, and diamagn
terms are absent, only the Kelvin-Helmholz instability r
mains. This mode has a maximum growth rategmax .
0.3k2

b jfbj at kx . 0.6kb and kz  0. Since the presen
quasistatic treatment becomes relevant forgmax . gb, we
estimate the onset amplitude of instability with the co
dition gmax , gb, which givesjfbj . 3.7gbyk2

b. (For
the secondary mode to be effective, one might also
quire k' , kb —a condition which is satisfied for the
cases discussed here.) DenotingVb  kbjfbj, this a 
0 result is the solid curve in Fig. 5. The drop inVb

seen at smallkb is due to the decline ofgb at long
wavelength.

At finite a values, the magnetic perturbationcb as-
sociated with the ballooning mode enters through
contribution to kk, and has a very stabilizing impac
on the Kelvin-Helmholz mode. Its importance can

FIG. 5. Onset amplitudeVbskbd of secondary modes.
231
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estimated by retaining the simplest addition from lin
bending: Dropping thek00

k term in Eq. (5) and the
agyc term in Eq. (6), the right hand side of Eq. (5
reduces tok2

kf̂. This line bending term becomes com
parable to the terms on the left hand side of Eq.
for k2

kyk2
' * g, or with g , gb, k' , kb , and kk ,

k̂xBx , âk2
bcb, for â2k2

bc
2
b * gb . An expression for

cb can be obtained from Ohm’s law,J , k2
bcb ,

=kf , fb, and the Kelvin-Helmholtz onset criterion
fb , gyk2

b , gbyk2
b, which give cb , gbyk4

b . Thus,
line bending becomes important forkb & g

1y6
b â1y3. This

expression demonstrates that the Kelvin Helmholz s
bility of long wavelength radial streams is sensitive
electromagnetic effects even at very small values
a. For example, estimatingkb , 1 2 2 (see Fig. 4),
this condition yieldsa f âys2pd2g * 0.1 0.3, which is
roughly consistent with the onset of enhanced transp
in Fig. 3.

This scaling argument suggests the possibility of
long-wavelength catastrophe, in which modes at su
ciently long wavelength, stabilized by the magnetic p
turbations, grow without bound. This trend is seen
Fig. 5, which shows the onset amplitude of instability
the radial streams including all the electromagnetic ter
for a  0.3 (dashed line) anda  0.5 (dot-dashed line).
For finite a the onset amplitude increases sharply w
decreasingkb down to kb , 2, consistent with our scal-
ing analysis. Belowkb , 2, however, the emergence o
a new, electromagnetic instability leads to a sudden d
in the two curves with finitea. The Bx perturbations,
produced by the periodic streams, alternate in sign a
function of y, and at long wavelength are broken up b
a periodic double tearing mode. The maximum dou
tearing growth rate [10], obtained forkx , kb, is given
by g , jk3

bcbj2y3, or with the expressioncb , fbyk2
b ;

Vbyk3
b presented earlier,g , V

2y3
b . The onset condition

g , gb is therefore satisfied forVb , g
3y2
b , which de-

creases rapidly forkb °! 0, consistent with Fig. 5. For
increasingkb, the mode is progressively stabilized by v
locity shear. This stabilization becomes important wh
kxVxsx , Dd * g, where D , 1ysâgd1y2 is the scale
length of the reconnection region [10]. Givenkx , kb

andg , V
2y3
b , this can be written askb * â1y4, yielding

kb * 2 for a , 0.3 0.6. The stabilization of the tear
ing mode by velocity shear for increasingkb skb * â1y4d,
and stabilization of the Kelvin Helmholz instability fo
decreasingkb skb & g

1y6
b â1y3d, leads at finitea * 0.3

to a wave number “gap,” centered onkb . 2, in which
no strong secondary modes exist. The peak in Fig
at kb . 2 reflects this gap, and indicates that ballooni
modes in this part of the spectrum can reach substanti
enhanced amplitudes in the electromagnetic model be
the onset of secondary modes.

Finally, we address the case of largerad , 0.5. The
simulations exhibit a weaker dependence ona in this
232
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case, and this is consistent with the results we obt
from Eqs. (5) and (6). We consider a simplified lim
gy °! g, n0  const,kk  const,C °! 0, and retain the
magnetic terms only inkk. One then obtains a complex
growth rate associated with a drift-wave instabilityg 
2m2 1 sm4 2 2im2Vped1y2, with Vpe  2adkxn0 and
m2  k2

ky2k2
'. In contrast to the velocity gradient (o

curvature) driven modes discussed earlier, which are m
unstable forkk °! 0, this moderequires a finite value
of kk to be unstable. The most unstable value, found
maximizing gr  Resgd over kk, is k2

k . k2
'jVpej, and

givesgr ,max . 0.3jVpej. Thus, the contribution ofkk is no
longer uniformly stabilizing, and the magnetic suppressi
of secondary instability found earlier is no longer observe

Based on experience from linear theory alone, o
would not expect either the drift wave or electromagne
effects to play a major qualitative role in the regime
considered here. As is well known, the drift wav
is linearly stable in a system with magnetic shea
Nonlinearly, however, we find both effects are essent
due to their vital impact on the saturation process. The
results, although not directly applicable to the hott
tokamak core region, imply that it may be appropria
to reevaluate the role of such effects in models
core transport, in which the electrons are assumed
be adiabatic and thus drift-wave dynamics and magne
perturbations are neglected.

In conclusion, the transport predicted by the electr
magnetic model depends strongly on the level of diama
netic effects. When diamagnetic effects are sufficien
weak, self-generated magnetic fluctuations in our sim
lations lead to ab-dependent enhancement of the tran
port levels. This enhancement becomes very large as
system approaches a small fractions,1y4d of the ideal
MHD stability limit. These results, though they do no
address some important effects associated with reali
experimental profiles, indicate an electromagnetic mod
is essential to the reliable modeling of edge region tran
port in high-performance tokamaks. Further, the large
ductions in the transport we observe when diamagne
effects become moderately strong indicate that this no
MHD feature of the model also plays a vital role, an
may in fact be central to the attainment of high-b edge
plasmas in these machines.
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