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Enhancement of Turbulence in Tokamaks by Magnetic Fluctuations
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Three-dimensional nonlinear simulations of drift-ballooning modes in a torus including electromag-
netic effects are described. When diamagnetic effects are weak, the self-consistent magnetic fluctuations

in the model lead to a drastic enhancement of the transport well below the ideal ballooning instability
limit. [S0031-9007(97)03596-5]
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The ability to predict fluctuation driven heat and par-have been carried out, and the main results we discuss
ticle transport in tokamaks is vital to the accurate desigrexhibit no qualitative change. The coordinatkes along
of future fusion machines of practical interest. As a resultthe equilibrium magnetic fiel,, and the ambient density
intense effort (see, e.g., Refs. [1-9]) has been focused ajradient is in thex direction. The parallel, perpendicular,
the development of realistic numerical models of the turand time normalization scales are, respectivdly,=
bulent processes leading to this transport. These modetsrgR, Ly = 27 q(veiRps/2Q.) (2R /L,)"*, and1y =
are conventionally based on the electrostatic approximaRL,/2)'/?/c, (the ideal ballooning time), where
tion, in which the fluctuations of the magnetic field gen-c2 = 7,(1 + 7)/m;, ps = ¢;/w., and 7 = T;/T.,.
erated by the plasma turbulence are neglected. We sho@ther parameters are the magnetic sliear r(dq/dr)/q,
here that in the edge region of tokamaks these fluctuahe magnetohydrodynamic (MHD) ballooning parameter
tions are essential to the description of high-performance = —Rg?d/dr, the diamagnetic parametetr, =
discharges, and can lead to drastic enhancements in thec,ty/L,L;, € = r/R, €, = 2L,/R, €, = csty/L.,
predicted transport rates unless diamagnetic effects agith L, the equilibrium density (or pressure) scale length.
sufficiently strong. This enhancement is caused by th&nless otherwise noted, we consider the typical values
influence of magnetic field line bending and shearonselfs = 1, r = 1, e = 0.2, €, = 0.05, €, = 0.02. In these
generated radial plasma flows in the system. In an eleanits n/ng ~ v,/cs ~ Lo/Ln, ¢ ~ BL3/cty, and ¢ ~
tromagnetic model, such motions create radial magnetiezaByL3/gR. Realistic diffusive dissipation terms are
field perturbations, which effectively stiffen the flow and added to each equation.
inhibit its tendency to break up and become turbulent. As Aside from thea term in i(z) that arises from the
a result, stronger flows, and thus stronger transport, ar8hafranov shift of the flux surfaces, the terms propor-
sustained. tional to « in Egs. (1)—(4) represent the contribution of
The simulations are carried out in a poloidally and radi-the magnetic field perturbations. These terms underlie the
ally localized, flux-tube-like domain that winds around theideal MHD ballooning instability threshold, which occurs
torus [7]. Assuming a shifted-circle magnetic geometryfor o ~ 1. For @ < 1 the magnetic terms can be ne-
the equations for perturbations of the densitypotential  glected, and the system becomes effectively electrostatic.
¢, magnetic flux)s, and parallel flow are as follows: A main finding of this study is the magnetic fluctuations
can have a large impact on the nonlinear behavior even at
din + dy¢ — €,C(¢p — aqn) + modest values ofr ~ 0.1 — 0.2.
(1 + age,ViJ + e,Vjv =0, (1) The stronga dependence of the simulations arises
from an inherently nonlinear effect, and is not consistent
V., dVi.(¢ + ragn) + Cn + VyJ =0, (2) Wwith expectations based on linear theory. To demonstrate
this, we describe the results of a linear ballooning mode
Q) a(dp + aydyp) + V(¢ — ayn) =J, (3) stability analysis of Egs. (1)—(4). We address first a case
in which diamagnetic effects are weak with, = 0.1.

dvy + €[Vn — Q@) *ad, ] =0, (4) The solid curves shown in Fig. 1(a) are the growth rates
versusa for two values of the poloidal wave number:
where J =Viy, C =[cod27z) + h(z)sin2mz) — ko =7 (upper curve) andy = 1 (lower curve). The
€]o, + sin(2mz)a, is the curvature operatork(z) =  dashed curves in Fig. 1(a) show the electrostatic results.
2w8z — asinwz), d; =09, +Z X V¢ -V, V= Finally, the dotted curve shows the ideal growth rate,

9, — @m)Paz X V¢ -V, Vi =[0, + h(z)o, ] + 9;.  with a; — 0. This curve defines the firsta < 0.8)

For simplicity, T; andT, are assumed to be constant in theand seconda > 2.1) stability regions obtained in the
simulations described here. However, further simulationgdeal limit of our model. A comparison of the solid and
including the contribution of the); mode (for example) dashed curves shows that electromagnetic effects, while
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(a) (b) integrating Eq. (1) ovey andz, and in the general case
R S A 0.30 I contains some terms proportionaldgy (i.e., B,). These
magnetic terms, however, are found to make a negligible
contribution toI" in the nonlinear simulations that follow
(much smaller than would be expected on the basis of
test-particle estimates, for example), Eo= (nV,) with

Ve, = —0,¢.

The results forI" are shown in Fig. 3. The solid
curves represent electromagnetic simulations, while the
dashed curves show the electrostatic results. The two
sets of curves are fow; = 0.1 (squares) anda,; =
0.5 (triangles). Fora, = 0.1, the electromagnetic and
electrostatic models produce comparable fluxesadafox

0.40¢F 0.20¢
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 ° Oo 12 3 456 7 0.1. As « is raised, however, the particle (and energy)
« ks fluxes in the electromagnetic model increase dramatically.
FIG. 1. (a)y vsa atay = 0.1; (b) y VSky atay = 0.5. At a =03, still less than 50% of the ideal mode

threshold, these fluxes have increased by about a factor
of 6 above the electrostatic values.

As seen from thea, = 0.5 results in Fig. 3 (tri-
angles), the flux levels in the electromagnetic model are
Q/ery sensitive to diamagnetic effects. at= 0.3, the
large enhancement ihi found for a; = 0.1 is eliminated

having little impact on shorter wavelengths~ 1, can be
strongly destabilizing at longer wavelengths éor~ 1.

The growth rates at higher values of the diamagneti
parameter and their dependence @nare substantially

reduced. Figure 1(b) showg versusky at aq = 0.5, (although a residual 40% enhancementol) is still ob-

for two different values ofa: 0 (dot-dashed curve) : :
and 0.7 (solid curve—electromagnetic; dashed curve—Served)' Simulations at other valuesiof 7., (ot shown)

electrostatic). These curves show thain the electro- indicate this reduction is due mainly to.. rather than
magnetic model (below the ideal threshold) is a mostly”*" (We findw,; effects become increasingly important

gnet . - at still higher levels ofx, and a —this will be addressed
decreasing function o, and exhibits only a modest en-

hancement at smally relative to the electrostatic limit in a future article.) At the larger value af = 0.5 in
even fora — 0.7 0 Fig. 3, a fourfold enhancement Inreturns. The electro-

We now turn to nonlinear simulations of Egs m_magnetic simulations at both small and laxge also dis-
(4), which show ana dependence stronger thaﬁ thatplayasmft in the dominant modes to longer wavelengths

st described. These simulations are started from smal lative to the electrostatic case. This is visible in Fig. 4,

Jam litude ranaom erturbations. which develon into hich shows the density perturbations in the electromag-
P pertul ) 1eVelop 1NI0 3, qtic [Fig. 4(a)] and electrostatic [Fig. 4(b)] models for

coherent pattern of radial streams consistent with thea — 03 o) =01

structure of a dominant, linearly unstable mode. As in We 'nl)wdaddr.es's the mechanisms underlying this be-

f[he _example shown in Fig. 2, at some point={ 23 avior. It might seem the enhancement of transport could

in Fig. 2(a)] these streams break up due to the ons

: - : ! . e a reflection of the destabilizing influence of the ideal
of a secondary _|nstab|I|ty [see Fig. 2(b)], which quickly mode in the linear system. This is not the case. One
leads to saturation and fully developgd turbqlence. VV?ndication of this is the early onset of the enhancement,
focus on thea dependence of the radial particle flix
in this turbulent state, averaged over time and poloidal
angle. An expression for this quantity may be obtained by o.70

I(O)I
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FIG. 2. (a) Typical evolution ofn?); (b) density perturba- *
tions atr = 23. FIG. 3. Normalized particle fluX’ vs a.
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modes are driven by the velocity shear![in Eq. (5)],
the magnetic curvatureCli in (5)], and magnetic recon-
nection k| in (5)]. As expected from the simulations, the
system in this regime is controlled by the stabilizing ef-
fect of the magnetic field mentioned earlier, and displays
an instability criterion with a strong dependence on the
magnetic terms irk;. In contrast, at larget, ~ 1 the
strongest mode is a drift wave instability [driven by thle
term in Eq. (6)]. This mode has a different dependence on
0 2 4 6 8 1012 14 k than those at smalk,;, and is influenced in a weaker,

* * more complex way by the background magnetic perturba-
FIG. 4. Density perturbations: (a) electromagnetic, (b) election. Consistent with the simulations, the strong enhance-

trostatic. ment in the transport found at smail; is therefore not
_ _ expected in this case.
which can become large for values @f~ 0.2 at which We first analyze the case in which only the velocity

the change in the linear mode for aky is small. The gradient instability is present, and then consider the
real proof, however, is that the enhancement can be virtugddition of the electromagnetic terms. For simplicity,
ally eliminated by excluding the purely nonlinear contri- \ye exclude the contribution of the magnetic curvature in
bution of the magnetic perturbations ¥ in the vorticity  this analysis, although our results indicate it is in general
equation (2) and Ohm’s law (3). Since saturation of thezompetitive with the velocity shear effects, and depends
system is initially caused by secondary instabilities likegny magnetic line bending in a similar way. Finally, we
those in Fig. 2, these magnetic terms for smajl must  5qgress the regime of largey.
delay the onset of such instabilities and thereby allow the \yhen the curvature, electromagnetic, and diamagnetic
fundamental modes to reach larger amplitudes before th@ms are absent, only the Kelvin-Helmholz instability re-
break-up process is triggered. Conversely, at lalger  mains. This mode has a maximum growth ratg, =
the relative insensitivity of the saturation amplitudesto (33214, | at k, = 0.6k, andk, = 0. Since the present
indicates the secondary modes relevant to this case havggasistatic treatment becomes relevanyfr, > v, we
different character, and depend more weakly on the Magsstimate the onset amplitude of instability with the con-
netic perturbations. , _dition ymax ~ v5, Which gives|¢,| = 3.7y, /kz. (For

To gain some qualitative insight into this behavior, o secondary mode to be effective, one might also re-
we apply Egs. (1)-(4) to the stability analysis of a one-qjre , ~ k,—a condition which is satisfied for the
dimensional model, similar to the radially streaming con-cses discussed here.) Denotiig= k,|¢yl, thisa =
figuration of Fig. 2, i.e., an unstable ballooning mode( (asyit is the solid curve in Fig. 5. The drop i,
with characteristic wave numbey, and growth ratey,.  geen at smalk, is due to the decline ofy, at long
We takep ~ & ~ n ~ explik,y), with amplitude coef- wavelength.
ficients ¢, ¢, etc. obtained from a numerical solution At finite @ values, the magnetic perturbatiah, as-
of the linear ballooning mode equation. We eliminate thegyciated with the ballooning mode enters through its
z dependence of the linear solution by an effective aversgntribution to ki, and has a very stabilizing impact

age along.. Thus, the model configuration dependsyon o, e Kelvin-Helmholz mode. Its importance can be
only, and we consider the behavior of linear perturbations

that vary asf(y) exp(yt + ik,x + ik.z).
Linearizing Eqgs. (1)—(4) about an arbitrary, rea
dependent configuration, we find

Yo(@" — ki) — yid = — iky(§" — ki) ! i
+ ik — Cii,  (5) [ i
— iky( — agi) + &y, ] P

. /5 (6) =° '\.O»— I.’ \ {
= —ikyn'¢p, [ i '\. ]
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where primes denotel/dy, & = 2u)’a, y, =y +

ik,Ve, kj =k, + kB, V., = —¢', B, = ay'. For

simplicity, we exclude terms arising from the ambient I
density gradient and take, = €, = 7 = 0. We have 00l £
analyzed Egs. (5) and (6) numerically for the configura- 0 2 4 6 8 10
tion described above with periodic boundary conditions.
At small a4, this analysis shows the strongest secondary FIG. 5. Onset amplitud&, (k,) of secondary modes.
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estimated by retaining the simplest addition from linecase, and this is consistent with the results we obtain
bending: Dropping thek|’|’ term in Eqg. (5) and the from Egs. (5) and (6). We consider a simplified limit
avy,y term in Eq. (6), the right hand side of Eq. (5) y, — 7y,n’ = constk; = const,C — 0, and retain the
reduces tokﬁ&;. This line bending term becomes com- magnetic terms only irk). One then obtains a complex
parable to the terms on the left hand side of Eq. (5growth rate associated with a drift-wave instabiliy=

for kj/ki =y, or with ¥ ~ y,, ki ~ kp, and ky ~ —2,u2 +2(,u42— 2iu?Q)'?, with Q., = —agkn' and
kB, ~ akiy,, for &2kiy? = v,. An expression for M- = k||/2kl.. In contrast to the veloqty grgd|ent (or
¥, can be obtained from Ohm's lawj ~ k2y, ~  curvature) driven modes discussed earlier, which are most

Vié ~ é,, and the Kelvin-Helmholtz onset criterion, unstable forky — 0, this moderequiresa finite value
by ~ v/ki ~ yp/k}, which give ¢, ~ y,/ki. Thus of k to be unstable. The most unstable value, found by

L - 2
: . . — /6,13 . maximizing y, = Re(y) over ky, is kj = k1|Q..|, and
line bending becomes important fog = y, @ ™. This givesy, max = 0.3|Q..|. Thus, the contribution g is no

expression demonstrates that the Kelvin Helmholz st ! L X .
b alonger uniformly stabilizing, and the magnetic suppression

bility of long wavelength radial streams is sensitive to . o L
electromagnetic effects even at very small values 0pfsecondarymstabllltyfound earlier is no longer observed.
«. For example, estimating, ~ 1 — 2 (see Fig. 4) Based on experience from linear theory alone, one
th'is condition yieIdsa [= &/(27’;)2] = 01-03 whicﬁ is’ would not expect either the drift wave or electromagnetic
roughly consistent with the onset of enhanced transpoﬁﬁec.tS to play a major qualitative role in the_reglmes
in Fig. 3. por}glderled hetr)tle. .As is well kno_v\;]n, the dr_lft v¥]ave
This scaling argument suggests the possibility of g5 'néarly stable in a system with magnetic shear.
g arg 99 P y Nonlinearly, however, we find both effects are essential

long-wavelength catastrophe, in which modes at suffid to their vital i t on th turati Th
ciently long wavelength, stabilized by the magnetic per- ue 1o their vital impact on the saturation process. ese

turbations, grow without bound. This trend is seen inresults, although not _directly applicable to the hqtter
Fig. 5, which shows the onset amplitude of instability Oftokamaklco:e rtﬁglon,l lmplly tha; I f?aé[’ b_e appr(;)rirlatef
the radial streams including all the electromagnetic termQ reevaluate the role of such effects in models o

for @ = 0.3 (dashed line) and — 0.5 (dot-dashed line). COr€ transport, in which the electrons are assumed to
For finite « the onset amplitude increases sharply withbe adiabatic and thus drift-wave dynamics and magnetic

decreasingk;, down tok, ~ 2, consistent with our scal- perturbatlons_ are neglected. .
ing analysis. Belowk, ~ 2, however, the emergence of In conclusion, the transport predicted by the electro-

a new, electromagnetic instability leads to a sudden dro agnetic model depen_ds strong_ly on the level of @a_tmag—
in the two curves with finitex. The B, perturbations, etic effects. When diamagnetic effects are sufficiently

produced by the periodic streams, alternate in sign asI f_ak' slelf(-jg?neratéad ma:jgneitlc Illuctuatlon? |rf1tcr)]urt5|mu-
function of y, and at long wavelength are broken up by ations lead to g3-dependent enhancement of the trans-

a periodic double tearing mode. The maximum doubld?O' levels. This enhancement bgcomes very Iar_ge as the
tearing growth rate [10], obtained fas, ~ k;,, is given system ap.p_roa_ch_es a small fraction1/4) of the ideal
by y ~ k34, |2/3, or with the eX})ressiom ~ b/l = MHD stability limit. These results, though they do not
3 . 23 . address some important effects associated with realistic
Vi /ky presented earliery ~ V. The ?/r;set condition gy herimental profiles, indicate an electromagnetic model
y ~ v» is therefore satisfied fov, ~ v, ", which de- s essential to the reliable modeling of edge region trans-
creases rapidly fok, — 0, consistent with Fig. 5. For port in high-performance tokamaks. Further, the large re-
increasingk,,, the mode is progressively stabilized by ve- ductions in the transport we observe when diamagnetic
locity shear. This stabilization becomes important whereffects become moderately strong indicate that this non-
keVi(x ~ A) = y, where A ~ 1/(a4y)'* is the scale MHD feature of the model also plays a vital role, and
length of the reconnection region [10]. Givén ~ k,  may in fact be central to the attainment of highedge
andy ~ V§/3, this can be written ak, = &'/*, yielding  plasmas in these machines.
ky, = 2 for @« ~ 0.3-0.6. The stabilization of the tear-
ing mode by velocity shear for increasihg (k, = &'/%),
and stabilization of the Kelvin Helmholz instability for
decreasingk, (k, < v/°a1/3), leads at finitea = 0.3 [1] R.D. Sydora, Phys. Plasmas1455 (1990).
to a wave number “gap,” centered @p = 2, in which % g' E Wgﬁgg SJI.’PPE))//SS. SI:\;.m ;;ttgjbg?‘llgg(éf%)'
gkatSnzgresﬁggtgd?]Z n;()d?nde)i(:(:ilca:—(?se tf?:talgall?oolzrl?ﬁ 5[4] M. Kots_ch_enreutheet al.,Phys. Plasmag, 2381 (1995).
b = 2 I€l 9ap, N9 5] A.M. Dimits et al., Phys. Rev. Lett77, 71 (1996).
modes in this part of the spectrum can reach substantiall 6] P.N. Guzdaret al., Phys. Fluids B3, 3712 (1993).
enhanced amplitudes in the electromagnetic model beforg7] a. zeiler et al., Phys. Plasmas, 2951 (1996).
the onset of secondary modes. [8] J.F. Drakeet al., Phys. Rev. Lett3, 494 (1996).
Finally, we address the case of largef ~ 0.5. The  [9] B. Scott, Plasma Phys. Controlled Fusig® 471 (1997).
simulations exhibit a weaker dependence ®nin this  [10] P. L. Pritchettet al., Phys. Fluids B23, 1368 (1980).
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