
Two-fluid theory of collisionless magnetic reconnection
D. Biskamp and E. Schwarz
Max-Planck-Institut fu¨r Plasmaphysik, 85748 Garching, Germany

J. F. Drake
Institute for Plasma Research, University of Maryland, College Park, Maryland 20742

~Received 5 September 1996; accepted 16 January 1997!

Theoretical studies of collisionless reconnection in the framework of two-fluid theory are presented.
In the high-b case (b*1) reconnection is controlled by the whistler mode, leading to decoupling
of ions from electrons on scales,c/vpi . Though reconnection requires electron inertia, the
reconnection rate is independent thereof, controlled only by ion inertia. Reconnection is hence much
faster than in the absence of the Hall term. In the opposite limit of smallb the strong axial field
suppresses the whistler mode. Hence ions have to follow the electrons in the narrow reconnection
layerd;c/vpe , forming a macroscopic current sheet which strongly reduces the reconnection rate.
Theoretical scaling laws are confirmed by numerical simulations. ©1997 American Institute of
Physics.@S1070-664X~97!03304-1#
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I. INTRODUCTION

Observations in laboratory and space clearly indic
that fast magnetic reconnection processes occur in ne
collisionless plasmas. For instance, the time scales of
collapse phase in the so-called sawtooth oscillation, a re
ation oscillation in the core of a tokamak discharge, wh
necessarily involves reconnection, is much shorter t
could be accounted for by the collisional effects in Ohm
law, resistivity and electron viscosity.1 Even more stunning
are various types of magnetic processes observed in the
traterrestrial environment, notably magnetospheric s
storms, which seem to be caused by reconnection in
earth’s magnetotail,2 and solar flares, where reconnection o
curs in the solar corona,3 both plasmas being almost coll
sionless.

Theoretical analysis of collisionless plasma proces
usually requires a kinetic model. This is obviously true,
particle distribution functions deviate strongly from Ma
wellian, in particular developing long tails resulting fro
acceleration of particles to highly superthermal energies.
also for roughly isotropic distributions, kinetic effects ma
be important, if Larmor radii exceed typical gradient scal
If superthermal particles are negligible and the Larmor ra
are sufficiently small, collisionless dynamics can be inve
gated approximately in the framework of fluid theory, whi
is much more convenient both analytically and in numeri
simulations. A fluid description usually requires some dis
pation, notably viscosity, to prevent solutions from becom
singular. There may be some doubt, whether such proce
should then be called collisionless. Here we distinguish
tween collisional and quasi-collisionless processes on
count of the dominant reconnection mechanism. While in
former case the dynamics, in particular the reconnection t
scale, depends sensitively on the value of the dissipation
efficient, it is essentially independent thereof in the latt
where the role of dissipation is not basically different fro
the coarse-graining process required to introduce irrevers
ity and dissipation in the Vlasov theory.

Recently several theoretical and numerical studies in
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cate that the nondissipative terms in Ohm’s law, elect
inertia,4,5 electron pressure,6–8 and the Hall term,9,10 which
have usually been neglected in previous reconnec
theories,11 may give rise to rapid reconnection or speed
the reconnection process. In this paper we give a deta
picture of quasi-collisionless reconnection in high-b plas-
mas, which is dominated by the Hall term, and discuss
transition to the low-b case, where the effect of the Hall term
is suppressed. In section II a set of fluid equations is int
duced, which are solved in two-dimensional plane geome
In section III the high-b case is treated, which is dominate
by the whistler dynamics. In the regionuxu,c/vpi around
the X-point, where the ion motion can be neglected, we g
a quasi-quantitative solution of the reconnection configu
tion. We find that the micro-current sheet at the X-point a
justs automatically to the outside flow, such that the rec
nection rateE is independent of the electron paramete
c/vpe and electron viscosity.E depends only on ion inertia
c/vpi . Numerical simulations show that this dependence
rather weak, hence reconnection is fast forb*1. In the low-
b case, treated in section IV, the axial magnetic field s
presses the coupling to the whistler mode, which stron
reduces the reconnection efficiency. Section V summar
the results and gives some comments concerning kinetic
fects.

II. THE TWO-FLUID MODEL

The framework of a macroscopic theory of qua
collisionless reconnection is the general two-fluid equatio
It is, however, useful to introduce a number of restriction
which simplify the equations considerably:

~a! Quasi-neutrality. We assume that the Debye length
smaller than all relevant spatial scales. Hence ion a
electron densities are essentially equalni5ne5n.

~b! Electron and ion pressure tensors are assumed isotr
described by scalar pressurespe ,pi . This is, strictly
speaking, not in the spirit of collisionless fluid theo
such as the Chew-Goldberger-Low double adiaba
theory. Since, however, our interest is mainly in nea
(4)/1002/8/$10.00 © 1997 American Institute of Physics
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incompressible processes, details of the pressure
havior are not important. For the same reason a sim
scalar heat conductivity is chosen.

~c! The average pressure and density profiles are assu
homogeneous. Thus diamagnetic effects are ruled
Their effect is briefly discussed in section IV.

~d! The stress tensorspi ,e are reduced to scalar collisiona
viscosity terms. Since singularities tend to arise prim
rily in the velocity gradients, electron viscosity is mo
important than resistivity, which is hence neglecte
We also include the nondissipative gyroviscosity f
the ions thus accounting in a crude way for finite La
mor radius effects.

The electric field is determined by Ohm’s law,

E52
1

c
ve3B2

1

ne
¹pe2

me

en
~] tnve1¹•veven!

2me

me

e
¹2ve . ~1!

The ion equation of motion is

mi~] tnvi1¹•vivin!2enSE1
vi
c

3BD1¹pi

5m imin¹2vi2m0mib3¹2vi . ~2!

me ,m i are the kinematic viscosities, and the gyroviscosity
m05cTi /eB, b5B/B. The pressure equations are simply

] tpe,i1ve,i•¹pe,i1gpe,i¹•ve,i5k¹2pe,i , ~3!

wherek is a small phenomenological scalar heat diffusivi
The magnetic field follows from Faraday’s law

] tB52c¹3E, ~4!

and Ampère’s law connects the fluid velocities to the ma
netic field

en~vi2ve!5 j5
c

4p
¹3B. ~5!

The electric field is eliminated from~2! and~4! by inserting
expression~1!, andve is expressed byvi and j .

These equations are solved in two-dimensional~2D!
plane geometry. Since we are mostly interested in the ne
incompressible case, we assume that the density is hom
neousn5n05 const. The magnetic field is written in th
form

B5ez3¹c1ez~Bz01b!, ~6!

splitting the axial component into a background fieldBz0 and
a fluctuating part,̂b&50. The current density then becom

j5 j'1ezj z5
c

4p
~¹b3ez1ez¹

2c!. ~7!

While in the high-b caseve in the electron inertia term could
well be approximated by2 j /ne, in the low-b case, where
Bz0@B' , we find ve'.vi' @ j' /ne even in the diffusion
layer. Hence we do not make this approximation. To wr
the basic equations in nondimensional form, we introdu
the following normalizations. Since the whistler mode pla
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e-
le

ed
t.

-

.

s

.

rly
ge-

e
s

a particular role in these studies, we use the whistler ti
tw5L2/de

2Ve as time unit instead of the Alfve´n time
tA5L/vA , whereL is some characteristic spatial scale a
B0 enteringVe andvA a characteristic poloidal field inten
sity. In these units the equations read:

] t~c1de
2vez!1ve•¹~c1de

2vez!5ne¹
2vez, ~8!

] t~b2de
2ve!1ve•¹b1~Bz01b!¹•ve2B•¹vez

2de
2~¹3¹•veve!•ez52ne¹

2ve , ~9!

di
2~] tvi'1¹•vi'vi'!1de

2~] tve'1¹•ve've'!1¹~pi1pe!

1~Bz01b!¹b1¹2c¹c

5n i¹
2vi'1ne¹

2vi'2n0ez3¹2vi' , ~10!

di
2~] tv iz1¹•vi'v iz!1de

2~] tvez1¹•ve'vez!2B•¹b

5n i¹
2v iz1ne¹

2vez, ~11!

] tpi1vi•¹pi1gpi¹•vi5k¹2pi , ~12!

] tpe1ve•¹pe1gpe¹•ve5k¹2pe , ~13!

where ve'5vi'1ez3¹b, vez5v iz2¹2c, de,i5c/vpe,iL,
ne5mede

2 ,n i ,05m i ,0di
2 . Since the collisional value ofne

would be negligibly small,ne represents an effective viscos
ity due to a slight stochastic braiding of magnetic field line
Here we considerne ,n i ,n0 essentially as small phenomen
logical parameters, introduced to prevent solutions from
coming singular. For sufficiently small values the global d
namics is found to be independent thereof. Since¹• j50, we
have¹•ve5¹•vi for constantn. It is interesting to note tha
when inserted in Faraday’s law the electron pressure term
Ohm’s law vanishes for constant density. Therefore in t
framework we do not include thepe effect considered in
Refs. 6–8. Those papers consider only the parallel com
nent of Ohm’s law in a strongly magnetized system w
Bz@B' , which is briefly discussed in section IV. Equation
~8!–~13! conserve momentum, but the enforced constancy
the density implies local sources and sinks of energy. L
earizing the equations about a static homogeneous equ
rium p0i ,e,By0 ,Bz0 , neglecting dissipation and settin
ve52 j in the electron inertia term yields the linear dispe
sion relation, which is still rather complicated in the gene
compressible case. Assuming incompressible moti
¹•vi ,e50 we obtain

v25
ki
2k2

~11k2de
2!2

1
ki
2di

22

11k2de
2 . ~14!

While for long wavelengthkdi,1 the last term dominates
representing the Alfve´n wave, for smaller wavelength
kdi.1 one has a pure electron mode, the whistl
v2.ki

2k2 and high group velocityvg}k for kde,1,
v2.ki

2/k2de
4 ~or v25Ve

2ki
2/k2 in dimensional form! and

small group velocityvg.0 for kde.1. The whistler implies
a coupling between poloidal and toroidal field perturbatio

bk56kck , ~15!

which is valid independently of the value ofkde . We will
see in section III that the whistler is the relevant mode
1003Biskamp, Schwarz, and Drake
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reconnection at sufficiently high plasma pressure,b*1. In
the low-b case,Bz0@B' , the Bz0¹•ve in Eq. ~9! is not
negligible even for nearly incompressible conditions. It lea
to suppression of the whistler mode, leaving only the Alfv´n
wave also forkdi.1.

III. THE HIGH-b CASE

For high background pressure electron and ion moti
are incompressible. Since the termgpi ,e¹•vi ,e in the pres-
sure Eqs. ~12!, ~13! must be finite, one has
¹•vi5¹•ve.0. Assuming ¹•vi50 the pressure is no
longer determined by Eq.~12! but from Poisson’s equation
obtained by taking the divergence of the equation of mot
~10!. Note thatp does not affect the dynamics directly, it ca
be eliminated from Eq.~10! by applying the curl, which
yields

di
2~] tv i1vi•¹v i !1de

2~] tve1ve•¹ve!2B•¹ j

5n i¹
2v i1ne¹

2ve , ~16!

where v i ,e5¹2w i ,e ,vi ,e5ez3¹w i ,e ,we5w i1b. Equations
~8!, ~11! for c,v iz remain unchanged, while Eq.~9! can be
written in the form

] t~b2de
2ve!1ve•¹~b2de

2ve!2B•¹vez52ne¹
2ve .

~17!

If we assume that reconnection occurs in a localized reg
~X-point!, the properties of the linear mode~14! suggest the
existence of two different regions around this point: F
scales exceedingdi ,kdi,1, the magnetohydrodynami
~MHD! picture applies, where electrons and ions move
sentially together,vi.ve ; for smaller scales,kdi.1, the
ions can no longer follow the electrons,vi.0, forming a
static charge neutralizing background, while the dynamic
only determined by the electrons. This behavior is clea
seen in Figs. 1 and 2 illustrating a typical reconnection p
cess, the merging of two flux bundles.~Details of the nu-
merical procedure are discussed in section III B.! In Fig. 1
the flow patternswe andw i show that when the ion flow is
deviated into the outflow cone at some distance of or
di , the electron flow is converging toward the X-point form
ing much smaller structures. This qualitative difference
the flow properties becomes more quantitative in Fig.
which shows the magnitude of the ion and electron veloci
along the inflow directions, the diagonal across the X-po
in Fig. 1: whileve.v i outside the ion inertial layer, ions ar
decelerated inside this layer, but electrons are accelera
until finally they, too, are slowed down inside a mu
smaller layer of orderde . Hence the small-scale reconne
tion dynamics inside the ion layer can be described ignor
the ion motion,vi50, ve52 j52¹3B. This approxima-
tion is called electron magnetohydrodynamics~EMHD!,
which has attracted considerable attention recently, be
relevant in a variety of fast plasma processes, see e.g. R
12–15. The 2D EMHD equations consist of Eqs.~8! and~17!
with b5we , vez52 j52¹2c,

] t~c2de
2 j !1ve•¹~c2de

2 j !52ne¹
2 j , ~18!
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] t~we2de
2ve!1ve•¹~we2de

2ve!1B•¹ j52ne¹
2ve .

~19!

A. Behavior in the reconnection region

In the regionuxu,di around the X-point we hence ana
lyze the configuration in the EMHD framework assumin
stationarity, which is valid as long as the flow is stable.
stability and resulting turbulence will be briefly discussed
the end of this subsection. We choose the coordinate sys
such that6x defines the inflow and6y the outflow direc-
tions. Foruxu@de the stationary equations are

E1ve•¹c50, ~20!

B•¹¹2c50, ~21!

FIG. 1. Simulation of flux bundle coalescence withdi50.1,
de50.015,n i51025, ne51026.
Biskamp, Schwarz, and Drake
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whereE5Ez5] tc is the reconnection rate. These equatio
have the similarity solution:16

c5
1

2
~x22a2y2!, ~22!

we5
E

2a
lnU x1ay

x2ayU. ~23!

The stream functionwe implies, that the upstream flow con
verges toward the X-point and the downstream flow diver
away from it. Finite viscosity is only needed to smooth t
flow singularity on the separatrixx56ay. The scale param
eter a allows a finite uniform current density, so that th
separatrix branches may intersect at any angle.

We now show that the solution~22!, ~23! for uxu.de can
be matched to the electron inertia-dominated reg
uxu,de , wherec andwe deviate from these expressions.
the limit of small viscosity the current layer, which forms
the inertia-dominated region, exhibits a complicated mu
scale structure. In particular the current densityj5¹2c de-
velops a cusp-like singularity resulting from continuous a
celeration at the X-point, the stagnation point of the flow4

The singularity is, however, only logarithmic,5 so that it does
not give a finite contribution to the integrated current. In t
following order-of-magnitude discussion we will therefo
neglect these substructures considering only average qu
ties.

The inertia-dominated region consists of a current la
of width d and lengthD. From the convection term in Eq
~8! we see that inertia becomes important if

]xc5By;de
2]xj;de

2By /d
2,

hence the layer width is

d;de . ~24!

Integrating thewe equation over a quadrant of the cu
rent layer region and using Gauss’ theorem to transform
area integrals into line integrals over the boundary

FIG. 2. Inflow velocitiesve ~solid line! and v i ~dashed line! along the
diagonal, from the simulation state shown in Fig. 1.
Phys. Plasmas, Vol. 4, No. 4, April 1997
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we obtain the relation between the outflow velocityv and the
axial current density:

v; j . ~25!

The equality of these flows results from the gyro-rotation
the out-of-plane currentj into the outflow direction. The
current layer can also be interpreted as a~finite amplitude!
whistler perturbation satisfying Eq.~15! with k.kx , which
is equivalent to Eq.~25!. Integration of the continuity equa
tion over a quadrant of the current layer connects the outfl
velocity v to the inflow velocityu

uD;vde . ~26!

Finally, to derive a relation for the layer lengthD we use the
property thatF5c2de

2 j , the electron canonical momentum
in z direction, is constant along the current layer,]yF.0,
which is also seen in the numerical simulation~Fig. 4 be-
low!, Fuy5D5Fuy50 . To determine the variation ofc, we
note that, whileBy is changed by the presence of the curre
sheet,Bx is not, as can be checkeda posteriori using the
resulting scaling laws forj andD. Hence]yBx;1 leads to
the relation

c~D!;D2;de
2 j . ~27!

Let us write the resulting scaling laws forD, j ,u in terms of
the reconnection rateE. Using the relationE;uBy;u jde
and Eqs.~24!–~27! one obtains

D;~Ede
2!1/3, ~28!

j;v;~E/de!
2/3, ~29!

u;~E/de!
1/3. ~30!

The lengthD of the layer given in Eq.~28! is simply the
effective Larmor radius of electrons with velocityv in the
magnetic fieldBx . The scaling laws are consistent with th
essential physics of the layer, the transformation of magn
energy into streaming energy. The energy flux into the la
is mainly magnetic

uBy
2D;de@meu

3D;de
5/3

with me5de
2 in our units. By contrast the energy flux out o

the layer is mainly kinetic

mev
3d;de@vBx

2d;de
5/3,

usingBx;D. We also see that the energy fluxes into and
of the layer are of the same order.

Relation ~28! shows thatD shrinks to zero forde→0.
SinceBy; jde→0, there is no flux pile-up in front of the
layer. The reconnection rateE is therefore independent o
de ~andne) depending only on the global configuration, e.
the free magnetic energy. This behavior differs strongly fro
reconnection in resistive MHD. Though outside the diffusi
layer a solution similar to Eqs.~22!, ~23! is permitted~re-
placing the electron flow by the plasma flow!, it cannot be
matched to the diffusion layer, which in the MHD case is
current sheet of macroscopic lengthL. The essential differ-
1005Biskamp, Schwarz, and Drake



FIG. 3. Reconnection region from a simulation of flux bundle coalescence in the EMHD approximation.~a! c; (b)we for de50.06; (c)we for de50.015,~b!
and ~c! taken at the time;c is essentially identical in both cases.
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ence is that in resistive MHD the outflow velocityv equals
the upstream Alfve´n velocity, which is finite, while the cur-
rent density diverges for resistivityh→0. The reconnection
rate depends strongly onh,E;h1/2, for details see e.g. Ref
17.

B. EMHD simulation results

The predictions of section III A are confirmed by n
merical simulations. We consider the merging of two fl
bundles located on the diagonal in a square box of edge
L52p with periodic boundary conditions,

c5exp$2@~x2x1!
21~y2y1!

2#2/4%

1exp$2@~x2x2!
21~y2y2!

2#/4%, ~31!

where x15y15p/210.6, x25y253p/220.6. The rather
square-shaped profiles are chosen to localize the flux tub
order to avoid overlap between tubes in neighboring com
tational boxes thus minimizing the effect of the bounda
conditions. We also add a low level random velocity field

Equations~18!, ~19! are solved numerically using a sta
dard pseudospectral method with dealiasing according to
2/3 rule. The number of modes~more appropriately colloca
tion points! N2 is chosen suitably to provide adequate re
lution, N varying between 256 and 2048.

A series of simulation runs have been performed w
different values of the parametersde and ne . ~In order to
concentrate dissipation more strongly at small scales we
a higher order diffusion operator replacingne¹

(4)c,
ne¹

(4)we by n3¹
(6)c, n3¹

(6)we , respectively.!
Figure 3 shows the region around the X-point for tw

different values ofde . The inertia dominated region appea
as a small layer of high velocity.@Note that the strong flows
at the separatrix are a property of the similarity soluti
~23!.# The layer shrinks in both length and width with d
creasingde consistent with the scaling laws~24!, ~28!.

In Fig. 4 a blowup of the reconnection region shown
Fig. 3 gives contours ofc andF5c2de

2 j . This figure illus-
trates some important features of collisionless reconnect
Equation~18! implies thatF is convected with the electro
fluid motion. Since symmetry requires a stagnation point
the flow at the X-point, in the absence of dissipationF would
simply pile up in front of the X-point and would remai
topologically invariant. This pile up ofF is clearly seen in
1006 Phys. Plasmas, Vol. 4, No. 4, April 1997
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Fig. 4~b! and is the reasonF is nearly constant along the
layer as discussed in section III A. However, the distortion
the contours ofF in the outflow region clearly indicates tha
F is undergoing a topological change. This is a conseque
of the finite dissipation in the system. The singular cusp-li
structure ofj near the X-point is reflected in a similar struc
ture forF and allowsF to change topology even in the limit
of vanishingly small dissipation.

FIG. 4. Blowups of the reconnection region of the run shown in Figs. 3~a!,
3~b!: ~a! c; ~b! F5c2de

2 j .
Biskamp, Schwarz, and Drake
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The reconnection rateE is found to be independent o
de and n3 , which have been varied in the interva
1021<de<1022 and 1026<n3<10212. Table I gives the
maximum values ofE for seven runs. The numbers confir
that E does not depend onde andn3 ~apart from the weak
increaseof Emax with decreasingde).

In the discussion of section III A we have ignored t
substructures,de in the inertia-dominated region. Instead
a bell-shaped cross-layer current profile as in resistive MH
in the weakly collisional EMHD system the current dens
develops a cusp-like profile with strong gradients increas
with decreasing viscosity. As can be expected of a fluid
high Reynolds number, turbulence is generated, which is
cited by the Kelvin-Helmholtz instability of the sheared ele
tron flow. Since transverse scales and turbulence wa
lengths are short compared tode andve@ j , Eq.~19! reduces
to the 2D Euler equation. Kelvin-Helmholtz instabilit
arises, roughly speaking, ifkls,1, wherel s is the scale of
the velocity gradient andk the wavenumber, andg;v/ l s is
a typical growth rate. In addition the aspect ratioD/ l s has to
be sufficiently large.

Though the onset of turbulence does not increase
reconnection rate, which already in the laminar case depe
only on the global configuration, its main effect is to provi
a finite dissipation rateR. While for laminar flowsR de-
creases with decreasing viscosity,R becomes independen
thereof, if turbulence is generated. These and other prope
of EMHD turbulence have recently been discussed in R
15.

C. Effect of ion inertia

In the previous subsections we have shown analytic
and numerically that the electron dynamics responsible
reconnection to occur adjusts to the outside conditions, s
that the reconnection rateE does not depend on the electro
physics characterized byde andne . HenceE depends only
on the ion physics, characterized bydi and n i , which has
been studied by numerical simulations of the incompress
Eqs.~8!, ~11!, ~16!, ~17!.

Since it is numerically difficult to combine the most in
teresting case di!1 with a realistic ratio
di /de5Ami /me;50 , we choose valuesdi /de;10, varying
bothdi , 0.4>di>0.05, anddi /de ,13.3>di /de>6.6, to ob-
tain the relevant scaling laws. A typical state from a simu
tion run with di50.1, de50.015,n i51025, ne51026 has
been shown in Fig. 1.

TABLE I. Maximum reconnection rateEmax for seven different EMHD
runs.

de n3 Emax

0.1 1026 1.28
0.1 1028 1.30
0.06 1028 1.27
0.06 5310210 1.36
0.03 1028 1.42
0.03 5310210 1.42
0.01 1028 1.53
Phys. Plasmas, Vol. 4, No. 4, April 1997
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Table II gives the maximum reconnection rates and to
reconnection times for a series of runs with different valu
of di ,de ,n3 . Here we used again third-order diffusion o
erators. The numbers show that the reconnection rate i
fact independent of the electron physics given byde and the
dissipation coefficients, but depends on the ion inertiadi .
Thus, the reconnection time is no longer linked to the wh
tler time scale of the flux bundles. It is therefore useful
rescaleE to the Alfvén time tA5ditw , which facilitates the
interpretation of the results. In Table II the reconnection r
E*5Edi in units of the Alfvén time is also displayed. We
see that normalized in the conventional way the reconnec
rate decreases only weakly asdi is reduced. For the range o
di considered the reconnection speed is therefore alm
Alfvénic. Consistent with this fast reconnection rate the i
flow does not form an extended layer. In fact the ion veloc
changes abruptly in a shock-like way from lower inflow
higher outflow values, a behavior reminiscent of Petsche
configuration.

The asymptotic scaling laws fordi→0 are, however,
difficult to assess from the present simulation results. It c
not be excluded that the ions form a macroscopic flow la
of width di giving rise to relatively slower reconnectio
E*;di . Indeed, if the reconnection rate is sub-Alfve´nic for
small di , the analysis by Waelbroeck19 would indicate that
the external MHD solution should force a macroscopic c
rent sheet to form. In any case in the high-b regime two-fluid
theory predicts reconnection to be much faster than sin
fluid theory, where the Hall term is ignored.

The results of the incompressible computations are c
roborated by solving the fully compressible Eqs.~8!–~13! in
the case of a large background pressurep0 . ~Whether this is
ion pressurepi or electron pressure does not make a noti
able difference.! To avoid excitation of shockwaves the pre
sure distribution in the flux tubes given by Eq.~31! is chosen
such as to provide approximate equilibrium in the init
state. The ambient axial field isBz050. As expected com-
pressibility effects are negligibly small for largep0 and the
dynamics is practically identical with the incompressible b
havior. Extending the compressible simulations we find t
the global behavior in the high-b regime carries on to the
b;1 regime. This is also true in the presence of a fin
ambient fieldBz0;B' , though this field destroys the sym
metry of the incompressible reconnection process, as is c

TABLE II. Maximum reconnection rateEmax and time t0 for complete
coalescence for different simulation runs for incompressible io
E*5Edi is the reconnection rate in Alfve´n time units.

di de n3 Emax t0 Emax*

` 0.03 1028 1.4 1.5 -
0.4 0.03 4310210 1.7 1.3 0.68
0.2 0.03 1028 2.5 1.0 0.5
0.2 0.015 1028 2.4 1.0 0.48
0.2 0.03 4310210 2.4 1.0 0.48
0.1 0.015 1028 4.4 0.5 0.44
0.1 0.015 4310210 4.4 0.55 0.44
0.05 0.0075 4310210 6.7 0.35 0.34
1007Biskamp, Schwarz, and Drake
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from theBz0¹•ve term in Eq.~9!, which makes the analysi
of the layer structure more difficult.

Let us briefly discuss the energy balance in the rec
nection process. We find that magnetic energy is transform
mainly into ion flow energy, while the electron flow energ
contribution is small. On the other hand the dissipation r
is mainly due to electron~viscous! dissipationRe , the ion
contributionRi being small. The ratioRi /Re depends only
weakly on the ratio of the dissipation coefficients.

IV. THE LOW-b CASE

For large axial fieldBz0 , i.e. smallb, the plasma motion
is again nearly incompressible as follows from Eq.~9!. Simi-
larly to p in the high-p0 case,b in the high-Bz0 case can no
longer be determined from the original equation, since t
would require knowledge of the residual value of¹•v, the
termBz0¹•v being finite. Insteadb is obtained by taking the
divergence of the equation of motion:

di
2¹•~¹•vivi !.di

2vi•¹¹•vi.Bz0¹
2b2¹•~ j¹c!.

~32!

The b equation, on the other hand, provides an express
for ¹•v ,

¹•v.2
1

Bz0
B•¹ j ,

since the remaining terms in Eq.~9! are found to be small
Hence the inertia term in Eq.~32! is O(Bz0

21), such thatb is
determined by the equilibrium equation, which yields

b

By
;

By

Bz0
!1. ~33!

Comparing this behavior with the high-b situation, where
the whistler dominates characterized by Eqs.~15! and ~25!,
we see that the whistler is suppressed by a strong axial fi
Hence we can ignore the poloidal current density, ions
electrons are essentially moving together in the poloi
planeve'.vi'@ j' , such that the dynamics is determined
the equations for the flux functionc and the stream function
w of the incompressible plasma flowv5ez3¹w, v5¹2w,

] t~c2de
2¹2c!1v•¹~c2de

2¹2c!52ne¹
2¹2c, ~34!

] tv1v•¹v2B•¹¹2c5n i¹
2v. ~35!

This model has previously been discussed in Refs. 4 an
While in a high-b plasma the ion flow is confined to a laye
of width di , in a low-b plasma imbedded in a strong axi
field the ions are forced to flow in a layer of widthde . The
reconnection configuration consists of a macroscopic cur
sheet of lengthL and widthde , leading to the scaling

u;~Ede!
1/2, ~36!

v;By;~E/de!
1/2. ~37!

Since the magnetic energy;By
2L2 is finite, reconnection is

rather slow,

E&O~de!. ~38!
1008 Phys. Plasmas, Vol. 4, No. 4, April 1997
-
ed

e

is

n

ld.
d
l

5.

nt

A typical state from a simulation of Eqs.~34!, ~35! is shown
in Fig. 5. The results of simulations based on Eqs.~8!–~13!
are presented in Table III to illustrate the transition from t
compressibleBz0;1 case to the incompressible case of lar
Bz0@1. While for Bz051 the reconnection rate is indepe
dent of de , it strongly decreases withde for Bz0@1 ap-
proaching the scalingE;de , Eq. ~38!. A crude estimate of
the ion flow layer widthd i gives d i /di;b/By0;By0 /Bz0 ,
whereBy0 is the poloidal field in front of the layer. Henc
E becomes independent ofBz0 , if Bz0 /By0.di /de .

V. CONCLUSIONS

We have studied the properties of quasi-collisionless
connection in the framework of two-fluid theory, restricted
two-dimensional geometry. In the high-b case the dynamics
is controlled only by ion inertia, being independent of t
electron physics, in particular electron inertia and elect
viscosity. This behavior can be linked to the whistler mod
which decouples the electrons from the ions on sca

FIG. 5. Flux bundle coalescence neglecting the Hall term, Eqs.~34!, ~35!:
Contours of~a! c, ~b! w.

TABLE III. Maximum reconnection rate for different axial fieldsBz0;
di50.2.

Bz0 Emax(de50.03) Emax(de50.015)

1 2.51 2.54
2.5 2.25 2.25
5 1.98 1.77
10 1.38 0.86
20 1.25 0.74
Biskamp, Schwarz, and Drake
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l,c/vpi . Since the group velocity of the whistler increas
with decreasing spatial scales, the electrons form an X-p
configuration with a flow converging and accelerating
ward this point. This flow is only changed at scal
l;c/vpe , where the whistler mode becomes slow. The
havior is described by the equations of electron magneto
drodynamics. We have given a self-similar solution valid
c/vpi. l.c/vpe , which can be matched to the micro
current layer around the X-point, the scaling laws of whi
have been derived. The configuration differs fundament
from the macro-current sheet set up in resistive MHD rec
nection. Numerical simulations show that for not too sm
values of di5c/vpiL the reconnection speed is almo
Alfvénic depending only weakly ondi . The behavior in the
limit di!1 is difficult to assess. It cannot be excluded that
this limit a macro-current sheet of widthc/vpi is formed,
giving rise to a reconnection rateE;di .

The results of the high-b regime carry on tob;1,
which is typical for plasma conditions in the solar wind a
the earth’s magnetotail. Though forb;1 plasma compress
ibility is not negligible and the presence of a finite me
axial field gives rise to a more complicated nonsymme
structure of the current layer, the global behavior is har
changed, remaining independent of the electron dynamic

In the case of a large axial fieldBz0@B' , however, the
reconnection efficiency is strongly reduced. Since the a
field suppresses the whistler mode, electrons and ions
tightly coupled confining the ions to the narrow electr
layer c/vpe . This corresponds to the model where the Ha
term, i.e. the poloidal current density, is neglected, he
E;de . We thus find that the large-Bz0 case is much differ-
ent from the high-b one. Though in both regimes plasm
flows are nearly incompressible, assuming exact incompr
ibility is only correct for highb, while in the large-Bz0 case
the residual value of¹•v suffices to suppress the whistle
mode, drastically reducing the reconnection efficiency.

Let us emphasize again the role of the viscosities. Th
are important to prevent the formation of singular veloc
Phys. Plasmas, Vol. 4, No. 4, April 1997
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gradients, which tend to form in the collisionless limit, v
locity profiles having a cusp-like shape. The global dyna
ics, in particular the reconnection rate, is independent of
viscosity coefficients, if these are sufficiently small, hen
the term collisionless reconnection is appropriate.

One formal limitation of the model’s validity is due t
the omission of Larmor radius effects. To judge these, a fu
kinetic model is needed. Recent particle simulations, ho
ever, indicate that forb i;1, i.e.r i;di the reconnection rate
is unchanged compared with the fluid results. These res
will be published in a separate paper. In the opposite cas
a strong axial field our 2D model does not account for
¹ ipe effect treated in Refs. 6–8, which leads to efficie
reconnection forrs.c/vpe , i.e. b.me /mi .
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