Two-fluid theory of collisionless magnetic reconnection
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Theoretical studies of collisionless reconnection in the framework of two-fluid theory are presented.
In the highB case 3= 1) reconnection is controlled by the whistler mode, leading to decoupling

of ions from electrons on scalesc/wy;. Though reconnection requires electron inertia, the
reconnection rate is independent thereof, controlled only by ion inertia. Reconnection is hence much
faster than in the absence of the Hall term. In the opposite limit of spha#ltle strong axial field
suppresses the whistler mode. Hence ions have to follow the electrons in the narrow reconnection
layer 5~ c/wye, forming a macroscopic current sheet which strongly reduces the reconnection rate.
Theoretical scaling laws are confirmed by numerical simulations.1997 American Institute of
Physics[S1070-664X97)03304-1

I. INTRODUCTION cate that the nondissipative terms in Ohm’s law, electron
inertia*® electron pressur®?® and the Hall ternt;!° which
Observations in laboratory and space clearly indicathave usually been neglected in previous reconnection
that fast magnetic reconnection processes occur in neartheoriest! may give rise to rapid reconnection or speed up
collisionless plasmas. For instance, the time scales of ththe reconnection process. In this paper we give a detailed
collapse phase in the so-called sawtooth oscillation, a relaxpicture of quasi-collisionless reconnection in highplas-
ation oscillation in the core of a tokamak discharge, whichmas, which is dominated by the Hall term, and discuss the
necessarily involves reconnection, is much shorter thamransition to the lowg case, where the effect of the Hall term
could be accounted for by the collisional effects in Ohm’sis suppressed. In section Il a set of fluid equations is intro-
law, resistivity and electron viscosityEven more stunning duced, which are solved in two-dimensional plane geometry.
are various types of magnetic processes observed in the ekt section Il the highg case is treated, which is dominated
traterrestrial environment, notably magnetospheric subby the whistler dynamics. In the regidu|<c/wpi around
storms, which seem to be caused by reconnection in ththe X-point, where the ion motion can be neglected, we give
earth’s magnetotafiand solar flares, where reconnection oc-a quasi-quantitative solution of the reconnection configura-
curs in the solar corormapoth plasmas being almost colli- tion. We find that the micro-current sheet at the X-point ad-
sionless. justs automatically to the outside flow, such that the recon-
Theoretical analysis of collisionless plasma processesection rateE is independent of the electron parameters,
usually requires a kinetic model. This is obviously true, if c/w,. and electron viscosityE depends only on ion inertia
particle distribution functions deviate strongly from Max- ¢/wy;. Numerical simulations show that this dependence is
wellian, in particular developing long tails resulting from rather weak, hence reconnection is fastfee 1. In the low-
acceleration of particles to highly superthermal energies. BuB case, treated in section IV, the axial magnetic field sup-
also for roughly isotropic distributions, kinetic effects may presses the coupling to the whistler mode, which strongly
be important, if Larmor radii exceed typical gradient scalesreduces the reconnection efficiency. Section V summarizes
If superthermal particles are negligible and the Larmor radiithe results and gives some comments concerning Kinetic ef-
are sufficiently small, collisionless dynamics can be investifects.
gated approximately in the framework of fluid theory, which
is much more convenient both analytically and in numericalll. THE TWO-FLUID MODEL
simulations. A fluid description usually requires some dissi- : .
. X . ) . The framework of a macroscopic theory of quasi-
pation, notably viscosity, to prevent solutions from becoming_ . . L . .

. collisionless reconnection is the general two-fluid equations.
singular. There may be some doubt, whether such PrOCeSSESs, however, useful to introduce a number of restrictions
should then be called collisionless. Here we distinguish be- >’ " "~~~ . . i '

i : o which simplify the equations considerably:
tween collisional and quasi-collisionless processes on ac-
count of the dominant reconnection mechanism. While in th€a) Quasi-neutrality. We assume that the Debye length is
former case the dynamics, in particular the reconnection time smaller than all relevant spatial scales. Hence ion and
scale, depends sensitively on the value of the dissipation co-  electron densities are essentially eqoa+n.=n.
efficient, it is essentially independent thereof in the latter(b) Electron and ion pressure tensors are assumed isotropic

where the role of dissipation is not basically different from described by scalar pressurps,p;. This is, strictly

the coarse-graining process required to introduce irreversibil- speaking, not in the spirit of collisionless fluid theory

ity and dissipation in the Vlasov theory. such as the Chew-Goldberger-Low double adiabatic
Recently several theoretical and numerical studies indi- theory. Since, however, our interest is mainly in nearly
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incompressible processes, details of the pressure be particular role in these studies, we use the whistler time
havior are not important. For the same reason a simple,,=L?/d2Q, as time unit instead of the Alfve time
scalar heat conductivity is chosen. 7a=L/v,, WhereL is some characteristic spatial scale and
(c) The average pressure and density profiles are assum&j entering{), andv, a characteristic poloidal field inten-
homogeneous. Thus diamagnetic effects are ruled ousity. In these units the equations read:
Their effect is briefly discussed in section IV.
(d) The stress tensors; . are reduced to scalar collisional (Yt dgver) + Ve V(i +dGve) = vV 2ves, ®
viscosity terms. Since _smgularltles ten_d to arise PrIMa%, (b —d2we) + V- Vb+(Byg+b)V-Ve—B- Vv,
rily in the velocity gradients, electron viscosity is more
important than resistivity, which is hence neglected.  —d3(VXV-veVe)-€,=— vV2w,, 9
We also include the nondissipative gyroviscosity for , )
the ions thus accounting in a crude way for finite Lar- 9 (9tVie + V- Vi Vi )+ de(0iVe, + V- Ve, Ve ) + V(i Pe)

mor radius effects. +(B,+b)Vb+ V24V y

The electric field is determined by Ohm's law, = 1V, + 1 VAV, — 1oe,X V2V, | (10)
1 1 m
E=— _VeXB— —Vp,- Eﬁ(&tnvﬁv-veven) d7(0wi+ V- ViLvip) +d2(dwert V- Ve ve) —B- Vb
N =1,V2i,+ 1.V%0e,, 11
oy —Cy2
Me e v Ve (1) ﬁtpi+Vi'Vpi+’yin'Vi:KVZpi , (12)
The ion equation of motion is diPetVer VPet yPeV - Vo=V ?pe, (13

where Vg, =V, +€,XVb, ve,=vi,— V¢, dei=Clwpeil,

ve=peds, v o= i od?. Since the collisional value o,

5 ) would be negligibly smally, represents an effective viscos-
= pimnVav — womibXvey; . (2 ity due to a slight stochastic braiding of magnetic field lines.

e, i are the kinematic viscosities, and the gyroviscosity isHere we considere, v; , v, essentially as small phenomeno-

wo=cT;/eB, b=B/B. The pressure equations are simply: Iogic_al parameters, introdu_ced to prevent solutions from be-
coming singular. For sufficiently small values the global dy-

m;(d;nv;+ V -v;vin) —en +Vp,

Vi
E+ —xB
c

U2 e : )

9tPe,i T Ve, VPe,i T YPe,iV - Vei =KV Pei, @ namics is found to be independent thereof. Si¥icg=0, we
wherex is a small phenomenological scalar heat diffusivity. haveV-ve=V-v; for constann. It is interesting to note that
The magnetic field follows from Faraday’s law when inserted in Faraday’s law the electron pressure term in

Ohm’s law vanishes for constant density. Therefore in this
9B=—CVXE, 4 framework we do not include thp. effect considered in
and Ampee’s law connects the fluid velocities to the mag- Refs. 6—8. Those papers consider only the parallel compo-

netic field nent of Ohm’s law in a strongly magnetized system with
B,>B, , which is briefly discussed in section 1V. Equations
en(v,—vy)=j= %V xB. (5) (8)—(13) conserve momentum, but the enforced constancy of

the density implies local sources and sinks of energy. Lin-

The electric field is eliminated fror2) and (4) by inserting ~ ©211Zing the equations about a static homogeneous equilib-

expressior(1), andv, is expressed by; andj. rium  poi e Byo,Bz, neglecting dissipation and setting
These equations are solved in two-dimensiof@D)  Ve= i in the eIeptrc_m |qert|a term y|eIQS the .Ilnear disper-

plane geometry. Since we are mostly interested in the nearf§ion relation, which is still rather complicated in the general

incompressible case, we assume that the density is homogg@mPressible case. Assuming incompressible motions

neousn=ny= const. The magnetic field is written in the V' Vie=0 We obtain

form ksz kfdi_z

2:
B=e,XVy+e(Byth), ®) 1+ k222 " TR

w

splitting the axial component into a background fiBlgg and  While for long wavelengttkd;<1 the last term dominates,
a fluctuating part{b)=0. The current density then becomes representing the Alfwve wave, for smaller wavelength

c kdi>1 one has a pure electron mode, the whistler:

j=ii+ej,=7—(Vbxe+ e, V). @ w2:kik2 and high group velocityvgxk for kde<1,

T w?=k{IK?dg (or w?=0Q2k?/k? in dimensional form and
While in the highB casev, in the electron inertia term could small group velocity ;=0 for kd.>1. The whistler implies
well be approximated by-j/ne, in the low3 case, where a coupling between poloidal and toroidal field perturbations,
B,o>B,, we findv,, =v;, >]j, /ne even in the diffusion _

. oo . b==kyy, (15
layer. Hence we do not make this approximation. To write
the basic equations in nondimensional form, we introducevhich is valid independently of the value &fl,. We will
the following normalizations. Since the whistler mode playssee in section Il that the whistler is the relevant mode for

(14)
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reconnection at sufficiently high plasma pressige; 1. In

the lowB8 case,B,;>B,, the B,yV-v, in Eq. (9) is not
negligible even for nearly incompressible conditions. It leads
to suppression of the whistler mode, leaving only the Atfve
wave also forkd;>1.

Ill. THE HIGH-B CASE

For high background pressure electron and ion motions L
are incompressible. Since the temp; V-V, . in the pres- i |
sure Egs. (12, (13 must be finite, one has ) P
V-vi=V-v,=0. Assuming V-v;=0 the pressure is no
longer determined by Ed12) but from Poisson’s equation
obtained by taking the divergence of the equation of motion

(10). Note thatp does not affect the dynamics directly, it can '
be eliminated from Eq(10) by applying the curl, which i f/

yields yr

d?(diwi+Vi- V) + d2(diwe+ Ve Vwe) —B- V] ’f/‘ j o
=1, V2w0i+ 1.V?w,, (16 : //

where o; e=V20; ¢,Vi e =6,XV @i o,pc= p;+b. Equations
(8), (11) for ¢,v;, remain unchanged, while E¢9) can be i 1
W”tten II’I the form O e 1o NN 1 & o)y Il )

d(b—d2we) + Ve V(b—d2we) — B- Vv o= — 1.V we.
17

If we assume that reconnection occurs in a localized region
(X-point), the properties of the linear mod#&4) suggest the
existence of two different regions around this point: For
scales exceedingd; ,kd;<1, the magnetohydrodynamic
(MHD) picture applies, where electrons and ions move es-
sentially togethery;=v,; for smaller scaleskd;>1, the
ions can no longer follow the electrong,~0, forming a
static charge neutralizing background, while the dynamics is
only determined by the electrons. This behavior is clearly
seen in Figs. 1 and 2 illustrating a typical reconnection pro-
cess, the merging of two flux bundle®etails of the nu-
merical procedure are discussed in section I B Fig. 1. FIG. 1. Simulation of flux bundle coalescence witid;=0.1,
the flow patternsp, and ¢; show that when the ion flow is d,=0.015, =105, v,=10"°.

deviated into the outflow cone at some distance of order

d;, the electron flow is converging toward the X-point form-

ing much smaller structures. This qualitative difference in

the flow properties becomes more quantitative in Fig. 2,  9(@e—d2we)+ Ve V(ge—d2we) +B-Vj=—1.V2w,.
which shows the magnitude of the ion and electron velocities (19
along the inflow directions, the diagonal across the X-point

in Fig. 1: Whil_ev_ezvi putside the ion inertial layer, ions are é‘ Behavior in the reconnection region

decelerated inside this layer, but electrons are accelerated,

until finally they, too, are slowed down inside a much In the region|x|<d; around the X-point we hence ana-
smaller layer of orded,. Hence the small-scale reconnec- lyze the configuration in the EMHD framework assuming

tion dynamics inside the ion layer can be described ignoringtationarity, which is valid as long as the flow is stable. In-
the ion motion,v;=0, v,=—j=—VxB. This approxima- Stability and resulting turbulence will be briefly discussed at

tion is called electron magnetohydrodynamitEMHD), the end of this subsection. We choose the coordinate system
which has attracted considerable attention recently, beinguch that=x defines the inflow andty the outflow direc-
relevant in a variety of fast plasma processes, see e.g. Ref#ons. For|x|>d, the stationary equations are

12-15. The 2D EMHD equations consist of E(®.and(17)
with b= e, ve,=—j=—V?¢, E+ve Vy=0, (20)

a(p—dZj) +Ve- V(y—d2j) = — vV, (18) B-VV2y=0, (21)
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d2 35 dlvepwe= fﬁ dIB,j,

we obtain the relation between the outflow velocitand the
axial current density:

v~j. (29

The equality of these flows results from the gyro-rotation of
the out-of-plane curren} into the outflow direction. The
current layer can also be interpreted affinite amplitude
whistler perturbation satisfying E@15) with k=k,, which

is equivalent to Eq(25). Integration of the continuity equa-
tion over a quadrant of the current layer connects the outflow
velocity v to the inflow velocityu

Ve, Vi

UA~vde. (26)
FIG. 2. Inflow velocitiesv, (solid line and v; (dashed ling along the Flna”y’ to derive a relze}t|on for the layer |engmwe use the
diagonal, from the simulation state shown in Fig. 1. property that-=¢—dgj, the electron canonical momentum

in z direction, is constant along the current layéyF=0,

which is also seen in the numerical simulatigfig. 4 be-

) ) __low), F|y_y=F|,—o. To determine the variation of, we
whereE=E,=d;¢/ is the reconnection rate. These equations,pte that, whileB, is changed by the presence of the current

have the similarity solution: sheet,B, is not, as can be checket posteriori using the
1 resulting scaling laws foj andA. Henced,B,~1 leads to
Y= (x*~a%?, (22 the relation
P(A)~A%~d3j. (27)
E |x+ay
Pe=5a n x—ay|’ (23 Let us write the resulting scaling laws fdr,j,u in terms of

the reconnection rat&. Using the relationE~uB,~ujd,
The stream functior, implies, that the upstream flow con- and Eqs.(24)—(27) one obtains
verges toward the X-point and the downstream flow diverges

2\1/3
away from it. Finite viscosity is only needed to smooth the A~(Bde)™, (28
flow singularity on the separatrix= +ay. The scale param- j~v~(Eldg)?3, (29)
eter a allows a finite uniform current density, so that the
separatrix branches may intersect at any angle. u~(E/d¢)"™. (30

We now show that the solutio22), (23) for [x|>d. can e lengthA of the layer given in Eq(28) is simply the

be matched to the electron inertia-dominated regionytective Larmor radius of electrons with velocityin the
x| <de, whereys and ¢ deviate from these expressions. In anetic fieldB, . The scaling laws are consistent with the
the limit of small viscosity the current layer, which forms in ogqential physics of the layer, the transformation of magnetic

the inertia-dominated region, exhibits a com_pllcazted multl—energy into streaming energy. The energy flux into the layer
scale structure. In particular the current dengityV=y de- o mainly magnetic

velops a cusp-like singularity resulting from continuous ac- ) )
celeration at the X-point, the stagnation point of the ffow. uBjA~de> meulA~d3®
The s_lngula_rl'Fy S, hov_vevgr, only Ioganthr‘rﬁcso that it does with my= dﬁ in our units. By contrast the energy flux out of
not give a finite contribution to the integrated current. In the . . S
. : : . ) the layer is mainly kinetic

following order-of-magnitude discussion we will therefore
neglect these substructures considering only average quanti- mg36~d>vB25~d3>,
ties. . :

The inertia-dominated region consists of a current IayetuSIng By~A. We also see that the energy fluxes into and out

of width & and lengthA. From the convection term in Eq. of thRe I|a3t/'er ?;%)Ofk:he sathetAordﬁr_. ks t ford.—s 0
(8) we see that inertia becomes important if elation Shows thald Snrinks 1o zero Tofe—o.

Since By~jd—0, there is no flux pile-up in front of the

dxip=By~d2d,j ~d3B, /&, layer. The reconnection raté is therefore independent of
o d. (andv,.) depending only on the global configuration, e.qg.
hence the layer width is the free magnetic energy. This behavior differs strongly from
5~d,. (24) reconnection in resistive MHD. Though outside the diffusion

layer a solution similar to Eq922), (23) is permitted(re-
Integrating thep, equation over a quadrant of the cur- placing the electron flow by the plasma flgvit cannot be
rent layer region and using Gauss’ theorem to transform thenatched to the diffusion layer, which in the MHD case is a
area integrals into line integrals over the boundary current sheet of macroscopic lendth The essential differ-
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0.7L

FIG. 3. Reconnection region from a simulation of flux bundle coalescence in the EMHD approxinatign.(b) ¢, for de=0.06; (c), for d.=0.015, (b)
and (c) taken at the timey is essentially identical in both cases.

ence is that in resistive MHD the outflow velocityequals  Fig. 4b) and is the reasofr is nearly constant along the
the upstream Alfve velocity, which is finite, while the cur- layer as discussed in section Il A. However, the distortion of
rent density diverges for resistivity— 0. The reconnection the contours of- in the outflow region clearly indicates that
rate depends strongly om, E~ 72, for details see e.g. Ref. F is undergoing a topological change. This is a consequence

17. of the finite dissipation in the system. The singular cusp-like
structure ofj near the X-point is reflected in a similar struc-
B. EMHD simulation results ture forF and allowsF to change topology even in the limit

of vanishingly small dissipation.
The predictions of section Il A are confirmed by nu- oy P

merical simulations. We consider the merging of two flux
bundles located on the diagonal in a square box of edge size

L =27 with periodic boundary conditions, 0.525L f
gr=exp{—[(x—x1)*+ (y—y1)?]%/4} g
+exp{ —[(X—Xp) 2+ (y—y2)?1/4}, (31 y :

where x;=y;=w/2+0.6, X,=y,=37/2—0.6. The rather

square-shaped profiles are chosen to localize the flux tubes in

order to avoid overlap between tubes in neighboring compu-

tational boxes thus minimizing the effect of the boundary

conditions. We also add a low level random velocity field.
Equationg18), (19) are solved numerically using a stan-

dard pseudospectral method with dealiasing according to the

2/3 rule. The number of modémore appropriately colloca-

tion pointy N? is chosen suitably to provide adequate reso-

lution, N varying between 256 and 2048. 0.475L
A series of simulation runs have been performed with

different values of the parameteds and v,. (In order to

concentrate dissipation more strongly at small scales we use

a higher order diffusion operator replacing,V®y,

eV W, by 13V, 1V, | respectively.

y
Figure 3 shows the region around the X-point for two
different values ofl,. The inertia dominated region appears
as a small layer of high velocityNote that the strong flows

at the separatrix are a property of the similarity solution
(23).] The layer shrinks in both length and width with de-
creasingd, consistent with the scaling lawg4), (28).

In Fig. 4 a blowup of the reconnection region shown in

0.525 L

N

Fig. 3 gives contours off andF= ¢— dﬁj. This figure illus- X

trates some important features of collisionless reconnection. \
Equation(18) implies thatF is convected with the electron 0.475 L & A\
fluid motion. Since symmetry requires a stagnation point of 0475L X 0.525 L.

the flow at the X-point, in the absence of dissipatfowould

simply pile up in front of the X-point and would remain G, 4. Blowups of the reconnection region of the run shown in Figs, 3
topologically invariant. This pile up oF is clearly seen in  3(b): (@ ¥; (b) F=y—d3.
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TABLE |. Maximum reconnection rat&,,, for seven different EMHD  TABLE Il. Maximum reconnection raté,,, and timet, for complete
runs. coalescence for different simulation runs for incompressible ions.
E* =Ed; is the reconnection rate in Alfwetime units.

de V3 Emax
0.1 10°6 1.28 d de i~ Emax fo Ervex
0.1 108 1.30 o 0.03 108 1.4 15 -
0.06 108 1.27 0.4 0.03 4<10°10 1.7 1.3 0.68
0.06 5x10 10 1.36 0.2 0.03 108 2.5 1.0 0.5
0.03 108 1.42 0.2 0.015 108 2.4 1.0 0.48
0.03 5x 1010 1.42 0.2 0.03 410710 2.4 1.0 0.48
0.01 10°8 1.53 0.1 0.015 108 4.4 0.5 0.44
0.1 0.015 410710 4.4 0.55 0.44
0.05 0.0075 %100 6.7 0.35 0.34

The reconnection rat& is found to be independent of
d. and v5, which have been varied in the intervals
10 '<d,<10"? and 10%<v,<10 '2 Table | gives the
maximum values oE for seven runs. The numbers confirm Table Il gives the maximum reconnection rates and total
that E does not depend od, and v; (apart from the weak reconnection times for a series of runs with different values
increaseof E, with decreasingl,). of d;,de,v3. Here we used again third-order diffusion op-

In the discussion of section Ill A we have ignored the erators. The numbers show that the reconnection rate is in
substructures<d, in the inertia-dominated region. Instead of fact independent of the electron physics givendgyand the
a bell-shaped cross-layer current profile as in resistive MHDdissipation coefficients, but depends on the ion inedtia
in the weakly collisional EMHD system the current density Thus, the reconnection time is no longer linked to the whis-
develops a cusp-like profile with strong gradients increasindler time scale of the flux bundles. It is therefore useful to
with decreasing viscosity. As can be expected of a fluid atescaleE to the Alfven time 7,=d;7,,, which facilitates the
high Reynolds number, turbulence is generated, which is exnterpretation of the results. In Table Il the reconnection rate
cited by the Kelvin-Helmholtz instability of the sheared elec-E* =Ed; in units of the Alfven time is also displayed. We
tron flow. Since transverse scales and turbulence wavesee that normalized in the conventional way the reconnection
lengths are short compareddgandw.>j, Eq.(19) reduces rate decreases only weakly dsis reduced. For the range of
to the 2D Euler equation. Kelvin-Helmholtz instability d; considered the reconnection speed is therefore almost
arises, roughly speaking, Kl;<1, wherel, is the scale of Alfvénic. Consistent with this fast reconnection rate the ion
the velocity gradient an#d the wavenumber, angl~v/l is  flow does not form an extended layer. In fact the ion velocity
a typical growth rate. In addition the aspect ralii hasto  changes abruptly in a shock-like way from lower inflow to
be sufficiently large. higher outflow values, a behavior reminiscent of Petschek’s

Though the onset of turbulence does not increase theonfiguration.
reconnection rate, which already in the laminar case depends The asymptotic scaling laws fad;—0 are, however,
only on the global configuration, its main effect is to provide difficult to assess from the present simulation results. It can-
a finite dissipation ratdR. While for laminar flowsR de-  not be excluded that the ions form a macroscopic flow layer
creases with decreasing viscosifg, becomes independent of width d; giving rise to relatively slower reconnection
thereof, if turbulence is generated. These and other propertids* ~d; . Indeed, if the reconnection rate is sub-Alfie for
of EMHD turbulence have recently been discussed in Refsmalld;, the analysis by Waelbroetkwould indicate that
15. the external MHD solution should force a macroscopic cur-
rent sheet to form. In any case in the highregime two-fluid
theory predicts reconnection to be much faster than single
fluid theory, where the Hall term is ignored.

In the previous subsections we have shown analytically — The results of the incompressible computations are cor-
and numerically that the electron dynamics responsible foroborated by solving the fully compressible E®)—(13) in
reconnection to occur adjusts to the outside conditions, sucthe case of a large background pressuye (Whether this is
that the reconnection rate does not depend on the electron ion pressurep; or electron pressure does not make a notice-
physics characterized gy, and v,. HenceE depends only able difference.To avoid excitation of shockwaves the pres-
on the ion physics, characterized Hy and v;, which has sure distribution in the flux tubes given by Eg1) is chosen
been studied by numerical simulations of the incompressiblsuch as to provide approximate equilibrium in the initial
Egs.(8), (11), (16), (17). state. The ambient axial field B,,=0. As expected com-

Since it is numerically difficult to combine the most in- pressibility effects are negligibly small for large, and the
teresting case d;<1 with a realistic ratio dynamics is practically identical with the incompressible be-
d;/de=+ym;/m,~50 , we choose valueatj /d.~ 10, varying  havior. Extending the compressible simulations we find that
bothd;, 0.4=d;=0.05, andd, /d.,13.3=d;/d.=6.6, to ob-  the global behavior in the hig-regime carries on to the
tain the relevant scaling laws. A typical state from a simula-8~1 regime. This is also true in the presence of a finite
tion run with d;=0.1, d.=0.015, »,=10"5, »,=10"% has  ambient fieldB,,~B, , though this field destroys the sym-
been shown in Fig. 1. metry of the incompressible reconnection process, as is clear

C. Effect of ion inertia
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from theB,,V - v, term in EQ.(9), which makes the analysis

of the layer structure more difficult. 6F E

Let us briefly discuss the energy balance in the recon- sE E
nection process. We find that magnetic energy is transformed ,
mainly into ion flow energy, while the electron flow energy 4 3
contribution is small. On the other hand the dissipation rate
is mainly due to electroriviscoug dissipationR,, the ion 3 E (a)
contributionR; being small. The ratid?; /R, depends only i ]

weakly on the ratio of the dissipation coefficients.

IV. THE LOW-B CASE

For large axial field,, i.e. smallB, the plasma motion
is again nearly incompressible as follows from E®). Simi-
larly to p in the highp, caseb in the highB,, case can no
longer be determined from the original equation, since this
would require knowledge of the residual valueVofv, the
termB,,V - v being finite. Instead is obtained by taking the
divergence of the equation of motion:

d?V - (V-vv))=d?v;- VV-v;=B,V?b—V-(j V).
(32)

The b equation, on the other hand, provides an expression
for V-v,

(b)

. FIG. 5. Flux bundle coalescence neglecting the Hall term, B3¢9, (35):
V.v=— B_OB. Vi, Contours of(a) i, (b) ¢.
Z!

since the remaining terms in E¢P) are found to be small. . . . _
Hence the inertia term in E432) is O(B,,), such thab is A typical state from a simulation of Eq&34), (35) is shown

determined by the equilibrium equation, which yields in Fig. 5. The results of simulations based on E@-(13)
are presented in Table Il to illustrate the transition from the
b By compressibld,,~ 1 case to the incompressible case of large
— Y1 (33) p ! pressible cas g
By Bxp B,o>1. While for B,o=1 the reconnection rate is indepen-

Comparing this behavior with the higB-situation, where dent of de, it stropgly decreases withle for 820%1 ap-
the whistler dominates characterized by EG$) and (25), ~ Proaching the scaling~d,, Eq.(38). A crude estimate of
we see that the whistler is suppressed by a strong axial field€ 1on flow layer widthd; gives 6;/d;~b/Byo~Byo /By,
Hence we can ignore the poloidal current density, ions and'N€reByo is the poloidal field in front of the layer. Hence
electrons are essentially moving together in the poloidaF P&comes independent By, if Bzo/Byo>d;/de.
planevy, =v;, >j, , such that the dynamics is determined by

the equations for the flux functiop and the stream function V- CONCLUSIONS

¢ of the incompressible plasma flow=e,xV ¢, w=V?¢, We have studied the properties of quasi-collisionless re-
(- dész,b) V-V (- dszzp) _ Vevzvz% (34) conngction in the framework of two-fluid theory, restrictgd to
two-dimensional geometry. In the highcase the dynamics
dw+V-Vo—B-VV2y=p,V20p. (35 is controlled only by ion inertia, being independent of the
glectron physics, in particular electron inertia and electron
viscosity. This behavior can be linked to the whistler mode,
which decouples the electrons from the ions on scales

This model has previously been discussed in Refs. 4 and
While in a high8 plasma the ion flow is confined to a layer
of width d;, in a low-8 plasma imbedded in a strong axial
field the ions are forced to flow in a layer of width. The

reconnection configuration consists of a macroscopic CUITentaBLE 1il. Maximum reconnection rate for different axial fieldB,;

sheet of length. and widthd,, leading to the scaling d;=0.2.
u~(Edg)", (36) Buo Ema(de=0.03) Ena de=0.015)
v~By~(E/de)*2 (37) 1 251 254
2.5 2.25 2.25
Since the magnetic energ’ny,L2 is finite, reconnection is 5 1.98 1.77
rather slow, 10 1.38 0.86
20 1.25 0.74
E<O(d,). (38
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| <c/wp;. Since the group velocity of the whistler increasesgradients, which tend to form in the collisionless limit, ve-
with decreasing spatial scales, the electrons form an X-poirlbcity profiles having a cusp-like shape. The global dynam-
configuration with a flow converging and accelerating to-ics, in particular the reconnection rate, is independent of the
ward this point. This flow is only changed at scalesviscosity coefficients, if these are sufficiently small, hence
| ~c/wpe, Where the whistler mode becomes slow. The bethe term collisionless reconnection is appropriate.
havior is described by the equations of electron magnetohy- One formal limitation of the model’s validity is due to
drodynamics. We have given a self-similar solution valid forthe omission of Larmor radius effects. To judge these, a fully
¢/wpi>1>clwye, Which can be matched to the micro- kinetic model is needed. Recent particle simulations, how-
current layer around the X-point, the scaling laws of whichever, indicate that foB;~1, i.e.p;~d; the reconnection rate
have been derived. The configuration differs fundamentallys unchanged compared with the fluid results. These results
from the macro-current sheet set up in resistive MHD reconwill be published in a separate paper. In the opposite case of
nection. Numerical simulations show that for not too smalla strong axial field our 2D model does not account for the
values of dj=c/w,L the reconnection speed is almost V,p. effect treated in Refs. 6—8, which leads to efficient
Alfvénic depending only weakly od;. The behavior in the reconnection fop > Clwpe, i.€. B>mg/m;.
limit d;<<1 is difficult to assess. It cannot be excluded that in
this limit a macro-current sheet of widttYw; is formed, |
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