
Steady-state magnetohydrodynamic plasma flow past conducting sphere
Z. Chacko and A. B. Hassam
Department of Physics, University of Maryland, College Park, Maryland 20742

~Received 17 December 1996; accepted 30 April 1997!

An analytic solution to the problem of strongly magnetized plasma flow past a smooth, conducting
sphere is considered. The magnetic field is taken to be uniform at very large distances and the sphere
is assumed to be unmagnetized. In addition, the flow speed is assumed to be subsonic and
super-Alfvénic. It is shown that a steady state solution is possible only if the frozen-in condition can
be relaxed near the surface of the sphere. By inclusion of a small resistivity, the presence of two,
nested boundary layers near the surface is demonstrated. The magnetic field is shown to drape about
the sphere with a scale size of the order of the square root of the resistivity. ©1997 American
Institute of Physics.@S1070-664X~97!01108-7#
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I. INTRODUCTION

The problem of magnetized plasma flow past conduct
obstacles is of primary interest in space plasma phys
Flow of the solar wind past planets, flow of interstellar win
past stars, or the motion of satellites and tethers thro
magnetospheric plasmas are the obvious examples.1,2 Labo-
ratory terella experiments also fall into this category.3

The flowing plasma is invariably magnetized, while t
obstacles themselves could be magnetized~the Earth! or
unmagnetized4 ~Venus and satellites!. In the case of large
obstacles, ideal magnetohydrodynamics is an approp
starting point for calculations. The steady-state problem
the first step.

Generally speaking, the problem is difficult because i
inherently three-dimensional~3D!. In particular, consider
that the flow vector of the external wind defines one dir
tion for the problem: if both the obstacle and the flowi
plasma are unmagnetized, then the problem may have
muthal symmetry about the flow axis; if, however, either t
obstacle or the flowing plasma are magnetized, then
problem is generally three-dimensional since the flow a
the magnetic dipole axis, and the direction of the magn
field in the flowing plasma do not, in general, have any p
ticular relation to each other. The problem is made ev
more difficult because the equations are nonlinear.

Given these difficulties, the usual approach to this pr
lem is numerical simulation. Indeed, much has been lear
from this approach.5 An analytical solution, even in
asymptotic limits, is, however, still desirable as it would
luminate better some aspects of the problem. In this pa
we present an analytic solution to the problem of steady-s
magnetized flow past a conducting sphere. To make
problem tractable, we make the following simplifying a
sumptions:~1! the sphere is assumed to be unmagnetized
smooth; and~2! the relevant energy densities in the proble
the internal energy, the flow kinetic energy, and the magn
energy, are assumed to satisfy the inequalities

3p/2@nMu2/2@B2/2. ~1!

The latter assumptions mean that the flow is subsonic
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super-Alfvénic. Finally, the magnetic field at infinity is as
sumed to be uniform. With these assumptions, a tracta
analytic solution is obtained.

The analytic solution we obtain is richly textured, bo
from physical as well as mathematical viewpoints, and
hibits several interesting features, even though the solutio
obtained in a restricted domain. In particular, three intere
ing features that emerge from our calculation are as follo

~1! We show that a steady-state solution does not e
within the context of ideal magnetohydrodynamics~ideal
MHD!. In particular, finite resistivity has to be introduced
obtain a steady state. The resistivity introduces a bound
layer around the sphere. This boundary layer is quite in
cate in that there are actuallytwo boundary layers: one
nested inside the other. The magnetic field drapes abou
sphere. The draping is very large for those field lines head
toward the leading edge of the sphere—the lines affec
most would be the ones that have an ‘‘impact paramet
less than a scale size that is of ordera times the square roo
of the inverse magnetic Reynolds number, wherea is the
radius of the sphere.

This non-ideal nature of our restricted problem illum
nates an important aspect of the full problem of flow pas
magnetized object. The reason for a non-ideal componen
our solution has to do with the stagnation points of the fl
pattern that reside at the leading and the trailing edges of
sphere. Because of the flow stagnation, the frozen-in
piles up at the leading edge. To reach a steady state, r
tivity is necessary to relax the frozen-in condition and
allow the flux to slip away from the stagnation region. No
we emphasize that this inclusion of resistivity is necessar
spite of the fact that the sphere is unmagnetized. It is w
known from the magnetospheric work that in the case of
embedded planetary dipole field, X points appear around
planet. The general belief is that the X points lead to m
netic reconnection, which, as is well known, must involve
breakdown in frozen in by, say, resistivity. The solution
our problem shows that resistivity is necessary even in
absence of X points.

~2! We show that the problem is reducible from bein
three dimensional, in, say, spherical coordinates (r ,u,f), to
being two dimensional, inr and u only. To be sure, this
reducibility has to do with the fact that we have assumed t
30319/$10.00 © 1997 American Institute of Physics
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the magnetic field is relatively weak. Nonetheless, it is int
esting to see that by assuming that variables depend of
only as exp(1if), we can obtain a consistent solution that
entirely two dimensional otherwise. This result constitute
powerful insight when it comes to addressing this probl
by numerical means: for, if one desired to solve the tim
dependent MHD equations numerically for this problem,
least for where the energy densities were ordered appro
ately, one could possibly reduce the difficulty of the proble
by using the first harmonic inf ansatz,a priori, thus ren-
dering the equations two-dimensional.

~3! The above features as well as other general feat
of this problem, such as the draping behavior of the field,
appearance of the tail, and the widths of the boundary lay
can be deduced to hold quite generally not only for sphe
but for any obstacles that possess azimuthal symmetry.

To return to our introductory remarks, the starting po
of our calculation would be the set of magnetohydrodynam
~MHD! equations. As we have discussed, we reduce the
ficulty of the problem by adopting the hierarch
B2/2!nMu2/2!3p/2. Since the system is subsonic, t
pressure is approximately constant and the reduced M
equations can be written as

¹3~nMu–¹u!5¹3„j3B), ~2!

¹–u50, ~3!

¹3E50, ~4!

E[2u3B1h j , ~5!

¹–B50, ~6!

j[¹3B. ~7!

Standard notation is used. Now, the kinetic energy term
~2! is larger than thej3B term. Thus, the latter can be ne
glected. The resulting equation is satisfied if the conditio

¹3u50, ~8!

is met. From~3! and ~8!, u can be determined. Onceu is
known,B is obtained by using

u3B2h¹3B5¹F, ~9!

¹–B50. ~10!

Equation ~9! is obtained from~4! where F is the electric
potential, i.e.,E52¹F. The equation,

u–¹F5h ¹2F, ~11!

follows directly from ~9! by taking theu component and
using ~8!.

In what follows, we begin by solving forF from ~11!
and then use~9! and~10! to find B. The paper is organized a
follows. In the next section, we solve for the electric pote
tial. In doing so, we show that two nested boundary laye
occurring near the surface of the sphere, are necessa
order to obtain a solution to the problem that is well behav
everywhere. In Sec. III, we derive the equations for the m
netic field and show that the field undergoes a large ‘‘dr
ing’’ around the sphere. We discuss our findings in Sec.
3032 Phys. Plasmas, Vol. 4, No. 8, August 1997
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For convenience, we use normalized units in this pap
All length scales are normalized to the radius of the sphe
a, and all velocities are normalized to the flow speed at
finity, u0. The electric and magnetic fields at infinity a
related according tocE0 /B05u0. Thus, in units of u0,
B05cE0. The fundamental parameter that governs the co
plicated boundary layer structure in this problem is the m
netic Reynolds number,au0 /h: in normalized units, this
number is 1/h.

II. THE ELECTRIC FIELD

Consider a subsonic plasma flow past a smooth spher
radiusa51. As discussed, the flow velocity is obtained fro
¹–u50 and ¹3u50. In spherical coordinates, where th
flow at infinity is in the positivez direction, the solution is

u5~121/r 3!cosuêr2~111/2r 3!sin uêu . ~12!

The flow can also be written in terms of the potentialsl and
x, representing, respectively, the streamlines and the equ
tentials ofu. The potential surfaces are orthogonal to ea
other and will be useful later on. They are defined accord
to

u52¹x52¹f3¹l2/2, ~13!

l5~r 221/r !1/2 sin u, ~14!

x52~r 11/2r 2!cosu. ~15!

The electric and magnetic fields are to be obtained from
equations

u3B2h~¹3B!5¹F, ~16!

¹–B50, ~17!

where the electric fieldE is given byE52¹F. The poten-
tial F satisfies

h ¹2F5u–¹F. ~18!

We begin by solving Eq.~18! to obtainF. The boundary
conditions are that~i! the surface of the sphere is an equip
tential and~ii ! at large distances from the obstacle the fie
returns to an asymptotic value. Assuming the electric fi
initially points along the positivex axis, we demand

F~r→`!52E0r sin u cosf. ~19!

Equation ~18! is difficult to solve exactly. However, sinc
h is small, we expect the left-hand side to be negligib
everywhere, except perhaps in a boundary layer. We t
first find the external solution (h50) from the equationu
•¹F50. This solution, consistent with boundary conditio
~ii !, is simply

Fext52E0l cosf, ~20!

where l is defined above. Fortuitously,Fext also satisfies
boundary condition~i!. However, the relevant physical quan
tity, the electric field E52¹F, diverges as (r 21)21/2.
Thus, the external solution, obtained forh50, is clearly un-
acceptable: a boundary layer asr→1 is indicated.

To find the thickness of the boundary layer we substit
Fext for F on the left-hand side~LHS! of Eq. ~18! and find
Z. Chacko and A. B. Hassam
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that for (r 21)'O(h1/2), the terms arising from the radia
derivatives on the LHS are comparable to the terms on
right-hand side~RHS!. Hence the outer solution appears
be valid outside a boundary layer of thickne
(r 21)'O(h1/2) around the sphere.

Now to obtain the solution in the neighborhood of t
boundary layer we return to the full equation~18! and reduce
it as follows. We assume that the radial derivatives domin
i.e., r ]/]r @]/]u. Thus, the LHS of~18! can be approxi-
mated as]2F/]r 2. On the RHS, however, bothur and uu

have to be retained since, althoughuu@ur , the sharper ra-
dial derivative makesuu]u;rur]/]r . Thus, the boundary
layer equation forF is given by

hS ]2F

]r 2 D
u

'u–¹F. ~21!

To make progress, we now switch to a new set of in
pendent variables, the streamline variable,l, introduced in
Eq. ~14!, andu. These are more natural to the problem sin
the RHS is the just the derivative along the streamline. M
explicitly, the RHS in these coordinates becomes

u–¹5~1/r !~111/2r 3!sin u~]/]u!. ~22!

The LHS, on making the approximation that derivatives
l dominate over derivatives inu, becomes a second-orde
operator in ]/]l. Making the further approximation
(r 21)!1, Eq. ~21! reduces to

h
1

l

]

]lS 1

l

]F

]l D
u

52
2

3

1

sin3 uS ]F

]u D
l

. ~23!

In this form, we note that the equation has the struct
of a diffusion equation with diffusion coefficienth sin3 u,
u being the time part andl2 being the space part. We wan
a solution that goes over to2E0l cosf for l@O(h1/4).
Hence we make the ansatz

F52E0l cosf f ~b!, ~24!

where

b5t~u!/l4, ~25!

t~u!526hE
u0

u

sin3 u du. ~26!

The choice fort(u) is obvious from the structure of th
‘‘time’’ part of the equation. The choice ofb as the govern-
ing independent variable is based on the similarity struct
of the above diffusion equation. Substituting forF in Eq.
~23!, we find an ordinary differential equation forf (b):

b2f 91~b21/4! f 821/16f 50. ~27!

Equation ~27! determines the detailed boundary lay
structure. We extract the solution in the following mann
We make no attempt to reduce this equation to a stand
form. Rather, we determine the asymptotic behaviors of
equation as b→0 and b→`, then determine which
asymptotic behaviors at either end are consistent with
desired boundary and matching conditions, and then confi
Phys. Plasmas, Vol. 4, No. 8, August 1997
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via standard numerical ‘‘shooting’’ methods, that one of t
solutions to the above equation does indeed ‘‘connect’’
tween the desired asymptotic limits.

To elaborate, let us first establish the asymptotic beh
ior. As b→0, there is a regular as well as a singular solutio
These asymptotic solutions are readily found to be

f 0,1→1, ~28!

f 0,2→Eb

db8 exp~21/4b8!. ~29!

For b→`, the equation is equidimensional. The asympto
behaviors are

f `,1→b21/4, ~30!

f `,2→b11/4. ~31!

It can now be readily confirmed numerically that the soluti
that behaves asf 0,1 as b→0 connects to the solution tha
behaves asf `,1 as b→`. We will label this solution as
f 1(b). Then, f 1 is the solution we require since it matche
onto the outer solution for large (r 21) and satisfies the in
ner boundary condition.

To summarize, we have now identified a boundary la
as r→1. The solution in the layer is given by Eq.~24!. The
external solution is given by Eq.~20!. The layer solution
matches on to the external solution asf (b)→1. The latter
occurs asb→0. The variableb becomes small whenl is
large, i.e., as we go out in the streamlines, as we wo
expect. The thickness of the layer is given byl;O(h1/4).

On closer examination, however, the layer thickness
hibits an interesting behavior. In particular, the choice of
angleu0 is important in determining the shape of the laye
To elaborate, we note from~25! that asu→u0, t(u)→0.
Thus, to asymptotically match onto the external solutionl
would have to exceedh1/4 for all u except nearu0 , where
l need not be that large. That is to say, the layer thicknes
reduced nearu0.

The correct choice for our problem isu05p. Consider
the condition b!1 for r→1. The condition becomes
t!(r 21)2 sinu. Whenu is neither near 0 nor nearp, t is
of order h and, thus, the thickness of the layer is given
h1/2!(r 21). If u is nearp, t is of orderh(p2u)4 and the
conditionb!1 is still h1/2!(r 21) since the (p2u) terms
cancel from both sides. If, however,u is near 0,t is of order
h and the conditionb!1 becomesh1/2/u2!(r 21): the
layer becomes much thicker asu approaches zero.

There is thus an asymmetry in the boundary layer thi
ness, with an infinitely long tail being drawn out at the tra
ing edge, a feature to be expected in flow-past-obstacle p
lems. This finding, however, leads to another concern. If
boundary layer is drawn out in a tail, we may have an inco
sistency, in that the reasoning leading up to the identificat
of the tail, namely Eq.~23! and its solution, were obtaine
under the assumption that (r 21)!1. On closer examina-
tion, however, we can show that there is no real incon
tency, as follows.

Let us reexamine Eq.~23! nearu→0. Sincet;h and
l;(r 221/r )1/2u, the LHS of this equation is negligible i
u is small andr;1. Thus, in this region, the RHS is dom
3033Z. Chacko and A. B. Hassam
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nant. Now, upon examining the RHS operator, given in E
~22!, we see that the condition that the RHS be dominan
unaffected by whether or notr is close to 1@observe that
there are no (r 21) factors in this operator#. A recognition of
this fact leads to the conclusion that the boundary layer eq
tion ~23! is operative not only in ther→1 domain, but is also
operative for allr . It follows that our solution~24! is also
valid for finite r and our identification of the tail, as de
scribed above, is correct.

We thus conclude that the solution toF, as given by Eq.
~24!, is valid in a boundary layer that hugs the sphere a
then stretches out to infinity in a tail along the trailing edg
The layer structure is depicted in Fig. 1~a!. We recall, how-
ever, that the entire analysis of this boundary layer solut
assumes that variations alongu are slower than variation
along r . This assumption should be checked for se
consistency, particularly in the tail region wherer;O(1).
We note also that we have used (l,u) coordinates to obtain
the previous boundary layer solution with the ans
]/]l@]/]u being made to obtain the boundary layer equ
tion ~23!. Clearly, asu→0, the surfaces of constantl and
constantu become almost degenerate. This also suggests
a closer examination of the assumptions made is in or
We therefore scrutinize the boundary layer solution ins
the long tail, but asu→0. In doing so, we find, upon de
manding self-consistency, the presence of a new boun
layer. Specifically, we resurrect the]/]u terms that were
discarded on the LHS of Eq.~21! and demand, for the solu
tion given by Eq.~24!, that these terms be self-consisten
small compared with one of the terms in theu–¹F operator
on the RHS. From this exercise, we can show that s
consistency is obtained only ifl..O(h1/2). Since in the
region of small u the boundary layer has the form
l;O(h1/4), i.e., u;O(h1/4), the angular terms become re
evant in a region completely enclosed by this bound
layer. This confirms that a new, nested boundary layer ex
within the boundary layer previously found.

To find the solution toF in this new boundary layer we
return to Eq.~18!. We now make the ansatz that all radi
derivatives,]/]r , are small compared to the angular deriv
tives, r 21]/]u. ~This assumption, which is consistent wi

FIG. 1. ~a! The shape of the outer boundary layer.~b! The structure of the
inner and outer boundary layers.
3034 Phys. Plasmas, Vol. 4, No. 8, August 1997
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our knowledge of the outer boundary layer solution with
this region, will be reexamined for self-consistency late!
With these assumptions, Eq.~18! reduces, in the limit
u→0, to

h

r 2F S ]2F

]u2 D
r

1
1

uS ]F

]u D
r

2
F

u2G
5~121/r 3!S ]F

]r D
u

2~111/2r 3!
u

r S ]F

]u D
r

. ~32!

Choosing as new independent variablesl andr , the equation
becomes

1

hS ]F

]r D
l

5
1

l

]

]lS l
]F

]l D
r

2
F

l2 . ~33!

Once again, the boundary layer equation takes the fo
of a diffusion equation with, in this case,r being the time
coordinate andl still being the space coordinate. Since t
new boundary layer is nested well within the previo
boundary layer, the outer limit of the solution for the inn
boundary layer will match on to the inner limit of the out
boundary layer. From Eqs.~24! and ~27!, the inner limit of
the outer boundary layer solution is given by

F→kl2 cosf, ~34!

wherek is a constant that can be determined only by solv
Eq. ~27! for f exactly. We now assume that in the nest
boundary layer the solution forF has the form

F5kl2g~ t !, ~35!

where

t5s~r !/l2,

and the functional forms ofg ands(r ) are to be determined
Inserting this into~33!, we may show that the appropriat
choice fors(r ) is

s~r !5h~r 2r 0!, ~36!

where r 0 is a constant to be determined. In this case,
equation forg is given by

t2g92~ t11/4!g81~3/4!g50. ~37!

As before, we solve this equation by examining t
asymptotic behaviors and confirming, numerically, that o
of the solutions does indeed ‘‘connect’’ the two desir
asymptotic behaviors. The asymptotic behavior of~37! is as
follows. For t→0,

g0,1→1, ~38!

g0,2→E t

dt8 exp~21/4t8!. ~39!

For t→`,

g`,1→t1/2, ~40!

g`,2→t3/2. ~41!

In order to satisfy the inner boundary condition, we des
the behaviorg→t1/2 as t→`. We confirm numerically that
g`,1 indeed connects tog0,1, label the corresponding solu
Z. Chacko and A. B. Hassam
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tion g1, and choose this as our desired solution. Hence
solution does indeed match onto the inner form of the ou
solution for u@h1/2 and satisfy the boundary condition o
the sphere.

We now seek to determine the constantr 0. It is easy to
verify that the choice ofr 05a51 ensures that the neste
boundary layer has the formu'O(h1/2), even close to the
sphere. This is becauset5hs/l2.h/(3 sin2 u) close to the
sphere, since in this regionl2'3(r 21)sin2 u. This choice
also ensures that the assumption made earlier, that the r
derivatives be negligible within the second boundary layer
self-consistent, as may be verified by calculating them fr
the expression forF given asF5kl2g(t).

This completes the determination of the electric fie
The complete boundary layer structure is shown in Figs. 1~a!
and 1~b!. Figure 1~a! depicts the outer boundary layer; Fi
1~b! shows the inner boundary layer, nested within the ou
one. Outside both the boundary layers, forl..O(h1/4), the
solution is given by Eq.~20!. In the outer boundary layer
defined asO(h1/2)!l;O(h1/4), F is given by Eq.~24!
with f 1(b) being used. For the inner boundary layer, defin
as O(h1/2);l!O(h1/4), F is given by Eq. ~35! with
g1(t) being used.

III. THE MAGNETIC FIELD

Having solved for the electric field we now proceed
determine the magnetic field. The relevant equations
once again,

u3B2h~¹3B!5¹F ~42!

and

¹–B50, ~43!

whereF is now known. In what follows we take advantag
of the fact that¹l, ¹f, andu form an orthogonal coordinat
system to expand the magnetic field as

B52F ¹l2G ¹f2Hu, ~44!

whereF, G, andH are scalar functions to be determined. W
recall thatu itself can be written as the gradient of a pote
tial, i.e., u52¹x, where x is given in Eq. ~15!. In this
event, Eq.~42! can be decomposed into a set of three eq
tions couplingF, G, andH,

F1h
]H

]l
1h

]F

]x
52

]F

]f

l

r2u2 , ~45!

G1h
]H

]f
1h

]G

]x
5

]F

]l

r2

l
, ~46!

h
]F

]f
2h

]G

]l
5

]F

]x
l. ~47!

Similarly, Eq. ~43! is transformed to

]H

]x
u25¹–~F ¹l!1

]G

]f

1

r2 . ~48!

Here,r5r sinu. In Eqs.~45!–~48!, the functionsF, G, and
H are functions of the coordinates (l,x,f), and the partial
derivatives are taken with respect to these coordinates.
Phys. Plasmas, Vol. 4, No. 8, August 1997
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set of three equations~45!–~47! is not independent; any on
can be obtained from the other two and the defining equa
for F, Eq. ~18!.

Having already calculatedF, we know it has the form
F5F0(l,x)cosf. Examining Eqs.~45!–~48!, we find that
the ansatz,

F5F0~l,x!sin f, ~49!

G5G0~l,x!cosf, ~50!

H5H0~l,x!sin f, ~51!

is self-consistent. Using this,~45!–~47! reduce to

F01hS ]H0

]l D
x

1hS ]F0

]x D
l

5
F0l

r2u2 , ~52!

G01hH01hS ]G0

]x D
l

5S ]F0

]l D
x
S r2

l D , ~53!

2hF01hS ]G0

]l D
x

52S ]F0

]x D
l

l, ~54!

while ~48! becomes

u2S ]H0

]x D
l

5¹•~F0¹l!2
G0

r2 . ~55!

Now in order to solve this set of equations, we substit
from ~53! and ~54! into ~55! and use the identity
lu¹lu5ru to obtain, forG0, the equation

h ¹2G02u–¹G05¹f•~¹F03¹r2!, ~56!

where, henceforth¹2 is taken to mean

¹2[¹'
2 2

1

r2 , ~57!

¹'
2 [u¹lu2S ]2

]l2D
x

1¹2lS ]

]l D
x

1u2S ]2

]x2D
l

. ~58!

Equation~56! above is identical to the equation forF0

solved earlier, except that it is inhomogeneous. Howev
since the homogeneous operator is exactly the same in
equations we expect that the solution of the inhomogene
equation will exhibit the same boundary layer structure
the solution of the homogeneous equation found earlier.
will take this as anansatzwhose self-consistency can b
verified from the solution of the equation.

The outer solution forG0 can be read off from Eq.~53!
in the h→0 limit as

G052E0r2/l. ~59!

To determine the solution in the outer boundary layer,
simplify the master equation~56! by keeping only those
terms from the homogeneous differential operator which
know to be relevant in this region. We then have

1

4l

]

]lS 1

l

]G0

]l D
u

2S ]G0

]t D
l

52S ]r2

]t D
l

1

lS ]F0

]l D
u

, ~60!

where we have assumed that derivatives in thel direction
dominate over those in theu direction. We have also as
3035Z. Chacko and A. B. Hassam
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sumed thatr→1. To make progress, we note that the expr
sion ]F0 /]l is just a function of the variableb5t/l4, in-
troduced earlier: this fact can be checked from Eqs.~24! and
~25!. Then, from a dimensional examination of the terms
Eq. ~60!, the structure of the outer solution~59!, and an
expectation that the same boundary layer structure as be
will be operative, we make the substitution forG0,

G052E0r2S~b!/l. ~61!

The resulting equation is

1

4

]

]lF1

l

]

]lS S

l D G
u

2S ]S

]t D
l

5
1

r2S ]r2

]t D
l
FS1

1

E0
S ]F0

]l D
u
G .

~62!

In arriving at~62!, we have made the additional approxim
tion that the quantityr2 is very slowly varying over the scal
of O(h1/4). We now claim that the solution to Eq.~62! can
be obtained by separately setting to zero both the LHS
the RHS of this equation. Namely, we first let

S~b!52
1

E0
S ]F0

]l D
u

. ~63!

We note, from Eq.~24!, that

S ]F0

]l D
u

52E0~ f 124b f 18!. ~64!

Thus, Eq.~63! represents a solution forS if and only if the
LHS of ~62! is identically zero if we insert forS(b) the
expression on the RHS of Eq.~64!. This proposition can be
proven as follows. First, the LHS of~62! in terms ofS be-
comes

16b2S91~32b24!S813S50. ~65!

This is in itself remarkable, in that Eq.~62! has been reduce
to an ordinary differential equation. We now insert forS the
expression (f 124b f 18) to obtain the differential equation,

64b3f 1-1~240b2216b! f 191~108b212! f 1823 f 150.
~66!

It is straightforward to show that upon using the govern
differential equation forf 1, Eq. ~27!, Eq. ~66! is identically
satisfied.

We thus conclude that the solution toG0 in the first
boundary layer is

G05~r2/l!~]F0 /]l!u, ~67!

whereF0 is given in Eq.~24!. To be sure, this solution fo
G0 was obtained from Eq.~60!, wherein we assumed tha
r→1. We recall that the extent of the first boundary lay
includes a tail whereinr is indeed ofO(1). Thus, as in the
previous section when we obtainedF in the first boundary
layer, we can ask about the validity of solution~67! in the
tail region of the first boundary layer. The answer is th
expression~67! is valid also inside this tail. The reason fo
this is directly analogous to the corresponding discussio
the previous section, viz. the discussion preceding Eq.~32!:
the boundary layer equation forG0, Eq. ~60!, is valid
throughoutthe first boundary layer. In particular, the]/]l
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terms in ~60! are small in the tail region and the size an
structure of the other two terms of that equation do not
pend on factors proportional to (r 21). The reasoning is in
direct analogy with the corresponding reasoning in the p
vious section.

We now turn our attention to the inner boundary lay
Once again we keep only those terms in the master equa
which we know to be relevant from the solution of the h
mogeneous equation. The master equation in this region
simplifies to

h
1

l

]

]lS l]G0

]l D
r

2h
G0

l2

5S ]G0

]r D
l

2
]

]r S r2

l D
l

S ]F0

]l D
r

1
2r 2

a2 S ]F0

]r D
l

, ~68!

where we emphasize that the expressions forF0 to be used
in this equation are those from the corresponding, i.e.,
inner, boundary layer @see Eq. ~35!#. The quantity
a5(r 221/r )1/2. Now the solution forG0 from the outer
boundary layer,

G052E0r2~ f 124b f 18!/l, ~69!

has the inner form~asb→`)

G0→2kr2. ~70!

As in the outer boundary layer we attempt a solution of
type

G052kr2T~ t !, ~71!

where s5r 21 and t5hs/l2, as used earlier in Eq.~36!.
This form of the solution preserves the boundary layer str
ture of the homogeneous equation. The resulting equatio

h
1

l

]

]lS l]T

]l D
r

2h
T

l2 2S ]T

]r D
l

2
1

kl2S ]F0

]r D
l

5
1

r2S ]r2

]r D
l
FT2

1

2klS ]F0

]l D
r
G . ~72!

As before, we have made the approximation thatr2 is very
slowly varying over the narrow inner layer. Again, as befo
the solution to Eq.~72! can be obtained by separately setti
to zero both the LHS and the RHS of this equation. Name
we first let

2kT~ t !5
1

lS ]F0

]l D
r

. ~73!

We note, from Eq.~35!, that

S ]F0

]l D
r

52kl~g2tg8!. ~74!

Note that this expression depends only on the variablet.
Thus, Eq.~73! represents a solution forT if and only if the
LHS of ~72! is identically zero if we insert forT(t) the
expression on the RHS of Eq.~74!. This proposition can be
proven as follows. First, the LHS of~72! in terms ofg, using
~35!, becomes
Z. Chacko and A. B. Hassam
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4t2T92~4t11!T813T5g8. ~75!

As before, Eq.~72! has been reduced to an ordinary diffe
ential equation. We now insert forT the expressions~73! and
~74! to obtain the differential equation

24t3g-1tg92~3t11!g813g50. ~76!

It is straightforward to show upon using the governing d
ferential equation forg, Eq. ~37!, that Eq.~76! is identically
satisfied. Hence, the solution toG0 in the inner boundary
layer is

G05~r2/l!~]F0 /]l!r , ~77!

whereF0 is given in Eq.~35!.
This completes the determination ofG0. Having done

this it is relatively straightforward to obtain an expression
F0 from Eqs.~45!–~47!. The result is

F05S ]G0

]l D
f

2
]

]lF S ]F0

]l D
f

r2

l G1
F0l

u2r2 2lS ]2F0

]x2 D
l

.

~78!

It is straightforward to verify thatF0 is zero on the surface o
the sphere. This is actually the inner boundary condition
the equation forG0 solved earlier.

Obtaining an expression forH, however, is not simple. It
cannot simply be read off from Eqs.~45!–~47! because the
solutions obtained forF0 and G0 are only approximate to
orderh. Thus, to calculateH0 we return to Eq.~55!, viz.

u2S ]H0

]x D
l

5F0 ¹2l1S ]F0

]l D
x

~¹l!22
G0

r2 . ~79!

To evaluateH0 we must integrate the above expression w
respect tox along contours of constantl up to the point
(l,x), where the value ofH0 is desired. Note that very clos
to the sphere the integration will traverse several bound
layers, rendering the calculation rather tedious. In view
this, we restrict our attention to the exterior region, i.e., o
side of the boundary layers.

In the latter case, the expression forH0 simplifies to

H05Ex

dxS ]

]l

1

u2D
x

. ~80!

Note that the integrand is symmetric about the lineu5p/2
on a givenl streamline. Thus, the integral need only
evaluated fromu5p to u5p/2, with the contribution from
greater angles deduced from the angles less thanp/2. In spite
of these reductions, the integral is still difficult to evalua
We therefore restrict our attention to two special cases, w
the limited intent of extracting some qualitative informatio
about the nature ofH0. The first case is when we are very f
from the sphere, while the second is when we approach
sphere but stay outside the boundary layers.

Very far away from the sphere,l@1, we have

S ]u2

]l D
x

'S 1

r 4D ~12215 sin2 u!sin u, ~81!
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and u2'1, l'r sin u, x'2r cosu, with r'(x21l2)1/2.
In this case,H0 is obtained to be

H0'2~3/l3!A~2cot u!, ~82!

whereA is defined by

A~x!5ExS 3

~11t2!5/22
5

~11t2!1/2Ddt. ~83!

Our solution implies that for contours that are always dist
from the sphere, along a given angleu the value ofH de-
creases as the cube of the ‘‘impact parameter’’l.

We now approach the sphere but stay outside of
boundary layer. That is, we examineH0 for l such that
1@l@O(h1/4). The required integral can be convenient
split into two regions: we first integrate up to a poi
(r 0 ,u) such thata@r 021@l and subsequently fromr 0 to
(l,p/2). In this case, it is readily shown that the contributi
from the first region isO(l2) smaller than that from the
second. Since our primary objective is to estimate the co
ponent of the magnetic field downstream from the sphere,
only evaluate the integral in the second region. In this ca
r runs fromr 0 to l along the samel contour. Since in this
entire region we are close to the sphere, i.e.,r 21!1, we
have

u2.9@~ 1
4!sin2 u1~r 21!2#, ~84!

~]u2/]l!x.~27/4!~l/u2!~6t2sin2 u!, ~85!

wheret5r 21. We first consider the integration overdtul .
Using the scalingtl22/35T, we obtain

DH52
243

2l È
T dTulT2

~9T213/4T!3 .O~1/l!. ~86!

For the integral over duul , we use the scaling
s5sinu(1/l)2/3 to obtain

DH25
81

4lE0

1ds

s

1

~1/s419/4s2!3 .O~1/l!. ~87!

From this we draw the conclusion that close to t
sphere but outside the boundary layers the component o
field parallel to the flow is large and of order 1/l. The same
is true of any point downstream from the sphere on the sa
l contour.

IV. SUMMARY AND DISCUSSION

This paper has been concerned with obtaining an a
lytic solution to the problem of magnetized~MHD! plasma
flow past a smooth, unmagnetized, conducting sphere.
keep the problem tractable, we made several simplifying
sumptions, notably assuming that the flow speeds were
sonic but super-Alfve´nic. We also utilized an expansion i
large magnetic Reynolds number. In spite of these assu
tions, the calculation is quite involved, as we have seen. T
boundary layers were encountered and relatively com
cated diffusion-type equations had to be solved. One
reasonably conclude that the next level of sophistication
3037Z. Chacko and A. B. Hassam
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this general problem area, allowing stronger magnetic fie
or considering magnetized spheres, for example, is likely
involve even more complexity.

The simplifications notwithstanding, several featur
were appreciated in the course of addressing this prob
As already discussed in the Introduction, we have shown
the steady-state problem is only well posed if resistivity
included. We conclude therefore that boundary layers
unavoidable in the general problem. It is interesting to spe
late whether the problem of the magnetized sphere wo
have extended boundary layers, along the lines we found
addition to the expected localized boundary layers in
vicinity of the X point. We also found, again as discussed
the Introduction, that by choosing appropriate harmonic
havior for the variables, cosf and sinf in our case, the
problem could be reduced to being two dimensional. Wh
this is a consequence of the weak field assumption, it no
theless opens up an avenue for doing relatively quick,
ploratory numerical studies in two-dimensions of an ess
tially 3D problem.

It is useful to consider why a boundary layer structu
of the particular form obtained, emerges. As alrea
broached in the Introduction, the appearance of a bound
layer is to be expected because of the existence of statio
points in the flow pattern: the flux pile-up from the frozen-
theorem at these points can only be relaxed by resistiv
While this explains why there is a boundary layer close
the sphere, it is not clear why the layer stretches out int
tail. Some understanding of this may be obtained by exa
ining the behavior of the external solution forH, the com-
ponent of the magnetic field along the direction of the flo
We have seen by explicit calculation thatH becomes very
large as we approach the sphere. From the expression
H, Eqs.~86! and~87!, we see that this component is equa
large at points downstream from the sphere along the s
l contour. More important, we note from Eq.~51! that H
varies withf as sinf. This implies that the magnetic field
while almost parallel to the flow in direction, reverses sign
we traverse the magnetotail. That is, the value ofH changes
discontinuously, from large and positive to large and ne
tive across the downstream midplane. This is a clear ind
tion that the boundary layer structure must extend well aw
downstream from the sphere and stretch into a long tail
resolve the discontinuity inH. The facts thatH becomes
large in the tail region and that it has a sinf dependence are
both completely general features of any problem that exh
its azimuthal symmetry in the flow pattern: thus, one mig
expect the boundary layer structure to be a general featu
problems of flow past an obstacle, at least for obstacles
exhibit azimuthal symmetry but possibly the case in gene

Finally, the weak field assumption, made throughout
analysis, needs reexamination. To begin with, we have fo
that the draping of the field is so strong that the field pile-
builds up in strength so as to possibly invalidate the we
field assumption. The latter would certainly be the case
very small resistivity. A closer examination of this questi
reveals the following. The problem as posed involves th
small parameters: the inverse of the sonic Mach number,
Alfvén Mach number,MA , and the inverse of the magnet
3038 Phys. Plasmas, Vol. 4, No. 8, August 1997
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Reynolds number, 1/S. Specifically, the latter two quantitie
are defined at infinity according toMA

2[(B2/4pnMu2)` and
1/S[(h/au)` . Now, the region of flow stagnation, occu
ring at the leading and trailing edges of the sphere, has
effects, both stemming from the frozen-in conditio
Frozen-in results in a pile-up of the magnetic field at t
stagnation points: this leads to a buildup of magnetic ene
or an increase in size of the local Alfve´n Mach number, and
it also means that resistivity must act to release the pile-u
steady state is to be reached. IfMA!1, then the region in
which the local Alfvén Mach number becomes finite is sma
compared witha. Likewise, if 1/S!1, the scale size in
which the effective magnetic Reynolds number is of ord
unity is also small. This reasoning suggests that there sh
be a boundary layer associated with each smallness pa
eter. In fact, the particular problem addressed in the pre
paper is one where the boundary layer fromMA is of a much
smaller scale than theS21/2 scale that we found from the
resistive boundary layer. That is to say, for our problem,
resistivity is large enough so that the flow goes from sup
Alfvénic to sub-Alfvénic only inside the outer boundary
layer. Clearly, ifMA is not small enough for this hierarchy t
hold, then theMA boundary layer will occur first. That is to
say, in the stagnation regions, one must include thej3B
terms on par with thenMu•¹u terms. This is a different
ordering than that assumed in this paper and is outside
scope of the present paper.

The identification of two effects both independent
leading to boundary layers leads to the question of whe
one or the other effect can be completely neglected. Tha
to say, can the buildup of the magnetic field be neglecte
the resistivity is large enough; conversely, can the resistiv
be neglected if the Alfve´n Mach number is large enough? A
examination of our problem shows that, in principle, bo
effects have to be resolved. For, even if the resistivity
large enough, the stagnation in the flow still necessarily
curs and, since the magnetic field drapes about the sph
the field is strong enough inside the resistive boundary la
near the stagnation point so as to invalidate the weak fi
assumption. Thus, in principle, we would have to reexam
our boundary layer solution at the stagnation point and al
magnetic field forces to modify the potential flow. We ha
not addressed this in the present paper, although it is unlik
that the solutions would change dramatically as long asMA

were small enough. In the opposite limit, wherein the bou
ary layer from MA occurs outside the resistive layer, w
conclude that the resistivity is still essential. This is becau
without resistivity, frozen in would still hold, and, in spite o
the modification of the flow from magnetic forces, the sta
nation point will still necessarily remain, leading to a tim
secular field pile-up—resistivity would be essential
achieve a steady state. We therefore conclude that the ef
of both MA and 1/S are essential for a full description of th
problem.
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