Steady-state magnetohydrodynamic plasma flow past conducting sphere
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An analytic solution to the problem of strongly magnetized plasma flow past a smooth, conducting
sphere is considered. The magnetic field is taken to be uniform at very large distances and the sphere
is assumed to be unmagnetized. In addition, the flow speed is assumed to be subsonic and
super-Alfvanic. It is shown that a steady state solution is possible only if the frozen-in condition can

be relaxed near the surface of the sphere. By inclusion of a small resistivity, the presence of two,
nested boundary layers near the surface is demonstrated. The magnetic field is shown to drape about
the sphere with a scale size of the order of the square root of the resistivityL99@ American

Institute of Physicg.S1070-664X97)01108-7

I. INTRODUCTION super-Alfvanic. Finally, the magnetic field at infinity is as-
sumed to be uniform. With these assumptions, a tractable
The problem of magnetized plasma flow past conductinganalytic solution is obtained.
obstacles is of primary interest in space plasma physics. The analytic solution we obtain is richly textured, both
Flow of the solar wind past planets, flow of interstellar windsfrom physical as well as mathematical viewpoints, and ex-
past stars, or the motion of satellites and tethers throughibits several interesting features, even though the solution is
magnetospheric plasmas are the obvious examiplésbo-  obtained in a restricted domain. In particular, three interest-
ratory terella experiments also fall into this categdry. ing features that emerge from our calculation are as follows.
The flowing plasma is invariably magnetized, while the (1) We show that a steady-state solution does not exist
obstacles themselves could be magnetige® Earth or  within the context of ideal magnetohydrodynamigdeal
unmagnetizeti (Venus and satellitgs In the case of large MHD). In particular, finite resistivity has to be introduced to
obstacles, ideal magnetohydrodynamics is an appropriaigbtain a steady state. The resistivity introduces a boundary
starting point for calculations. The steady-state problem isayer around the sphere. This boundary layer is quite intri-
the first step. cate in that there are actuallyvo boundary layers: one
Generally speaking, the problem is difficult because it isnested inside the other. The magnetic field drapes about the
inherently three-dimensional3D). In particular, consider gphere. The draping is very large for those field lines heading
that the flow vector of the external wind defines one direcoward the leading edge of the sphere—the lines affected
tion for the problem: if both the obstacle and the flowing mgst would be the ones that have an “impact parameter”
plasma are unmagnetized, then the problem may have aziss than a scale size that is of ordetimes the square root
muthal symmetry about the flow axis; if, however, either thegf the inverse magnetic Reynolds number, wharés the
obstacle or the flowing plasma are magnetized, then theygius of the sphere.
problem is generally three-dimensional since the flow axis,  This non-ideal nature of our restricted problem illumi-
the magnetic dipole axis, and the direction of the magnetigates an important aspect of the full problem of flow past a
field in the flowing plasma do not, in general, have any parmagnetized object. The reason for a non-ideal component to
ticular relation to each other. The problem is made every solution has to do with the stagnation points of the flow
more difficult because the equations are nonlinear. pattern that reside at the leading and the trailing edges of the
Given these difficulties, the usual approach to this probspnere. Because of the flow stagnation, the frozen-in flux
lem is numerical simulation. Indeed, much has been Iearneg”eS up at the leading edge. To reach a steady state, resis-
from this approacfi. An analytical solution, even in tivity is necessary to relax the frozen-in condition and to
asymptotic limits, is, however, still desirable as it wpuld i 2llow the flux to slip away from the stagnation region. Now,
luminate better some aspects of the problem. In this papefye emphasize that this inclusion of resistivity is necessary in
we present an analytic solution to the problem of steady-stalgyje of the fact that the sphere is unmagnetized. It is well
magnetized flow past a conducting sphere. To make thgnqyn from the magnetospheric work that in the case of an

problem tractable, we make the following simplifying as- ompeqded planetary dipole field, X points appear around the
sumptions{1) the sphere is assumed to be unmagnetized anfj et The general belief is that the X points lead to mag-

smooth; and?) the relevant energy densities in the problem, i reconnection, which, as is well known, must involve a
the internal energy, the flow kinetic energy, and the magnetigy oy down in frozen in by, say, resistivity. The solution to

energy, are assumed to satisfy the inequalities our problem shows that resistivity is necessary even in the
absence of X points.
3p/2>nMu?/2>B2/2. (1) (2 .We show th_at the problem is redupible from being
three dimensional, in, say, spherical coordinate®,(), to
being two dimensional, im and 6 only. To be sure, this
The latter assumptions mean that the flow is subsonic angeducibility has to do with the fact that we have assumed that
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the magnetic field is relatively weak. Nonetheless, it is inter-  For convenience, we use normalized units in this paper.
esting to see that by assuming that variables depengh on All length scales are normalized to the radius of the sphere,
only as expf{i¢), we can obtain a consistent solution that isa, and all velocities are normalized to the flow speed at in-
entirely two dimensional otherwise. This result constitutes dinity, ug. The electric and magnetic fields at infinity are
powerful insight when it comes to addressing this problenrelated according tacEy/Bg=ug. Thus, in units ofug,
by numerical means: for, if one desired to solve the timeB,=cE,. The fundamental parameter that governs the com-
dependent MHD equations numerically for this problem, atplicated boundary layer structure in this problem is the mag-
least for where the energy densities were ordered appropritetic Reynolds numberauy/#: in normalized units, this
ately, one could possibly reduce the difficulty of the problemnumber is 1.
by using the first harmonic i ansatz,a priori, thus ren-
dering the equations two-dimensional.

(??) The gbove features as well as other general featurelé' THE ELECTRIC FIELD
of this problem, such as the draping behavior of the field, the  Consider a subsonic plasma flow past a smooth sphere of
appearance of the tail, and the widths of the boundary layersadiusa=1. As discussed, the flow velocity is obtained from
can be deduced to hold quite generally not only for sphere§.u=0 and Vxu=0. In spherical coordinates, where the
but for any obstacles that possess azimuthal symmetry.  flow at infinity is in the positivez direction, the solution is

To return to our introductory remarks, the starting point A L
of our calculation would be the set of magnetohydrodynamic U= (1~ 1/r*)cos & —(1+1/2r*)sin 6&,. (12
(MHD) equations. As we have discussed, we reduce the diffhe flow can also be written in terms of the potentialand
ficulty of the problem by adopting the hierarchy y, representing, respectively, the streamlines and the equipo-
B?/2<nMu?/2<3p/2. Since the system is subsonic, thetentials ofu. The potential surfaces are orthogonal to each
pressure is approximately constant and the reduced MHBther and will be useful later on. They are defined according

equations can be written as to
VX (NMu-Vu)=VxX(jxB), 2 u=—Vy=—V¢xVr%/2, (13
V-u=0, 3) A=(r?=1/r)¥2sin 4, (14)
VXE=0, (4) x=—(r+1/2r?)cos 6. (15)
E=—uxB+ 7, 5) The electric and magnetic fields are to be obtained from the
equations
v-B=0, ©®) UXB— 7(VxB)=Vd, (16)
j=VxB. (7) V.B=0, (17)

Standard notation is used. Now, the kinetic energy term ifyhere the electric fieldE is given byE= —V®. The poten-
(2) is larger than thg xB term. Thus, the latter can be ne- tig] ® satisfies

glected. The resulting equation is satisfied if the condition,

Vxu=0, (8)

7 V2d=u-Vd. (18

We begin by solving Eq(18) to obtaind. The boundary
is met. From(3) and (8), u can be determined. Onaeis  conditions are thafi) the surface of the sphere is an equipo-
known, B is obtained by using tential and(ii) at large distances from the obstacle the field
returns to an asymptotic value. Assuming the electric field

UXB=7VxB=V®, © initially points along the positivex axis, we demand

V-B=0. (10 ®(r—o)=—Egyr sin 6 cos ¢. (19
Equation(9) is obtained from(4) where ® is the electric  Equation(18) is difficult to solve exactly. However, since
potential, i.e.E=—V®. The equation, 7 is small, we expect the left-hand side to be negligible

u-Vd =7 V20, (11) everywhere, except perhaps in a boundary layer. We thus

first find the external solution{=0) from the equatioru
follows directly from (9) by taking theu component and .V®=0. This solution, consistent with boundary condition
using (8). (ii), is simply

In what follows, we begin by solving fo® from (11)

and then us€9) and(10) to find B. The paper is organized as Pexi=~Eoh cOS, (20
follows. In the next section, we solve for the electric poten-where \ is defined above. Fortuitouslyb,,; also satisfies
tial. In doing so, we show that two nested boundary layersboundary conditiorii). However, the relevant physical quan-
occurring near the surface of the sphere, are necessary fity, the electric fieldE=—V®, diverges as r(—1) 2
order to obtain a solution to the problem that is well behavedrhus, the external solution, obtained fpe=0, is clearly un-
everywhere. In Sec. lll, we derive the equations for the magacceptable: a boundary layer s> 1 is indicated.
netic field and show that the field undergoes a large “drap-  To find the thickness of the boundary layer we substitute
ing” around the sphere. We discuss our findings in Sec. IV®,,, for ® on the left-hand sidéLHS) of Eq. (18) and find
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that for (r —1)~0O(#*?), the terms arising from the radial via standard numerical “shooting” methods, that one of the

derivatives on the LHS are comparable to the terms on theolutions to the above equation does indeed “connect” be-

right-hand sidgRHS). Hence the outer solution appears to tween the desired asymptotic limits.

be wvalid outside a boundary layer of thickness To elaborate, let us first establish the asymptotic behav-

(r—1)~0(#%"? around the sphere. ior. As B—0, there is a regular as well as a singular solution.
Now to obtain the solution in the neighborhood of the These asymptotic solutions are readily found to be

boundary layer we return to the full equatiti8) and reduce f 1 28)

it as follows. We assume that the radial derivatives dominate, %% =

i.e., raldr>ald6. Thus, the LHS 0of(18) can be approxi- B

mated ass>®/dr2. On the RHS, however, both, andu, f0,2—>f dp’ exp(—1/4B"). (29

have to be retained since, althougpsu,, the sharper ra- o o . )

dial derivative makesu,d,~ru,d/dr. Thus, the boundary ForB8—=, the equation is equidimensional. The asymptotic

layer equation forP is given by behaviors are
JPD foi—B ", (30)
—| ~u.vo. 21
”( arz)ﬂ u @) foopm B (31)

To make progress, we now switch to a new set of |ndeJt can now be readily confirmed numerica”y that the solution
pendent variables, the streamline variableintroduced in  that behaves a$y, as —0 connects to the solution that
Eq. (14), and 6. These are more natural to the problem sincePehaves as.., as f—=. We will label this solution as
the RHS is the just the derivative along the streamline. Mord 1(8). Then,f, is the solution we require since it matches

explicitly, the RHS in these coordinates becomes onto the outer solution for large ¢ 1) and satisfies the in-
ner boundary condition.
u-V=(1r)(1+1/2r%sin 6(3/36). (22 To summarize, we have now identified a boundary layer

asr— 1. The solution in the layer is given by E4). The

external solution is given by Eq20). The layer solution

matches on to the external solution §8)—1. The latter

occurs asB—0. The variable8 becomes small whehi is

large, i.e., as we go out in the streamlines, as we would

oD expect. The thickness of the layer is given oy O(7Y4).

8_0) . (23 On closer examination, however, the layer thickness ex-
A hibits an interesting behavior. In particular, the choice of the
In this form, we note that the equation has the structuréingle 6 is important in determining the shape of the layer.

of a diffusion equation with diffusion coefficieny sin*6, ~ To elaborate, we note frorfe5) that asé— 6y, 7(6)—0.

6 being the time part an? being the space part. We want Thus, to asymptotically match onto the external solution,

a solution that goes over te Eqh cos¢ for A>0(5*4.  would have to exceedy for all 6 except near,, where

The LHS, on making the approximation that derivatives in
N\ dominate over derivatives ifi, becomes a second-order
operator in d/dN. Making the further approximation
(r—1)<1, Eq.(21) reduces to

19/(1® 2 1
NIy

Hence we make the ansatz N\ need not be that large. That is to say, the layer thickness is
reduced nea#,.
®=—Ep\ cosof(B), (24) The correct choice for our problem &= 7. Consider
where the condition <1 for r—1. The condition becomes

7<(r—1)? sin 6. When ¢ is neither near 0 nor near, 7 is
B=1(0)I\*, (250  of order » and, thus, the thickness of the layer is given by
n?<(r—1). If 6 is near, 7is of ordery(7— 6)* and the
condition 8<1 is still zY2<(r —1) since the ¢— 6) terms
cancel from both sides. If, howevet,is near 0,7 is of order
_ _ _ » and the conditionB<1 becomesy*? #?><(r—1): the
The choice forr(6) is obvious from the structure of the layer becomes much thicker @sapproaches zero.
“time” part of the equation. The choice ¢ as the govern- There is thus an asymmetry in the boundary layer thick-
ing independent variable is based on the similarity structurgess, with an infinitely long tail being drawn out at the trail-
of the above diffusion equation. Substituting fr in Eq.  jnq edge, a feature to be expected in flow-past-obstacle prob-
(23), we find an ordinary differential equation fé(3): lems. This finding, however, leads to another concern. If the
"+ (B—1&)F — 1/16f=0, 2 b_oundary_layer is drawn ou_t ina tai_l, we may haye an ?ncqn—
sistency, in that the reasoning leading up to the identification
Equation (27) determines the detailed boundary layer of the tail, namely Eq(23) and its solution, were obtained
structure. We extract the solution in the following manner.under the assumption that { 1)<<1. On closer examina-
We make no attempt to reduce this equation to a standaribn, however, we can show that there is no real inconsis-
form. Rather, we determine the asymptotic behaviors of théency, as follows.
equation as 8—0 and B—o, then determine which Let us reexamine Eq23) near 6—0. Sincer~ 7 and
asymptotic behaviors at either end are consistent with oux~ (r>—1/r)¥?¢, the LHS of this equation is negligible if
desired boundary and matching conditions, and then confirmg is small andr ~1. Thus, in this region, the RHS is domi-

[/
T(e)=—67;fa sin® 6 dé. (26)
0
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1/2 our knowledge of the outer boundary layer solution within

" n1/4 this region, will be reexamined for self-consistency later.
. l With these assumptions, Eq18) reduces, in the limit
u
——Ap N T Ae’ 0_>01 to
T z ” (a2d>> +1(a<1>> )
2\ 502 Tl 5] T 52
(@) r a0 ) 0\ 90 ; 0

=(1—-1k® (0@) —(1+21/28 i
=( ) rr (1+ )F

ﬁ(I))
) 50 - (32

Choosing as new independent variableandr, the equation

becomes
®) 1 ( od 19 ( 0(1)) d 33
FIG. 1. (@) The shape of the outer boundary layés). The structure of the n\ or )\_ N O\ 2N ; A2

inner and outer boundary layers. ] ]
Once again, the boundary layer equation takes the form

of a diffusion equation with, in this case,being the time

coordinate anad still being the space coordinate. Since the
nant. Now, upon examining the RHS operator, given in Ednew boundary layer is nested well within the previous
(22), we see that the condition that the RHS be dominant is,oundary layer, the outer limit of the solution for the inner
unaffected by whether or natis close to 1[observe that poundary layer will match on to the inner limit of the outer

there are nof(—1) factors in this operatdrA recognition of  poundary layer. From Eq$24) and (27), the inner limit of

tion (23) is operative not only in the— 1 domain, but is also

. . . 2
operative for allr. It follows that our solution(24) is also D — k\” cOS &, (34
valid for finite r and our identification of the tail, as de- wherex is a constant that can be determined only by solving
scribed above, is correct. Eg. (27) for f exactly. We now assume that in the nested

We thus conclude that the solutiondg as given by Eq.  boundary layer the solution fab has the form
(24), is valid in a boundary layer that hugs the sphere and )
d=k\7g(1), (35

then stretches out to infinity in a tail along the trailing edge.
The layer structure is depicted in Figial We recall, how-  where

ever, that the entire analysis of this boundary layer solution 9
assumes that variations alorgare slower than variations t=s(r)/r%,
along r. This assumption should be checked for self-and the functional forms afj ands(r) are to be determined.
consistency, particularly in the tail region where-O(1). Inserting this into(33), we may show that the appropriate
We note also that we have usex, §) coordinates to obtain choice fors(r) is

the previous boundary layer solution with the ansatz S(r)=n(r—ro) (36)
alon> 9l 96 being made to obtain the boundary layer equa- o
tion (23). Clearly, as§—0, the surfaces of constantand whererg is a constant to be determined. In this case, the
constanty become almost degenerate. This also suggests thatjuation forg is given by

a closer examination of the assumptions made is in order. .2 _, / _

t°g”— (t+1/4)g’ +(3/4)g=0. 3
We therefore scrutinize the boundary layer solution inside g 19" +(3149 . . _ ( 7
the long tail, but a®¥—0. In doing so, we find, upon de- As before, we solve this equation by examining the

manding self-consistency, the presence of a new boundadsymptotic behaviors and confirming, numerically, that one
layer. Specifically, we resurrect th#d6 terms that were of the solutions does indeed ‘“connect” the two desired
discarded on the LHS of Eq21) and demand, for the solu- asymptotic behaviors. The asymptotic behavio(3¥ is as
tion given by Eq.(24), that these terms be self-consistently follows. Fort—0,

small compared with one of the terms in thevVd operator Jo1—1, (39)

on the RHS. From this exercise, we can show that self- ’

consistency is obtained only ¥>>0O(%?). Since in the to, )
region of small # the boundary layer has the form 9oz | dt’ exp(—1/4t"). (39
A~O(7*¥, i.e., 0~0(5Y4, the angular terms become rel- F

. . . ort—oo,
evant in a region completely enclosed by this boundary
layer. This confirms that a new, nested boundary layer exists gw,1—>t1’2, (40)
within the boundary layer previously found. gm,2—>t3’2. (41)

To find the solution tab in this new boundary layer we
return to Eq.(18). We now make the ansatz that all radial In order to satisfy the inner boundary condition, we desire
derivatives,d/dr, are small compared to the angular deriva-the behaviorg—t¥? ast—o. We confirm numerically that
tives, r 19/96. (This assumption, which is consistent with 0.1 indeed connects tgy,, label the corresponding solu-
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tion g4, and choose this as our desired solution. Hence ouset of three equation@5)—(47) is not independent; any one

solution does indeed match onto the inner form of the outecan be obtained from the other two and the defining equation

solution for 6= 72 and satisfy the boundary condition on for @, Eq. (18).

the sphere. Having already calculated, we know it has the form
We now seek to determine the constagtlt is easy to  ®=®y(\,x)cos¢. Examining Eqs(45)—(48), we find that

verify that the choice ofy=a=1 ensures that the nested the ansatz,

boundary layer has the formi~O(7%'?), even close to the

sphere. This is because: s/\2=7/(3 sir? 6) close to the F=Fo(A.x)sin ¢, (49
sphere, since in this region?~3(r —1)sirf 6. This choice G=Gy(\,x)COS &, (50)
also ensures that the assumption made earlier, that the radial )

derivatives be negligible within the second boundary layer, is H=Ho(\,x)sin ¢, (51)

self-consistent, as may be verified by calculating them froms self-consistent. Using thi$45)—(47) reduce to
the expression fo given as® = «k\?g(t).
This completes the determination of the electric field. %) 77(‘9_':0) :% (52)
The complete boundary layer structure is shown in Fi¢g. 1 2 y IX/, p’u?’
and Xb). Figure 1a) depicts the outer boundary layer; Fig. )
1(b) shows the inner boundary layer, nested within the outer Go+ pHo+ 77(‘9_6‘0) _(ﬁ) (P_> (53)
one. Outside both the boundary layers, Xor > O( 54, the 0 0 ax |, L on ] AN
solution is given by Eq(20). In the outer boundary layer,

Fot7n

defined asO(7"9<\~O(5¥4, ® is given by Eq.(24) —oFot 1 ﬁ) :_(ﬁ) \ (54
with f,(8) being used. For the inner boundary layer, defined 0 2N X ax '
as O(7Y)~r<0O(7"¥), @ is given by Eq. (35 with .
94(t) being used. while (48) becomes

o Mo} _ g (a0 55
ll. THE MAGNETIC FIELD U oy . H(FoVM) p?’ (9

Having solved for the electric field we now proceed to  Now in order to solve this set of equations, we substitute
determine the magnetic field. The relevant equations argrom (53) and (54) into (55 and use the identity

once again, A VA|=pu to obtain, forG,, the equation
UXB—n(VXB)=V®D (42) 7 V2Go—u-VGo=Ve¢- (VDX Vp?), (56)
and where, hencefortiV? is taken to mean
V-B=0, (43 , o 1
where® is now known. In what follows we take advantage Visvi- ;? 7
of the fact thaV\, V¢, andu form an orthogonal coordinate P P P
system to expand the magnetic field as V2=|V\ |2 =] +VA|—]| +u?— (58)
L IN? AN ax?|.
B=—F VA—G V¢—Hu, (49 X X A

Equation(56) above is identical to the equation fdr,
recall thatu itself can be written as the gradient of a poten-s’.OIVed earlier, except that it is mhomogeneous. Hovyever,
O " S ) . since the homogeneous operator is exactly the same in both
tial, i.e., u=—Vy, where y is given in Eq.(15). In this . ; .

. equations we expect that the solution of the inhomogeneous
event, Eq.(42) can be decomposed into a set of three equa- . . L
. . equation will exhibit the same boundary layer structure as
tions couplingF, G, andH, . . .
the solution of the homogeneous equation found earlier. We
JoH dF P will take this as anansatzwhose self-consistency can be

A
Fnoyt Tox~  9¢ pru?’ 45 Verified from the solution of the equation.
p?

whereF, G, andH are scalar functions to be determined. We

The outer solution foG, can be read off from Eq53)

JoH G P i imi
GJ”]ﬁJ”],g_:,;_T' (46) in the »—0 limit as
X Go=—Egp?A. (59)
ﬂi— ﬂEZ @)\. (47)  To determine the solution in the outer boundary layer, we
d¢ N dx simplify the master equatioi56) by keeping only those

Similarly, Eq.(43) is transformed to terms from the homogeneous differential operator which we
know to be relevant in this region. We then have

M 2=y (F Vx)+aG ! (48) 2 P
—_u=Vv- ~7 - 1 0/(10G G 17 1/
ax (94)? = Z(=7=0 7oo) _ (2P} [ TFe , (60)
) . AN ON\N ON or at ) N\ I\
Here,p=r sin 6. In Egs.(45)—(48), the functions, G, and 0 A A 0
H are functions of the coordinates ,y,¢), and the partial where we have assumed that derivatives in Xhdirection
derivatives are taken with respect to these coordinates. Thdominate over those in thé direction. We have also as-
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sumed that — 1. To make progress, we note that the expresterms in(60) are small in the tail region and the size and
sion 9®4/a\ is just a function of the variabl@= r/\%, in- structure of the other two terms of that equation do not de-
troduced earlier: this fact can be checked from Eg4) and  pend on factors proportional to ¢ 1). The reasoning is in
(25). Then, from a dimensional examination of the terms indirect analogy with the corresponding reasoning in the pre-
Eq. (60), the structure of the outer solutiof®9), and an  vious section.

expectation that the same boundary layer structure as before We now turn our attention to the inner boundary layer.
will be operative, we make the substitution 18p, Once again we keep only those terms in the master equation,
which we know to be relevant from the solution of the ho-

— 2
Go=~Eop™S(B)/\. (6D mogeneous equation. The master equation in this region then
The resulting equation is simplifies to
19[1 /(S S\ 1(dp? o 1/[od, 1 a()\aG()) Gy
aax|x ax\x/ |, \ar) T e\ ar ) [T Eol TNl Tan | TN
(62)
o N _ dGg 3 (p?\ oDy  2r%[ od,
In arriving at(62), we have made the additional approxima- =|—| ——| —| | =—| + —=| —| (68)
) Ly . ar ar\ \ N a®\ or
tion that the quantity“ is very slowly varying over the scale A A r A

of O(7"%). We now claim that the solution to E¢62) can  \here we emphasize that the expressionsifgrto be used
be obtained by separately setting to zero both the LHS angh this equation are those from the corresponding, i.e., the
the RHS of this equation. Namely, we first let inner, boundary layer[see Eq. (35)]. The quantity
1/, a=(r>—1/r)¥2. Now the solution forG, from the outer
S(B)=— E_<W (63)  boundary layer,

0
Go=—Eop?(f1—4BF))IN, (69)

4
We note, from Eq(24), that
has the inner forntas — =)

I
(a—)\o) =—Eo(f1—4pf)). (64) Go—2kp>. (70)
4

Thus, Eq.(63) represents a solution 1@ if and only if the As in the outer boundary layer we attempt a solution of the

LHS of (62) is identically zero if we insert foiS(B) the type
expression on the RHS of E(4). This proposition can be Go=2kp?T(1), (7D
roven as follows. First, the LHS @b2) in terms ofS be- L
Eor::es WS 462 i wheres=r—1 andt=»s/\?, as used earlier in Eq36).
This form of the solution preserves the boundary layer struc-
1682S"+(328—4)S' +3S=0. (65  ture of the homogeneous equation. The resulting equation is
This is in itself remarkable, in that E€62) has been reduced 1 9 [AJT T [dT 1 [0,
to an ordinary differential equation. We now insert ®the 75 o3\ o0 | ~ 732 \ar| ~ kN2 ar
expression {;—43f}) to obtain the differential equation, ' A A
2
6483 + (24082~ 168)f' + (1088— 12)f | — 3, =0. I B S 72
(66) p?\ ar \ 2kN\ IN

It is straightforward to show that upon using the governingAs before, we have made the approximation this very
differential equation forf 1, Eq. (27), Eq. (66) is identically  slowly varying over the narrow inner layer. Again, as before,

satisfied. the solution to Eq(72) can be obtained by separately setting
We thus conclude that the solution @, in the first  to zero both the LHS and the RHS of this equation. Namely,
boundary layer is we first let
Go=(p?I\) (Do /IN),, (67) 1/ 9D,
o . . 2kT() = ——| - (73
where®,, is given in Eq.(24). To be sure, this solution for AN

G, was obtained from Eq(60), wherein we assumed that
r—1. We recall that the extent of the first boundary layer
includes a tail whereim is indeed ofO(1). Thus, as in the 0N

previous section when we obtaindd in the first boundary (W) =2xkN(g—tg’). (74)
layer, we can ask about the validity of soluti¢i7) in the '

tail region of the first boundary layer. The answer is thatNote that this expression depends only on the variable
expression67) is valid also inside this tail. The reason for Thus, Eq.(73) represents a solution far if and only if the
this is directly analogous to the corresponding discussion imHS of (72) is identically zero if we insert fofT(t) the
the previous section, viz. the discussion preceding(B9). expression on the RHS of E(4). This proposition can be
the boundary layer equation foB,, Eg. (60), is valid proven as follows. First, the LHS ¢72) in terms ofg, using
throughoutthe first boundary layer. In particular, thiéon (35), becomes

We note, from Eq(35), that
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AT — (4t+1)T' +3T=g’. (75 andu?~1, A=~r sing, y~—r cosé, with r~=(x?+\?)2
In this caseH is obtained to be
As before, Eq(72) has been reduced to an ordinary differ-

ential equation. We now insert fdrthe expression&’3) and Ho~—(3/\*)A(—cot ), (82
(74) to obtain the differential equation whereA is defined by
—4t3g" +1g"—(3t+1)g’ +3g=0. (76) x 3 5
(X):f ((1+t2)5’2_ (11" dt. (83

It is straightforward to show upon using the governing dif-
ferential equation fog, Eq. (37), that Eq.(76) is identically ~ Our solution implies that for contours that are always distant
satisfied. Hence, the solution 8, in the inner boundary from the sphere, along a given anglethe value ofH de-
layer is creases as the cube of the “impact parameter”

) We now approach the sphere but stay outside of the
Go=(p*IN)(9Po/IN); 77 boundary layer. That is, we examirt¢, for A such that
1>\>0(7Y%. The required integral can be conveniently
split into two regions: we first integrate up to a point

,0) such thata>ry,— 1>\ and subsequently from, to

where®, is given in Eq.(35).
This completes the determination &,. Having done
this it is relatively straightforward to obtain an expression for(ro

F, from Egs.(45)—(47). The result is (N, 7/2). In_ this case, i_t is regldily shown that the contribution
from the first region isO(A“) smaller than that from the
dGg a[[ado\ p?] Do b, second. Since our primary objective is to estimate the com-
Fo= N ¢— o (/)T —uzpz - —axz A- ponent of the magnetic field downstream from the sphere, we

(79) only evaluate the integral in the second region. In this case,
r runs fromrgy to N along the sama contour. Since in this
It is straightforward to verify thal is zero on the surface of entire region we are close to the sphere, ire;1<1, we
the sphere. This is actually the inner boundary condition orhave
the equation foiG, solved earlier. 5 . 5
Obtaining an expression fét, however, is not simple. It u=9[(7)sir® 6+ (r—1)7], (84)
cannot simply be read off from Eq&5)—(47) because the

2 ~ 2 i
solutions obtained foF, and G, are only approximate to (Gu™faN) = (2719 (Mu7)(BL Sif? 9), (85)
order 5. Thus, to calculatéi, we return to Eq(55), viz. wheret=r—1. We first consider the integration ovet|, .
Using the scaling\ ~?*=T, we obtain
L[ Ho ) dIFg , Go
Ul == =Fo VAA+{—=] (VA= —5. (79 243(T  dT|,T?
X\ X p AH=——| ——=—F57=3=0(1IN). (86)

2\ Jo (9T?+3/4T)3
To evaluateH, we must integrate the above expression with . .
respect toy along contours of constamt up to the point For .the '”gggra' over dél\. we use the scaling
(\,x), where the value dfl, is desired. Note that very close ¢~ > 6(1/A)"" to obtain

to the sphere the integration will traverse several boundary 81 (ido 1

layers, rendering the calculation rather tedious. In view of AHfﬂJ’ FW:O(M\)' (87

this, we restrict our attention to the exterior region, i.e., out- 0

side of the boundary layers. From this we draw the conclusion that close to the
In the latter case, the expression fég simplifies to sphere but outside the boundary layers the component of the
field parallel to the flow is large and of ordem1/The same
_ X i i is true of any point downstream from the sphere on the same
Ho= [ dx Vi (80)
I\ U » \ contour.

Note that the integrand is symmetric about the live 7/2

on a given\ streamline. Thus, the integral need only be
evaluated fromd= 7 to 6= /2, with the contribution from
greater angles deduced from the angles less#tianin spite This paper has been concerned with obtaining an ana-
of these reductions, the integral is still difficult to evaluate.|ytiC solution to the problem of magnetizéMHD) plasma
We therefore restrict our attention to two special cases, Wit|’ﬂOW past a smooth, unmagnetized, conducting sphere. To
the limited intent of extracting some qualitative information keep the problem tractable, we made several simplifying as-

about the nature dfio. The first case is when we are very far gy mntions, notably assuming that the flow speeds were sub-
from the sphere, while the second is when we approach thgynic but super-Alfieic. We also utilized an expansion in

sphere but stay outside the boundary layers. large magnetic Reynolds number. In spite of these assump-
Very far away from the sphera,>1, we have tions, the calculation is quite involved, as we have seen. Two
U2 boundary layers were encountered and relatively compli-
u - . - . .
(K) ~ (12— 15 sirf 6)sin 6, (81 cated diffusion-type equations had to be solved. One can
X
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IV. SUMMARY AND DISCUSSION

4
r reasonably conclude that the next level of sophistication in



this general problem area, allowing stronger magnetic fieldsReynolds number, & Specifically, the latter two quantities
or considering magnetized spheres, for example, is likely tare defined at infinity according 1%11,2AE(BZ/47-rnMu2)Oc and
involve even more complexity. 1/S=(nlau).,.. Now, the region of flow stagnation, occur-
The simplifications notwithstanding, several featuresring at the leading and trailing edges of the sphere, has two
were appreciated in the course of addressing this probleneffects, both stemming from the frozen-in condition.
As already discussed in the Introduction, we have shown thdrozen-in results in a pile-up of the magnetic field at the
the steady-state problem is only well posed if resistivity isstagnation points: this leads to a buildup of magnetic energy,
included. We conclude therefore that boundary layers arer an increase in size of the local AlffveMach number, and
unavoidable in the general problem. It is interesting to specuit also means that resistivity must act to release the pile-up if
late whether the problem of the magnetized sphere wouldteady state is to be reached.Mfy<1, then the region in
have extended boundary layers, along the lines we found, iwhich the local Alfven Mach number becomes finite is small
addition to the expected localized boundary layers in thecompared witha. Likewise, if 1/5<1, the scale size in
vicinity of the X point. We also found, again as discussed inwhich the effective magnetic Reynolds number is of order
the Introduction, that by choosing appropriate harmonic beunity is also small. This reasoning suggests that there should
havior for the variables, cog and sing in our case, the be a boundary layer associated with each smallness param-
problem could be reduced to being two dimensional. Whileeter. In fact, the particular problem addressed in the present
this is a consequence of the weak field assumption, it nonepaper is one where the boundary layer frivhy is of a much
theless opens up an avenue for doing relatively quick, exsmaller scale than th& 2 scale that we found from the
ploratory numerical studies in two-dimensions of an essenresistive boundary layer. That is to say, for our problem, the
tially 3D problem. resistivity is large enough so that the flow goes from super-
It is useful to consider why a boundary layer structure Alfvenic to sub-Alfvenic only inside the outer boundary
of the particular form obtained, emerges. As alreadylayer. Clearly, ifM, is not small enough for this hierarchy to
broached in the Introduction, the appearance of a boundaryold, then theM 4 boundary layer will occur first. That is to
layer is to be expected because of the existence of stationaf@y, in the stagnation regions, one must include jth&
points in the flow pattern: the flux pile-up from the frozen-in terms on par with theyMu-Vu terms. This is a different
theorem at these points can only be relaxed by resistivityordering than that assumed in this paper and is outside the
While this explains why there is a boundary layer close toscope of the present paper.
the sphere, it is not clear why the layer stretches out into a  The identification of two effects both independently
tail. Some understanding of this may be obtained by examleading to boundary layers leads to the question of whether
ining the behavior of the external solution for, the com-  ©ne or the other effect can be completely neglected. That is
ponent of the magnetic field along the direction of the flow.t0 say, can the buildup of the magnetic field be neglected if
We have seen by explicit calculation tht becomes very the resistivity is large gnough; conversely, can the resistivity
large as we approach the sphere. From the expression f&f neglected if the Alfve Mach number is large enough? An
H, Egs.(86) and(87), we see that this component is equally examination of our problem shows that,_in principle, both
large at points downstream from the sphere along the sanfffects have to be resolvgd. .For, even |f.the resistiyity is
\ contour. More important, we note from E€51) that H large enough, the stagnation in the flow still necessarily oc-
varies with ¢ as sing. This implies that the magnetic field, €urs and, since the magnetic field drapes about the sphere,
while almost parallel to the flow in direction, reverses sign adhe field is strong enough inside the resistive boundary layer
we traverse the magnetotail. That is, the valuéloghanges N€ar the. stagnatlor} pomt so as to invalidate the weak flleld
discontinuously, from large and positive to large and nega@SSumption. Thus, in principle, we would have to reexamine
tive across the downstream midplane. This is a clear indicaU Poundary layer solution at the stagnation point and allow
tion that the boundary layer structure must extend well awaynagnetic field forces to modify the potential flow. We have
downstream from the sphere and stretch into a long tail, 80t @ddressed this in the present paper, although itis unlikely
resolve the discontinuity irH. The facts thatH becomes that the solutions would change dramatically as long/as
large in the tail region and that it has a ghrdependence are were small enough. In the oppo_sne limit, wher.eln the bound-
both completely general features of any problem that exhib@ 1ayer fromM, occurs outside the resistive layer, we
its azimuthal symmetry in the flow pattern: thus, one mi(‘;’htconclude that the resistivity is still essential. This is because,

expect the boundary layer structure to be a general feature yfithout r.elsist.ivity, frozen in would still hol'd, and, in spite of
problems of flow past an obstacle, at least for obstacles thélge'modlfllcathn Of, the flow frqm magpetlc for.ces, the §tag-
exhibit azimuthal symmetry but possibly the case in generalr'atIon point will still necessarily remain, leading to a time-

Finally, the weak field assumption, made throughout owseCUIar field pile-up—resistivity would be essential to
analysis, needs reexamination. To begin with, we have founachieve a steady state. We therefore conclude that the effects

that the draping of the field is so strong that the field pile-upOf bothM 4 and 165 are essential for a full description of the

builds up in strength so as to possibly invalidate the wealPrOblem'
field assumption. The latter would certainly be the case for

very small resistivity. A closer examination of this question

reveals the following. The problem as posed involves thre@CKNOWLEDGMENT

small parameters: the inverse of the sonic Mach number, the This work was supported in part by a grant from the
Alfvén Mach numberM,, and the inverse of the magnetic National Science Foundation.

3038 Phys. Plasmas, Vol. 4, No. 8, August 1997 Z. Chacko and A. B. Hassam



1J. R. Spreiter and A. Y. Alksne, iAnnual Reviews of Fluid Mechanics K. Schindler, Rev. Geophy§, 51 (1969.

edited by M. D. Van DykgAnnual Reviews, Palo Alto, CA, 1970Vol. 4J. R. Spreiter and S. S. Stahara, J. Geophys. 8&g715(1980.
2, pp. 313-354. 5See, for example, J. A. Fedder and J. G. Lyon, Geophys. Res14e880
2D. B. Beard and F. S. Johnson, J. Geophys. B6s4113(1961). (1997.

Phys. Plasmas, Vol. 4, No. 8, August 1997 Z. Chacko and A. B. Hassam 3039



