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The magnetohydrodynami®MHD) stability of negative central magnetic shear toroidal equilibria
with q>2 everywhere andg,,>1 is investigated. Herey is the safety factor of the equilibrium
magnetic field in a torus with inverse aspect ratjand B, is the ratio of the plasma pressure to
the pressure in the poloidal magnetic field. At sn&#l,,<1, the elimination of thej=2 resonant
surface in a negative shear equilibrium greatly improves resistive MHD stability as compared to
equilibria with a monotonicg-profile containing ag=2 resonant surface. However, at large
€Bpoi> 1, the reversal of the central magnetic shear and the elimination gittZeresonant surface
does not improve MHD stability. The existence, or non-existence, of rational magnetic surfaces has
no impact on MHD stability wheneB,,>1. Altering the current profile, and with it the
g-profile, does not affect MHD stability whes3,,,, is no longer small. Stability is not improved by
vertical elongation of the plasma in the poloidal plane. The utilization of an external vertical
magnetic field to move the magnetic axis in major radius also does not improve MHD stability.
© 1997 American Institute of Physids$1070-664X97)04108-9

I. INTRODUCTION modes grow very rapidly, with a very short exponential
growth time of the order of the Alfuetime.
High pressure tokamak equilibria witeB,,>1 are Several recent tokamak experimémshave demon-

very different from low pressure equilibria with3,,<1.  strated greatly improved particle and energy confinement
Here, the poloidal bet@,,, is the ratio of the plasma pres- when the magnetic shearin the core of the discharge is
sure to the pressure in the poloidal magnetic field, and theeversed in  sign. Here, the magnetic shear
inverse aspect ratie=a/R, for a torus with major radius s=d(In g)/d(In r), whereq(r) is the safety factor profile in
Ro and minor radiug. In aneB,,>1 plasma bounded by a the minor radial coordinate. Typically in these experi-
conducting wall, there is a large outward shift of the mag-ments, the safety factor profilg is peaked at the magnetic
netic axis in major radius. The equilibrium flux functignis  axis and decreases with distance from the magnetic axis until
characterized by two asymptotic regioha: core region on it reaches a minimum valugy;,. The safety factor profile
the small major radius side of the shifted magnetic axis ing then increases in a normal fashion towards the wall. Usu-
which ¢ is solely a function of the major radial coordinate ally, the minimum value ofy is larger than two so that the
R, and a narrow boundary layer near the conducting wall. q=2 resonant surface is not in the plasma. A hgjtokamak

In order for the tokamak to become an efficient, eco-with the enhanced confinement produced by reversing the
nomic, and practical fusion reactor, operation at higlis  magnetic shear would make an attractive fusion reactor.
very desirable. Therefore, the stability of these highy,,  Therefore, the effect of negative central magnetic shear on
equilibria is an important issue. Ideal ballooning modes havehe MHD stability of highg equilibria is a matter of impor-
been found to be stable in large aspect ratie+(Q) toroidal  tance. MHD analyses of negative central magnetic shear
equilibria with €B,,>1, but with the toroidal beta equilibria have found that reversing the shear results in some
Bior<<1Z In a previous papérl investigated the resistive improvement in marginal ideal MHD stabilty? and a re-
magnetohydrodynamiéMHD) stability of high e3,, equi-  duction in the growth of resistive tearing modedowever,
libria in a torus with a square conducting wall, including the the effect of negative magnetic shear g8y,,>1 equilibria
effect of both the equilibrium current gradient and pressuréhas not been studied; the magnitude of the pressure used in
gradient. Thesef,,> 1 equilibria had a monotonically in- prior analyses has not been large enough to access this re-
creasing safety factor profile in which the safety factor at thegime. Thus, whether reversing the central magnetic shear
magnetic axigjo was equal to unity. The principal results of improves MHD stability at largee,,>1 has been un-
this previous numerical study are as follow®) There is no  known.
“second stability regime” for MHD modes when In this paper the resistive MHD stability of negative cen-
€Bp0>1. MHD modes become extremely unstable astral magnetic shear, highB,,>1 equilibria is studied in a
€01 becomes much larger than unit) As the resistivity ~ torus with a conducting wall with a rectangular poloidal
of the plasma decreases in largB,,>1 equilibria, the cross-section. The principal results of this numerical study
growth rate of the mode remains large and is virtually inde-are as follows(1) The existence, or non-existence, of a ra-
pendent of the magnitude of the resistivitg) A broad spec- tional magnetic surface has no impact on MHD stability
trum of toroidal mode numbers is violently unstable at wheneg,,>1. Altering the current profile, and with it the
large €B,0>1, including modes withn>1. (4) These g-profile, does not affect MHD stability wheag, is no
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longer small.(2) At low B, the removal of theg=2 sur-  « andb in Eq. (2) determine the extent to which the mag-
face from the plasma eliminates the growimg-2/n=1 re-  netic shear is reversed near the magnetic axis; the magnitude
sistive kink (tearing mode, wherem is the poloidal mode of the reversal in the safety factor profile increases with
number, leaving a more weakly growimg=3/n=1 mode. while the distance from the magnetic axis over which the
However, as g, approaches unity, many MHD modes be- shear is reversed increases withThe pressure is given by a
come unstable and the growth rate of these modes increasggy function: P=Pad(#)/g(1), where
asefpo becomes larger than unity. Whey, > 1, thereis ()= exp(/#)—1, and the normalized flug=1 at the mag-
no significant difference in the MHD stability of negative \qtic axis andy=0 at the wall(separatrix In all of the
shear equilibria without &=2 surface and equilibria with |, merical results which follow, the major radigg=3 and
monot(_)_nic_q-profile_s containing &= 2 surface. Both types the geometric minor half-widtla= (aga,)¥?=1. Thus, the
of ‘?q“"'b”a are violently unstgble to a broad spectrum Ofinverse aspect ratie=a/Ry=1/3. The safety factor profile
rapidly growing MHD modes, including modes witis1, o . — ,
with a very short exponential growth time of the order of the'S initially specified byqq=4.0, q=4.5, /=4, k=2.0, and
b=0.4. The mass density is uniforpp=1. Let Ay denote

Alfvén time. (3) The elongation of the poloidal cross-section : ) . -
in the vertical direction does not improve the MHD stability the total amount of poloidal magnetic flux in the equilibrium.

of €Bpo>1 negative shear equilibrigd) The utilization of The ratio of'the.plas'ma pressure to the pressure in the poloi-
an external vertical magnetic field to move the magnetic axi§lal magnetic field is defined a8,0/=Pmax/(A¢¥/aRy)%.
inward in major radius also does not improve the MHD sta-Equilibria with different 8, are obtained by varying the
bility of €B,0>1 negative shear equilibria. maximum pressure®,,,. The number of grid points re-
The rest of this paper is organized as follows. An ex-tained in the simulations has been varied to ensure that the
ample of a highg, negative central magnetic shear tokamaknumerical results are insensitive to this number.
equilibrium with €B8,,>1 and q>2 everywhere is pre- An example of a negative central magnetic shear, large
sented in Sec. Il. The MHD stability of these equilibria is €, equilibria obtained by dynamic relaxation is shown in
discussed in Sec. lll. The stability of negative shear equilibfig. 1. Figure 1a) is a plot of contours of constant flux in
ria without aq=2 resonant surface in the plasma is com-the (R,z) plane for an equilibrium plasma bounded by a
pared to that of equilibria with monotonically increasing square conducting wall Withe B o= 10.6(8,01=31.8). As
g-profiles containing @= 2 resonant surface. The functional the system settles into equilibrium, the magnetic axis, which
dependence of the growth rate on the magnitude of thgyas initially centered atR=R,=3,2=0), shifts outward in
plasma resistivity and on the toroidal mode numbeaf the  mnaior radius. A plot of constant pressure contours in this
perturb_atlon is mvgsngated. In Sep. IV the effect on Stab'“tyequilibrium is shown in Fig. (). Profiles of the safety factor
of varying the pol_0|dal cross.—secn.on from.a square toa rectq (solid line) and the pressur@ashed lingthrough the mid-
ar)gle _elongated in the vernqal d|rect|on.|s pon3|dered. The)\anez=0 are shown in Fig. (). The safety facto ap-
utilization of an external vertical magnetic field to alter the proaches infinity at the bounding wall; the boundary is a

equilibrium position of the magnetic axis is investigated in : o T .
; : magnetic separatrix, like the separatrix in a tokamak with a
Sec. V. The results are discussed in Sec. VI. . SR .
divertor. The safety factor profile is slightly jittery near the
magnetic axis aR=23.70 (whereqy,=4.0). The reason for
II. NEGATIVE CENTRAL MAGNETIC SHEAR this artificial numerical result is that flux surfaces near the
EQUILIBRIA magnetic axis encompass only a few grid points in the nu-

Axisymmetric negative central magnetic shear equilibriamencal simulation. As the magnetic field lines wander be-

are obtained by solving the two-dimensional MHD equationd"€€n grid points, a linear extrapolation of the magnitude of
dynamically. A discussion of the method of solution, andthe magnetic field between grid points is used in calculating

definitions of the normalized variables used in the MHDY.- When the value of the safety factor changes rapidly with

equations, is given in Ref. 3. The poloidal flyxis initially ~ distance from the magnetic axis, as is the case for this re-
given by verse central shear equilibrium, then linear extrapolation is a

poor approximation to the magnitude of the magnetic field.
y=Af(xlar)f(z/a,), @ The minimum value of is 2.2 in this equilibrium. Thus, the
where x=R—R, is the distance from the center of the results in Fig. Ic) demonstrate that the central magnetic
plasma column along the major axés, is the half-width of  shear is reversed in thisg,,=10.6 equilibrium, and that
the rectangular cross-section in the direction of the majothe safety factorg is larger than two everywhere. In the
radiusR, anda, is the half-width of the rectangular cross- normalized units defined in Ref. 3, the total toroidal plasma
section in the vertical directiom. The functionf(y) is de- currentl , is given byl ,/aB,,=0.18, whereB,;, is the mag-

fined as nitude of the vacuum toroidal magnetic field at the center
y (u/b)? udu (x=0,z=0) of the column. The toroidaB, averaged over
f(Y)Zﬁl 1+K1+(u/b)4 A+ a7 (20 flux surfaces WithP(4)=0.1P .y, iS {Bior)=10%. Note

from Fig. (@) and Fig. 1b) that both the flux and the pres-
wherea=[(q/q,)” —1], q, and/ are parametefsandq,is  sure at the small major radius side of the magnetic axis are
the safety factor at the magnetic axis. The paramkterEq.  nearly independent &, and are solely functions of the major
(1) is given by A=aga,RB,/[Ryqof(0)]. The parameters radiusR.
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FIG. 1. LargeeB,, , negative central magnetic shear equilibrium. Contours

of constant flux in areB,,=10.6 equilibrium in the poloidalR,z) plane
are plotted in(@), and constant pressure contours are plotte@)inProfiles
of the safety factoq (solid line) and the pressur® (dashed ling through
the midplane ¢=0) are plotted in(c).

IIl. NEGATIVE CENTRAL MAGNETIC SHEAR
STABILITY

The MHD stability of two-dimensional toroidal equilib-

ria with negative central magnetic shear to three-dimensional
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FIG. 2. MHD stability. The growth rate, normalized to the Alfva time, is
plotted as a function o3, on a log—log scale for equilibria with negative
central magnetic shear agd>2 (circles, for equilibria with monotonically
increasingg-profiles withqy=1.1 (crosseg and for an equilibrium with an
extended region of negative sheapen trianglg

For comparison, the MHD stability of equilibria with a
monotonicq-profile is also shown in Fig. 2. The growth rate
of an n=1 perturbation in equilibria where increases
monotonically away from the magnetic axis=0) is given
by the crosses in Fig. 2. Thpprofile is flat(shearlessin the
vicinity of the magnetic axfs and g,=1.1. When
€Bpo1=3.0x 10”2 the growth rate is % 10" 3, more than 40
times larger than it is in the reverse shear equilibrium with
g>2 at the same value af3,, . Thus, the elimination of
the q=2 resonant surface and the reversal of the central
magnetic shear leads to a large reduction in the resistive
MHD growth rate in lowg equilibria with €8,,<1. How-
ever, where g, = 10.6, the growth rate of the=1 mode in
the equilibrium with a monotoniay-profile differs only
slightly from that in the negative shear equilibrium. There-
fore, the elimination of they=2 resonant surface and the
reversal of the central magnetic shear does not improve
MHD stability at largeeB,q>1.

The structure of the growing=1 mode in the small

perturbations is obtained by solving the linearized MHD €= 3.0X 103 equilibrium is shown in Fig. 3. Level con-
equations’ The circles in Fig. 2 are a plot of the growth rate tours of the real part of the pressure perturbation in the po-

of a perturbation with toroidal mode number1 in nega-
tive shear equilibria characterized bygaprofile with g on
axisqo=4.0 and with a minimum valug,,,;,= 2.2, as a func-
tion of €B,0, When n=pu=1x10"* The bounding con-
ducting wall is square dg=a,=1). The equilibrium for
€Bp01=10.6 is shown in Fig. 1. Wheag,, <1, the growth
rate, normalized to the Alfwetime ra=a/V, whereV, is
the Alfven velocity? is small. For a negative shear equilib-
rium with g>2 and e8,=3.0X 10 3, the growth rate is
only 9x 10 °. However, aseBp, increases towards unity,
the growth rate increases rapidly. Wheg,, increases to
10.6, the growth rate rises to>6l0"2; the exponential
growth time is only a little longer than ten Alfnetimes.

Phys. Plasmas, Vol. 4, No. 8, August 1997

loidal plane are plotted in this figure. FiguréaBshows the
structure of then=1 mode in the negative shear equilibrium
with g>2. At small €8, the structure of the pressure is
characterized by three maxima and three minima in the po-
loidal plane. If one defines a poloidal angleaelative to the
magnetic axis, measured from the midplane=a0, then the
variation of the pressure witl® is dominantly given by
cos(me) with m=3. Thus, the pressure at smaB,, has
the characteristion=3/n=1 structure of lowg resistive
kink (tearing MHD modes which resonate with the equilib-
rium magnetic field at theg=3 resonant surface. For com-
parison, the structure of the=1 mode in the equilibrium
with a monotonicq-profile with qy=1.1 is shown in Fig.
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FIG. 3. Mode structure at smal|3,,,, . The real part of the pressure pertur- FIG. 4. Mode structure at largeB,, . The real part of the pressure pertur-
bation of the n=1 mode is plotted for an equilibrium with bation of then=1 mode is plotted for an equilibrium wit3,,=10.6 and
€Bp01=3.0x107% and (a) negative central magnetic shear wij>2, and ~ (8) negative central magnetic shear with>2, and (b) a monotonic
(b) a monotonicg-profile with gg=1.1. g-profile with go=1.1.

3(b). There are two maxima and two minima in the poloidal ) ) )
plane; the mode is am=2/n=1 resistive kink(tearing growth rate when the region of negative shear is extended.

mode which resonates with the equilibrium magnetic field at! € very small decrease in the growth rate is probably due to
the g=2 resonant surface. Reversing the central magnetiEhe fact that the magnetic axis is shifted a little further out-

shear and raising| above two everywhere eliminates this Ward toward the wall, fronRy,s= 3.70 t0R,,is=3.73. Since
weakly growingm=2/n=1 resistive mode, leaving an even the equilibrium gradients are shifted a little closer to the

more weakly growingm=3/n=1 resistive mode. As the wall, the stabilizing tendency of the wall becomes a little
plasma becomes hotter and the resistivity decreases, thBore effective, although nowhere near sufficient to over-

growth rate becomes weaker yet.

The physical picture is entirely different at large
€Bp0>1. The structure of the=1 pressure perturbation 6 0.20
wheneg,,=10.6 is shown in Fig. 4. Figure(d is a plot of '
the real part of the pressure in the negative shear equilibrium
with g>2, while a corresponding plot of the pressure per-
turbation in the equilibrium with a monotong:profile with
go=1.1 is shown in Fig. é). The structure of the mode in q
the two cases is similar. No evidence of the existence of the
g=2 resonant surface in the plasma, or the lack thereof, can
be seen. And the growth rate of the mode in these two equi-
libria is nearly the same.

Extending the region over which the magnetic shear is
negative does not improve MHD stability at larg®,, -
Figure 5 is a plot of the-profile (solid line) and the pressure
profile (dashed lingfor a negative shear equilibrium identi-
cal to that shown in Fig. 1, except that=0.75 instead of
0.4; increasingo increases the distance from the magnetic
axis over which the shear is negative. For the equilibrium
shown in Fig. 5, virtually all of the plasma pressure is con-
fined to the region of negative magnetic shear. The StabllltBﬁIG. 5. Equilibrium with an extended region of negative shear. The safety

of ann=1 perturbation in this equilibrium is given by the factor profileq (solid line) and the pressure profiR (dashed lingthrough
triangular point in Fig. 2. There is only a small change in thethe midplane £=0) are plotted.
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FIG. 6. Toroidal mode number. The growth ratenormalized to the Alfve
time, is plotted for perturbations with toroidal mode numben a negative
shear equilibrium withe 8, = 10.6.

FIG. 7. Resistivity dependence of the growth rate. The growth yateor-
malized to the Alfve time, is plotted as a function of the Lundquist number
S= "1 on a log—log scale for the=1 mode(circles and then=10 mode
(crossepin a negative shear equilibrium wit#3,,=10.6.

come the large source of instability provided by the equilib-
rium gradients in the pressure and the current. and only the pressure is retained as a source of instability. If
Magnetohydrodynamic stability at lar@gg, is not im-  the parallel current in the g, =10.6 equilibrium is ne-
proved by broadening the pressure profile. This has beeglected in the stability analysis of the large- 20 mode, then
checked by generating an equilibrium in which the pressur¢he growth rate of the mode decreases by 10%; the mode is
profile is flat at the magnetic axis; i.@P/dy¢=0. (For the  dominantly driven by the equilibrium pressure gradient. Al-
the more peaked equilibrium pressure profile shown in Figthough there is a small decrease in the growth rate, the large
1, dP/dy¢+#0 at the magnetic axisFlattening the pressure n=20 mode remains unstable in the ballooning approxima-
profile at the magnetic axis produces virtually no change irtion. In contrast, the ideal ballooning mode was found to be
the growth rate of th@=1 mode at large S, - stable ineB,,>1 equilibria in Ref. 2. However, in addition
All of the stability results presented thus far have beerto the ballooning approximations—c and Jj=0, several
for perturbations with toroidal mode numbet=1. Figure 6 other approximations are made in Ref. 2 to simplify the
is a plot of the growth rate as a function of the toroidal modeanalysis, none of which are made in the simulations reported
numbern of the perturbation, in the negative central mag-in this paper. AlthoughB,,—, only the B, <1 limit is
netic shear equilibrium witkeS,,=10.6. As was found to treated in Ref. 2. As a result, the poloidal curvature is ne-
be the case foreB,,>1 equilibria with a monotonic glected and the diamagnetic effect of the pressure on the
g-profile and with aq=2 resonant surface in the plasta, toroidal magnetic field is also neglected. Furthermore, only
broad spectrum of toroidal mode numbers is unstable anthe large aspect ratie—O0 limit is treated in Ref. 2, and
modes withn>1 grow even more rapidly than the=1 effects of the order o&'? are ignored. As a consequence,
mode. Thus, again we see that whes,,;>1, the removal among other approximations, the normal curvature of the
of the q=2 surface from the plasma and/or the reversal oftoroidal magnetic field on the large major radius side of the
the central magnetic shear does not improve the MHD stamagnetic axis where the pressure gradient is the largest is
bility of the plasma. neglected, in addition to the already neglected poloidal cur-
The effect of the resistivity of the plasma on the growthvature. Both the resistivity and the compressibility of the
rate of MHD modes in a high pressuref,,=10.6), nega- plasma are also neglected in Ref. 2. None of the approxima-
tive central magnetic shear equilibrium is shown in Fig. 7,tions in Ref. 2 are made in the simulations reported in this
where the growth rate of th@=1 (circle9 and n=10 paper. The results in this paper are obtained by solving the
(crosseps modes is plotted as a function of the Lundquistfully compressible MHD equations, including the plasma re-
numberS=5~*. The growth rate of thei=1 mode is vir-  sistivity. In the e3,,=10.6 toroidal equilibrium, the large
tually independent of the magnitude of the resistivity. Thepressure digs a diamagnetic well in the toroidal magnetic
growth rate of then=10 mode, which has shorter scale spa-field and the toroidaj3 on axis isB;,;=30%. The inverse
tial structures than the=1 mode, has an extremely weak aspect ratioe=1/3 ande'?~0.6, not a small number. And
dependence o8. Suppose that the scaling of the growth rateall components of the equilibrium current and the magnetic
of the n=10 mode with S is given by a power law, field, both toroidal and poloidal, are included in the calcula-
y~S~ ¢ Then, fitting this power law to the two points with tions.
the largest values d in Fig. 7, one finds that the exponent
a s only 0.07. . _ IV. POLOIDAL CROSS-SECTION
There are two sources of free energy which can drive
instabilities in MHD: the gradient in the pressure and the  Consider now the effect on stability of altering the shape
gradient in the parallelto the magnetic fieldcurrentJ;. In  of the poloidal cross-section from a square to a rectangle
the ballooning approximation, the parallel current is ignoredelongated in the vertical direction. Suppose that the cross-
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R FIG. 9. Poloidal aspect ratio — stability. The growth ratenormalized to

FIG. 8. Poloidal aspect ratio — equilibrium. Level contours of the pressureFhe Alfven time, for then=1 mode(circles and then=10 mode(crossek

are plotted for a vertically elongated negative shear equilibrium with is plotted as a function of the poloidal aspect raig, on a linear-log scale.
€Bpo=10.6 and poloidal aspect rathy, = 4.

reduces the stabilizing influence of the wall. The net result is

. . h iati f th loidal io h I [
sectional are® = (2a,)(2ag) remains unchanged and equalt[ at variation of the poloidal aspect ratio has only a minor

. S . jm n ility. Th results show that the cross-
to four as the shape of the poloidal cross-section is varled. pact on stability ese results show that the cross

L . ional sh f th I h ff
Contour plots of the pressure for equilibria with two different sect!qna shape of the _Wa does.r?ot. ave a strong effect on
. : stability wheneg,,>1; the stability is dominated by the
values of the poloidal aspect ratg,,=a,/ag are shown in

Figs. 1b) and 8, for largee By =10.6. As the cross-section steep gradients in the equilibrium pressure and current that

: . . . . are the sources of free energy.
is elongated vertically, the outward shift of the magnetic axis The structure of the unstabfe=1 mode in the poloidal

towards the wall becomes smaller. For a square pIaSmSIane is shown in Fig. @) and Fig. 10. Level contours of the

Svrgfds_;;;“%? mgﬁ?géznlcét?ﬁ)rr:?ﬁgeég:n?;r'so'fstﬁg'giﬁjg::]t'toreal part of the pressure perturbation are shown in these fig-
0 . i .ures. When the plasma column is elongated vertically, the
the wall. For a vertically elongated cross-section with

; e i her diff h
Ayor=2 the outward shift of the magnetic axis is reduced tomode structure is rather diffuse and the mode extends over

. . ._much of th ilibrium pr re profile. As the vertical
55%, while for a vertically elongated plasma cross-section uch of the equilibrium pressure profile. As the vertica

with A, =4 the magnetic axis is shifted outward only

36% of the distance from the center of the column to the 5
wall. Concomitantly, the gradient in the pressure on the large

major radius side of the magnetic axis becomes shallower as

the plasma is elongated vertically. As the cross-section is

elongated, the magnitude gfon axis remains equal to 4.0 @

and the minimum value af remains equal to 2.2.

The stability of MHD modes in the largeg,,=10.6
equilibrium shown in Figs. 1 and 8 is presented in Fig 9.
This figure is a plot of the growth rate of the=1 (circles
andn=10 (crossesmodes as a function of the poloidal as-
pect ratio. These results demonstrate that variation of the
poloidal cross-section has virtually no impact on stability at
large €8,,. MHD modes remain violently unstable, with @
only a minor change in the magnitude of the growth rate, as
the poloidal aspect ratio is changed. As the poloidal cross-
section is elongated vertically, the equilibrium changes in
two ways, with opposite consequences for stability. First, the
equilibrium gradients on the large major radius side of the
magnetic axis are somewhat reduced in magnitude, which
reduces the source of the instability. At the same time the

magnetic axis and the location of the equilibrium gradientssig. 10. Poloidal aspect ratior=1 mode structure. Level contours of the
are moved further away from the conducting wall, whichreal part of then=1 pressure perturbation are plotted foj,=4.

B
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FIG. 11. Poloidal aspect ratio -A=10 mod(_a structure. Level contours of FIG. 13. External vertical magnetic field — stability. The growth rate
the real part of thev=10 pressure perturbation are plotted Ay, = () 1, normalized to the Alfva time, for then=1 mode(circles and then=10
and(b) 4. mode(crossesis plotted as a function of the external vertical magnetic field
BZ,EXI'

elongation is reduced, the mode becomes more sharply lo-

calized to the ever-increasing pressure gradient on the largagitial  profile generating the same initial internal magnetic
major radius side of the magnetic axis. The structure of théield, but with an additional external fiel, ... The pres-
growing n=10 mode is shown in Fig. 11. As the toroidal sure profile is given by the same flux function as before,
mode number increases, the modes become more localized o= P, ,,.g(#/— thsep/d(1 — thsep) , Whereysq,is the value of

the equilibrium gradient. i on the separatrix anglse,= 0 whenB, .= 0; the pressure
is zero on the open flux surfaces formed outside the new
V. EXTERNAL VERTICAL MAGNETIC FIELD separatrix, but inside the wall. As (B,x) increases in

o . . . magnitude from zero to 0.03, the position of the magnetic
The equilibrium position of the magnetic axis along the 5yi5" moves inward from 3.70 to 3.53. A further increase in
major radius can be altered by the application of an external_(BZ o) t0 0.06 results in an additional inward shift to
\{ertical _mggnetic fieIcBZ’e)Et. The ir.1trod'uction. of a uniform Raxis;?’-zo- The creation of a new magnetic separatrix on
field pointing downward in thez-direction shifts the mag-  he |arge major radius side of the magnetic axis restricts the
netic axis inward to smaller major radius, and creates & NeW|5sma to a smaller volume inside that separatrix. Since the
magnetic separatrix on the large major radius side of theyresqyre is a flux function, a comparison of the pressure sur-
magne_tlc axis. An e_qU|I|br|um contour plot of constant pres-t5.eg in Fig. 12 foB, o= — 0.06 with those foB, =0 in
sure in the poloidal plane foref,o=10.6 and for pig 1) shows that the flux surfaces on the large major
Bz exi=—0.06 is shown in Fig. 12. This equilibrium is ob- r4iys side of the magnetic axis are more circular in shape
tained dynamically like that shown in Fig. 1, with the same,, han B, .,.= —0.06. Of course, the flux on the small major
radius side of the magnetic axis is solely a functiorRoin
both cases. The addition of the external vertical magnetic

1 field alters theg-profile, but the magnetic shear around the
magnetic axis is still negative argiremains above two ev-
erywhere.

The effect of an external vertical magnetic field on MHD
z 04 stability is shown in Fig. 13, where the growth rate of an

n=1 perturbation (circle9 and an n=10 perturbation
(crossesis plotted as a function d, ¢y;. AS B, oy becomes
increasingly negative and the magnetic axis moves inward in

-1 | major radius, the growth rate of the=1 mode increases,
2 3 4 almost doubling as € B, .4y increases from zero to 0.06.
R The growth rate of then=10 mode also increases as

FIG. 12. External vertical magnetic field — equilibrium. Level contours of (- BZveXt) increases, although the increase is not as great_ as
the pressure are plotted for a negative shear equilibrium gt = 10.6 for then=1 mode. These results demonstrate .that changl'ng
andB, ¢,= —0.06. the shape of the flux surfaces on the large major radius side
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1 R=Rgp+agr. As B, ¢ increases from zero to 0.01, the mag-
@ netic axis moves fronR=3.70 outward toR=3.74. The
stability plot in Fig. 13 shows that the growth rate of the
D modes decreases as the magnetic axis is moved closer to the
wall.

VI. CONCLUSION

The MHD stability of high pressure tokamak equilibria
with €8,,>1 is not improved by reversing the central mag-
netic shear and raising the safety factpabove two every-
where. At smalleB,,<1, the equilibrium pressure is negli-

1 gible and the dominant source of free energy is the gradient
) in the equilibrium current. Raising above two eliminates
the g=2 rational surface from the plasma, and with it the
%@ growing m=2/n=1 resistive kink(tearing mode. However,

] this improvement in MHD stability does not persist as the
& equilibrium pressure increases aef,,; approaches unity.
The physical concept of resonance at a rational magnetic
surface, so important in loy® tokamaks where the equilib-

-1 i rium current is dominant, is no longer relevant when the

2 3 4 plasma pressure becomes much larger than the pressure in

R the poloidal magnetic field. Altering the current profile, and

) L with it the g-profile, does not affect MHD stability when
FIG. 14. External vertical magnetic field — mode structure. Level contours . | I
of the real part of the pressure perturbation in a negative shear equilibriur‘r‘?pr0| IS no longer smail.

with €8, =10.6 andB, .= —0.06 are plotted fon= (a) 1, and(b) 10.
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