The radial electric field dynamics in the neoclassical plasmas
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A numerical simulation and analytical theory of the radial electric field dynamics in low collisional
tokamak plasmas are presented. An initial value cogeeCTRIC’ has been developed to solve the

ion drift kinetic equation with a full collisional operator in the Hirshman—Sigmar—Clarke form
together with the Maxwell equations. Different scenarios of relaxation of the radial electric field
toward the steady-state in response to sudden and adiabatic changes of the equilibrium temperature
gradient are presented. It is shown, that while the relaxation is usually accompanied by the geodesic
acoustic oscillations, during the adiabatic change these oscillations are suppressed and only the
magnetic pumping remains. Both the collisional damping and the Landau resonance interaction are
shown to be important relaxation mechanisms. Scalings of the relaxation rates versus basic plasma
parameters are presented. 1®97 American Institute of Physids§1070-664X97)03312-(

I. INTRODUCTION to create a unified picture of evolution in high and low col-
lisional plasmas and to find equilibrium distributions and
The radial electric field dynamics and closely relatedflows. It is important to understand that even the equilibrium
phenomena of the poloidal and toroidal rotation of tokamakg x B flow can only be determined from the solution of the
plasmas have been of considerable interest. In particular, thﬁ)n—steady—state problem. Hirshniashowed that the neo-
build-up of the transport barrier, and the improvement ofcjassical equilibrium is reached through a complicated pro-
plasma confinement have been attributed to the generation gggg involving the viscous damping of the poloidal rotation
the radial electric field. The most striking evidences are rezng the generalized angular momentum conservation in the
lated to the famous low to highL-H) transition in axisymmetric systems.
tokamaks, and the recently discovered regimes of the en- | gt ys recapitulate briefly the results devoted to the neo-
hanced reversed she@®RS experimentéand negative cen- ¢jassical equilibrium in the tokamak plasmas. Three neoclas-
ter sheafNCS) experiments. In all of these cases the for- sical collisional regimes can be distinguisHéd® As usual
mation of the transport barrier, which takes place in the edg¢,e consider two characteristic time units: first,=qR/v
region for the L-H transition, and in the core plasmas for theha ion bounce or transit time, whefReis the major radius of

ERS and NCS discharges, could be explained by means %ftorus,q is a safety factor, and;=(2T/m)Y2 the thermal
the radial electric field generation. This electric field, eXiSt'veIocity and. secondr. = 1/v- wherev- is the ion—ion col-
] 1 gl 1 1

ing in the region of the sharp pressure gradients, pmducq%ional frequency. The collisional, or Phirsch—Schiuies

the EXB ;:OW with at?]healr, wh|c:1 IB tlurnrlcgﬁ a strong fsta— regime, is characterized by;> wy,, where the bounce fre-
lizing Influence on the plasma turbulente.rhe origin o uency is given byw,=1/7,. In this situation the regular

the rad!al electric f'e.ld can be of cgmpl|cat?d nature. SeVeragarticle orbits in a torus are destroyed by collisions and a
theoretical mechanisms of such “spin-up” have been pro-,

. i . =~ fluid approximation can be used. For weaker collisions
posed, in particular due to the Reynolds stfet® ion orbit - PP . irculati bi . hich d
loss effect, and the Stringer—Hassam poloidal asymmetricV”Tb\1 transit or circulating orbits exist, which correspon
- ' 89 . . to the plateau regime. Finally, for very weak collisions,
driving force:” Usually these models exploit some particular ~ "~ 5 where the inverse asoect ragie 1/R is less than
aspects of the plasma edge parameters, turbulence, instabifid =€+ W . - asp ) .
ties, etc. However, there has for a long time been known nity, andr is the minor radius of a torus, both circulating
universal mechanism of the radial electric field generationand trapped“bananas’) orbits exist, and this is the case of

discovered by Sagdeev and GaléBwue to the intrinsic the “banana’.' regime. A d|.n.1en5|onless parameter, conve-
non-ambipolarity of the non-equilibrium neoclassical plas_mently describing the transition from the banana to plateau

mas. Namely, in the plasmas with density and temperaturE9'M€: 1SVx = ”_iin/ES/Z' such thatv, <1 corresponds to
gradients, an initially Maxwellian distribution inevitably the banana regime. In spite of necessity of the kinetic ap-
evolves into a state with a finite radial electric field. It hasProach in the plateau and banana regime, it was shown that a
also been realized that this evolution towards the neoclassft€ady-state is conveniently described by a following fluid
cal equilibrium depends strongly on the plasma collisionalformula, given by Hazeltin&’ which relates the equilibrium
ity. poloidal velocity to the temperature gradient diamagnetic ve-
The goal of this paper is to study analytically and nu-locity: U,=kVy, whereU,=0U+Vg+V,+Vy. In this
merically the problems related to this evolution, including equation,U, is the equilibrium parallel velocity, and | is
determination of the steady-state values of the radial electrigs poloidally average part® is the ratio of the poloidal
field and temporary rates of evolution. Our major objective ismagnetic field to the toroidal on&/ is the EXB velocity
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given by Ve=—cE, /B, and the diamagnetic velocities are Dawson?® and called the Geodesic Acoustic Mot8AM).
given by Vi=cT/(eBL;) and V,=cT/(eBL,). Here L,  This mode is characterized by oscillations of the plasma col-
=dInn/dInr andLy=d InT,/dInr have the meaning of umn in the vertical direction with a characteristic frequency
the inverse density and ion temperature gradient lengths. Thegay~V+/R. Hassam and DraR@ derived a cubic sym-
coefficientk depends on the plasma collisionality. It equalsbolic equation, describing a coupling of this GAM mode
—2.1in the PS regime;-0.5 in the plateau regime and 1.17 with a magnetic pumping modesee Eqs(1)—(2)], and dis-

in the banana regime. In spite of its simplicity this formula cussed some general properties of the resulting solution. For
does not determine explicitly the electric field abd and  the later purpose, we shall present such a solution symboli-

the consideration of the temporal evolution is required. cally as
Several papers have been devoted to the solution of the
non-steady-state neoclassical probfénf8This problem can Ve=Ve.+A exp(— yupt) + B cofwgamt + @)

be formulated as follows: suppose we have a tokamak
plasma with a local Maxwellian(for some other non-
equilibrium in the neoclassical senpalistribution, which

has the radial temperature and density gradients, and SOMfed a relaxation in the plateau regime. Most of Ref. 31 is

initial (zero, for simplicity radial electric field. How long devoted to a pure collisionless case. It has been shown that if
does take to reach the neoclassical equilibrium, and what ate. . ..o 0ance condition is satisfieol, = waay , then there

the electric field and the distributigim particularU”éeloc- exists a strong collisionless, Landau-like damping mecha-
i jon? . . L

ity) at the end of the relaxation? Hassam and Kulsrhdve _nism. Remarkably, this mechanism depends strongly upon

studied the PS regime, the only case where the fluid descrlqhe value of the plasma safety factar Indeed given
tion is possible. It has been found that the relaxation is de- P y 9 9 @b

X . . . . =V;/gR, and =(!V+1/R, wh is of th d f
scribed by a symbolic equation for the poloidal velocity: unit;/, Clhe argsoar)lgﬂ\tﬂ cgnc}ition V;I,i;;i islgil_ elnogu?:L oa

Uyl dt=—vyp(U,y—kVr7), (1)  situation the results of Ref. 31 in the limit;—0 can be
interpreted as follows. The third term in the right hand side
wherek=kps=—2.1, and the so-called magnetic pumping of Eq. (3) is decayed withygay~w;,. Reference 31 also
frequency is given byvyp=rvps=wy/v;. The solution to provides some insight as to what happens if the resonance
this equation, written in terms of the drift veloci%e, can  condition is not satisfied, which is the case whpa>1. It
also be presented as also contains the effects of small, but finite collisions. It is
_ _ important to bear in mind, however, that the general case of
Ve=Ve.+A exi=yuel), @ Eq. (3), i.e. when all the three terms are present, has not been
where the relaxation parameteyyp is given by yyp  considered in Ref. 31. Namely, the conventional magnetic
=vpg, and the equilibrium velocity/t,, is controlled by the  pumping termsecond in Eq(3)] has been neglected. Thus,
initial condition. the results of Ref. 31, corresponding to the “non-resonant”
For the lower collisional regimes, plateau and bananacase with finite collisions can be interpretedasy=~ v;; -
the situation is more complicated. Technically the problem In this paper we perform a direct numerical study of the
lies in calculating the parallel plasma viscosity. It has beerelectric field dynamics in the neoclassical plasmas. For this
realized that a “quasi-static” viscositysee, e.g., Refs. 21, purpose we have developed a numerical code
22) cannot provide a proper evolution picture, since it was" ELECTRIC.” This code solves the ion drift kinetic equation
shown that the viscositgwhere we speak about the so-calledwith a full collisional term in the Hirschman—
parallel viscosity, resulting form the pressure anisotiajsr ~ Sigmar—Clark& form, and a quasineutrality equation. This
pends on the non-stationary terms liR¥g/dt, which is a  form of the collisional operator makes it possible to consider
manifestation of the enhanced polarization current in the toeach collisional regime, and hence to obtain a unified picture
kamak plasma. The kinetic treatment of the problem ha®f the relaxation. ‘ELECTRIC’ is an initial value code, it
been proposed in several pap&ts® Almost each of these calculates the evolution of the distribution function
papers either derives a corresponding “fluid-like” equationf(v,z,6,t), wherez=v /v is the pitch-angle, and the radial
(1) for U, or (2) for Vg dynamics, or numerically calculates electric field driftVg(t). The ultimate purpose of the paper is
eigenfrequencies of such evolutionary equations. In particuto study the general relaxation scenario, given by &),
lar, several different scalings fon,» have been proposed in and to determine the relaxation ratggpr and ygam - The
the banana regimer;; ,v;; /€' v;; /e. The important com- next important issue is related to different mechanisms of
mon feature of these approaches is the collisigiralthe  “preparing” the plasma system. Namely, at least two pos-
fluid sensg nature of the relaxation. For very low collisional sible types of switch-on can be considered. First one corre-
regions it leads to a situation, where the characteristic time o§ponds to a sudden switch-on, and can be realized, for ex-
relaxation is much longer than the corresponding transiample, by the choice of the zero initial electric field and the
time, ymp<wy . Technically, it corresponds to a special or- initial distribution function, taken to be a local Maxwellian
dering, such tha#/ dt<< wy, in the process of solving the drift with given temperature and density gradients. This case,
kinetic equation; see, e.g., Refs. 24, 25. which we will refer as “standard,” is more general in the
If this ordering is not used and fast processes witt sense of Eq(3), since all three modes take off. In a real
~w, are allowed, then there exists an additional branch otxperimental situation this case looks unlikely, except for the
plasma waves, discovered by Winsor, Johnson andischarges with very fast disruptions, such that the pressure

xexpl— veamt), (3

where ¢ is a phase factor. Recently Lebedetval 3! consid-
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profile is changed for less than the collisional time. Another do| UZ_Uﬁ sin@ v Ve sin 6
case corresponds to an adiabatic switch-on. For example, gt € 2 R + R ) (6)
once a steady state is reached after a complete evolution of
the “standard” case, one slowly varies the temperature or 5 R, o
density gradients. If it is done slower than the GAM oscilla- dv/2 __ Yl tv
tory time, or simply speaking, the ion transit time, then the dt 2
GAMs would not take off at all, and one is left with a pure
magnetic pumping relaxation. This “soft” switch-on can The safety factor is given by=¢€/®. We use the standard
also be considered as closer to a real experimental situatiateoclassical ordering; /(®L)<1, wherep;=v+/wg, With
during the neutral beam heating, performed, for example, inhe thermal velocity = (2T/m)Y?, andL is the character-
a Tokamak Fusion Test React6FFTR) or DIlI-D plasma istic scale of density and temperature variations. We next
(see Refs. 2, 3, 5 for more detail on the neutral beam heafmearize Eq.(4) by representing as f=f,,+f, where the
ing). Maxwellian partfy, is given by

Accordingly, Section Il of the paper is devoted to for-
r_nulation of the problem and derivation of the ba;ic equa- ¢ —n(m/2aT)%? exd — mu2/2T], @®)
tions. In Section Il the results of the numerical simulation
are presented. There we start from the “standard” case. We
demonstrate here resonant and non-resonant scenarios of the
relaxation. Next we consider the “soft” switch-on. We

sin 6.Vg. (7)

The equation forf reads:

and plateau regimes. We also discusdependence of the 4t + grRd6 ¢ 2 gR EH_S“)
relaxation rateyyp andycam - In Section IV we discuss the

fluid approximation and some general properties of relax- m(v2+0?) b2
ation, following from the incompressibility and conservation  =sin 92”— Ve+V,+ ST~ 5) Vilfy, (9
of the generalized toroidal angular momentum. In Section V RT T

we briefly discuss the collisional damping of the geodesic

acoustic oscillations. Finally Section VI is devoted to discus-Where the drift velocities are given by,=cT/(eBL,) and

dinr. Note that we have neglected the electric dif
=(c/B)d®/dr in the second term in Eq9), since we re-
strict ourselves only by the case of the “moderate” electric
IIl. BASIC EQUATIONS fields, such thaVg/(@v;)<1. Also the polarization drift
velocity has been neglected in E@), which is consistent
with the orderingp; /(OL)<1.
It is convenient to rewrite Eq(9) using new variables
z=v /v andv:

We consider a simple axisymmetric tokamak with the
magnetic field, given byB=Bg(e,+0ey)/(1+ € cosd),
where{ and# are the toroidal and poloidal angles of a torus,
respectively. The poloidal angle is chosen such that=0
corresponds to the outboard of a torus. The inverse aspect_ _ _
ratio e=r/R is assumed to be small. The major radius isdf zv df  v(1-2%) sin @ of ~
given byR=R,+r cos#, wherer is the minor radius. The st qrR 960 €T qR E_St( f)
ion distribution functionf depends on the total velocity of a

particlev, its parallel velocityv . It is also considered to be mo?(1+2%) _Uz _ _)

a function of# andr. The eleclz‘tric field is described by the oRT | VETVat| o7 3/ Vr|Tu: (10
electrostatic potentialg(r, 6,t) = ¢o(r,t) + ¢d4(r,6,t). For

simplicity we will neglect the paré, in this paper, thus only Now we specify the collisional operat@1(f):

the radial electric fieldE,(r,t) = —da(r,t)/dr will be stud-

ied. For the functionf(v,v|;,6,r) we have a drift kinetic 9 ofF .

equation, given by St(f)= Vc(X)E(l_ZZ)a_FZS_Lfa (11

CARPPVING TR +d02/2 of 9
at POV Gt Gy T AU ez Vrar

wherex?=muv?/(2T), and the functiorv, is

=St(f), 4 : 3(27) Y2y, L 1 0+ exp(—x?
X)=— | 1- —|erf(x) + ————|,
where the radial drift velocity is: Vel 4x3 2x2 ( Jax
vﬁ-#v2 ) 1 dVg (12)
V,=— sin 6— — ——, (5)
2wgR wg ot with v;; =4mne*\/(m?v3) the frequency of the ion—ion col-
with Vg=—cE,/B the EXB drift velocity, and wg lisions,\ the Coulomb logarithm, andrf(x) the error func-
=eB/mc is the cyclotron frequency. The particle motion is tion. The operatorS; in Eq. (11) is taken to be in the
described by the following equations: Hirshman—Sigmar—ClarRéform:
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. 1 wheren=0,1,2; - -, andP,(z) is the Legendre polynomial
Sif=3[ve(X) —vs(X)] J_lzfdz of then order(it is instructive to compare with a steady-state
solution, obtained by Hinton and Rosenbftfih Using the
1 following recursion properties of the Legendre
vs(X)X (J zfdz)d polynomials®*
350w f . - (19 (N+1)Ppy1=(2n+1)zPy—nPy_1, (20)
(X)X fydx
(z2-1)dP,/dz=nzP,—nP,_4, (21

where the “slowing down” frequencyg(x) is given by we perform the following standard procedure. We substitute

2 2 U2 (19) into (15), then multiply each of equations by, and

_ 2v; X exp(—X . - A

vg(X)= — erf(x)— ——— (14) integrate from—1 to 1. Note that the magnetic drift in the
X N right-hand side of Eq.(15 is proportional to (#

+2P,)/3. We use the following property of the collisional

Next we perform a normalization of E¢L0). We use a
operator:

time unit, given in terms of the ion transit timé
=tvt/(gR), the collisional frequency is normalized in the St(SB,(X)P,)=—3(v,B,)P,, (22)
same wayy.= v¢(X)vt/(qR). Finally, the distribution func-

N where
tion f is normalized in terms of the Maxwellian functidgy, : A A o
T=*%f,,. Using the above-described normalization Etp) vn(X)Bp=n(n+1)[vc— d15(vc—vs)|B,
may be written as
. . . x3vgB,dx
A  at x(1-z» ot . . ~ f rsen
_A+ZX%_GT Sin Gg—st(f) _XV851,n R ) (23
Jt f x*vs exp(—x?)dx
~ . 3\ . . .
=sin 6x3(1+2%)| Vg+V, + | x?— 5) V1l (15  whereg; ; is the Kronecker symbol, and we use normalized

Egs. (12) and (14) for v, and vg, respectively. Using the
where we have also normalized the drift velocitidsz ~ integration propertyf P,Pn,dz= 6y, n2/(2n+1), we eventu-
=qVe /oy v =qV, /vy, and VT=qVT/vT Note that the &lly come to a system of coupled equations for functibps

s Vn n [ .

“stoss” term in (15) is given by (10),(12) with »; dF, ( n JF,_.; n+1 dF, 4,

=vyur/(aR). at "X\2n—1"90 "2n+3 a6
We supplement Eq15) by the quasineutrality condi-
tion: +Edine n(n—l)F (n+1)(n+2)F
23X n=1 Tn1T T 2ny3 0l
<j,>:J RfV,d*d6=0, (16) i 480,428, 3
+ v Fa=x2 sin §— 3| Vet Vot | X5 V1),
where the radial drift is given bg5), andd3v =27v2dvdz,

such that the integration overandz are taken from 0 toe 24
and from—1 to 1, respectively. In our normalized units the wherev, is given by Eq.(24). The supplementary quasineu-

linearized version of this equation takes a form: trality equation has a form:
Ve, 2 ’ Me, Fo+0.0F 2)dxdo=0.
PR (1+2%)x* exp(—x?)f sin odxdzd=0, Tt T (Fo+0.1F)sin 6x* exp(—x?)dxdg=
(17) (25)
where the same integration convention is used. The parallel velocity), is given here by:

In the next sections we omit “hats” in Eq15),(17) for
simplicity. We are also interested in the poloidally averaged U_H:

macroscopic parallel velocity. This quantity is given By

_IUHfd?’Udg/(Ifd?’vdg) Its normalized ver3|oth|| , such  System(24)—(25) represents our basic equations for the nu-
merical simulation. EquatiofR4) is also subject to a bound-
ary conditionF.,=0. For simplicity we neglect the contribu-
€ tion from the electrons. The initial value cod&LECTRIC,”
U||=—3,2J x3z exp(—x?) fdxdzab, (18 developed by us for modelin(R4)—(25), uses an operator
. splitting technique and, accordingly, has a suitable combina-
where we have omitted “hats” if andU_H in Eq.(18). Next  tion of implic_it an_d e>_<p|icit difference schemes. Typi_cal
we represenf in Eq. (15) as number of g[|d points in X,z,§) space for very low colli-
sionality like v=0.005 is 64<128x64. As it is known from
£(6,2,X)=3F,(x,0)P,(2), (19 the neoclassical steady-state thédhe

2¢
3773/2

f x3 exp(—x?)Fdxdd. (26)

thatUH=eU||/vT, is given by:
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FIG. 1. The electric field driftVe evolution. The PLATEAU collisional £ 2. The parallel velocity evolution. The PLATEAU collisional regime
regime withV;=0.1V,=0.0e=0.1p=0.1. Figs. 1 and 2 describeshan- with V;=0.1V,=0.0=0.1,=0.1.
resonantsituation withgq=3.0. "

We now consider the banana regime. We start from the
number of the Legendre polynomials is scaledad®. This  same parameters as in the plateau regime, but wit0.02.
scaling is consistent with our simulation. Every run is char-This corresponds te, =0.63. Figure 5 corresponds to the
acterized by a triad €,q,v, ). We note that each of these non-resonant case witl=3.0 (cf. Figs. 1-2. One can see,
parameters has a special physical meaningontrols the that the relaxation time is strongly increased, which is appar-
mirror force and accordingly the number of bananas,is  ently related to a smaller collisionality. In Fig. 6 the resonant
the collisionality of plasmas, and is responsible for the caseq=1.2is plotted. It has similar features as the one in the
Landau resonance. Thus, each combination provides RBig. 3 in the sense of the rapid damping of the oscillations,
unique relaxation scenario. We present the cases for theithin several transit times. One can also see a slow residual
lower collisional regimes mostly. relaxation after the oscillations are gone. This is the first

evidence of the existence ahotherroot in Eq.(3), namely,
the collisional magnetic pumping!
IIl. MODELING OF THE RELAXATION We have so far considered the “standard” case. The
We start presenting the results of the numerical simula®AM oscillations have always accompanied the relaxation
tion of Eqs.(24)—(25). As was defined in the Section I, the Process. How can one extract the information about the mag-

“standard” relaxation scenario corresponds E(6,x,t
=0)=0, wheren=0,1, - -, andVg(t=0)=0. Thus, the ini-

tial distribution is a local Maxwellian. Figures 1 and 2 cor- 0.15

respond to the plateau collisional regime wkliy=0.1V, I
=0.0€=0.1p=0.1. It is a non-resonant situation wit Ve 0.1 i

=3.0. Figure 1 shows the electric field dritz evolution, 0.05 -

and Fig. 2 the parallel velocity, given by E@®6). The time L

unit corresponds to one transit time. One can see the pres- 0

ence of GAM oscillations. Clearly, the damping is of a pure i
collisional mechanism in this case. The magnitude of the -0.05F

parallel velocity is much smaller than the effectiexB o1 '_Nk/
velocity: |Uj |<|Vg|. Figures 3 and 4 differ from Figs. 1 and !

2 by one changeg=1.2. This is a true “resonant” situation. 015}

Indeed, the collisionless limit of Ref. 31 provides the oscil- :

lation frequency w3y, = 7/897 (see also Section VHence, -0.2 (') 4'0 8'0 1éo 1('30

the condition for a particle to be in the resonance with a

wave isq,.s=(8/7)Y2. As one expects, in Fig. 3 the GAM

oscillations are gone within several transit times. The parallel Time

flow is again very small in this case. In the remainder of this

section we do not present the parallel flow, since it was smaltig. 3. The electric field driftve evolution. The PLATEAU collisional
in all our runs; see, however, Section V, where a relationegime withv;=0.1V, =0.0=0.17=0.1. Figs. 3 and 4 describeseso-
betweenVg and the parallel flow is discussed. nantsituation withq=3.0.
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20,0001 | -0.15
-0.0002 ’ . . . . 025 20 80 120 160
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; Time
Time

. . . . FIG. 6. The electric field driftVg evolution. The BANANA collisional
FI.G. 4. The parallel velocny evolution. The PLATEAU collisional regime regime with VT=O.1,Vn=0.0,e=0.1,?/=0.02. Fig. 6 describes eesonant
with V1=0.1V,=0.0=0.1p=0.1. situation withg=3.0.

netic pumping in the system? To answer this question we ) o )
propose the following numerical experiment. We start from a#=0-024=3.0 is plotted(in Fig. 9 b‘?|0V‘)- The effective
“standard’ case and reach some steady-state. As we hay€oclassical parameter, =0.22, so it corresponds to a
seen in Figs. 1-6, this usually requires many transit times.deep” banana regime. Here the parametem Eq. (27) is

Then we slowly change the temperature gradient: taken to beaz.lo. Since we deal with thg Iine_arizpd system,
the value ofa is chosen only for better visualization proper-
Vr=Vrox [1+a tanf((t—to)/ V)], (27 ties. The solid line in Fig. 7 shows the electric field velocity

where a is some number' andt satisfies the condition VE and the dotted line thb’T variation. First, one can see,
wpdt>1, or in our normalizing unitsst>1. Thus, this thatduring and after the adiabatic change, given by(Eg),
change is adiabatic in respect to the transit time. At the sam&e GAM oscillations did not take off, as expected. On the
time this time should be shorter tham—the collisional other hand, after the switch-on is complete, the system is still
relaxation time. For example, in the case of Fig. 3 the relaxfar away from the equilibrium. This late stage allows for the
ation timerz~100. Thus, it is sufficient to takét=10. The ~ exponential fit as in Eq2). It providesyyp=0.016 for this

full run with parametersV;(t=0)=0.1V,=0.0€=0.2, Ccase.

0.5

0 80 160 240 320 400 480 560 640 720

R S ——
0 40 80 120 160 200 240 280 320 360
: Time
Time
FIG. 7. Relaxation with the adiabatic switch-on of the temperature gradient

FIG. 5. The electric field driftvz evolution. The BANANA collisional at the moment=640. The electric field drift/¢ is plotted by solid line, the
regime with V;=0.1V,,=0.0=0.1p=0.02. Fig. 5 describes aon- V7 velocity is plotted by the dotted line. The BANANA collisional regime

resonantsituation withq=3.0. with V1=0.1V,=0.0,6=0.1,=0.02, andhon-resonant & 3.0.
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It is interesting to consider different values ef since
there has been a lot of controversial results, regarding the I
dependence ofyp. The run withe=0.1 and the same other 0.15
parameters as in Fig. 7 yields the relaxation rate for the mag-
netic pumpingyyp=0.02. One can see a substantial change F(Z) 0.1
due toe. Qualitatively, the “soft” switch-on regime and the ;
consequent magnetic evolution can be understood as follows 0.05
In the neoclassical equilibrium the distribution of bananas I

0.2

can be obtained from the solution of the drift kinetic equa- 0 |
tion 0.05
i x(1-22) of |
e e— ' cinA— -0.1
ZX&H €~ sin 0(92

-0.15

=sin Ox3(1+2%)| Ve +V,+

2 3\ 2
X 3 Vy|exp(—x9),
(28) | z
which is just as Eq(15) with no time derivative and colli- FIG. 8. The steady-state distributidf(z) (integrated ovex) vs z at the
sional terms, but with the restored exponential factor. Thiglifferent poloidal locations. Curved), (2), and(3) correspond tof=, f
. ~ =0, andd=7/2, respectively. This is the end of the “standard” case, with
equation corresponds to the orderingt w, and d/t<wy, .

. . ters|=3.0=0.15=0.02V,=0.0V1,=0.2.
It also allows for a slow change i¥(t) in comparison to "o ooee 0 g 0
the transit time. Equatiof28) is the leading order equation

of Refs. 22, 25, and 26written in a slightly different way with a fraction of the trapped particles, given Hg|
The solution to it, which can be called the banana quasig(ze)l/z and the third, to the top of the torus, with a frac-

steady state, is tion of the trapped particldg|< (€)% We present the func-

A 2 3 tion F(z,0), averaged over one transit time. In Fig. 8 we plot
f=—zx(1+€ cosf) —| Vg+V,+| x>~ —) VT} the functionF for different locations, such that the curves
€ 2 (1), (2), and(3) correspond t&d=7,60=0, and 6= 7/2, re-
X exp(—x?)+C, (29) spectively. This is a “standard” steady-state case, with pa-

) ) i . ) rametersq=3.0,e=0.15p=0.02V,=0.0V1,=0.2. In Fig.
whereC is a function, constant along the field line for given g he steady-state distributidf(z, =0) is plotted for two

w and energy, i.eC=C(x,u(x,z,0).E(x,2,0)). Itis deter- oo ¢ colisional frequencyy=0.02 (solid line), and »

[nmed from the S_O'F'b'!"y condition in t_he next order in =0.01(dotted ling. One can see that the distribution is close
vlw,. However, it is important, thaC is zero for the {5 the linear dependence, given by the integrated (E8),

trapped particles because of the parity constraint; see, fQfch that the smaller collision frequency is in a better agree-
example, Ref. 22. Introducing a distribution function

F(z,0)=[fx?dx, one obtains from Eq(29), that F~z(1

+ € cosH)(Vg+V,+0.5V7) for bananas. In a very simplified

way the picture of the magnetic pumping looks as follows. 0.2

After we have adiabatically changed the temperature gradi-

ent in accordance with Eq28), the bananas, insensitive to

collisions, reach their quasi-steady-state within a few bounce

periods. For such a short time the distribution of the circu-

lating particles has not changed essentially. Thus, there ap-

pears a strong discontinuity at the boundary between the

trapped and circulating particles, which yields a friction

force ultimately controlling the magnetic pumping phenom-

ena. It then becomes clear, that the magnetic pumping relax- 011

ation rate depends oa, since the smoothing of the above-

mentioned discontinuity happens with the effective

collisional frequencyy;; / e. -0.2_1“0"“' ' ""‘""6'6‘"""-'-“'-‘"1"0
Let us illustrate the abovementioned qualitative argu- ' ' '

ments by simulation results, provided b¥LECTRIC.” First,

we note that the trapping condition for particles at the point Z

6 is |z|<(e(1+cos )2 We consider three different loca-

tions, 6=m,6=0, and 6=m/2, such that the first location rig 9. The steady-state distributiéi(z) is plotted for two values of col-

corresponds to the region of the strongest field with NQisional frequency,»=0.02 (solid line), and »=0.01 (dotted ling. Other
trapped particles, the second, to the weakest magnetic fielghrameters arg=3.0=0.15V,=0.0V1,=0.2.
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FIG. 10. The case with parameteig= 3.0,5=0.15}=0.02,\/n=0.0, )
V+10=0.2. The electric field drifi/¢ is plotted by solid line, th&/ velocity FIG. 12. On reaching the steady-state for 0.02 the adiabatic switch-on

is plotted by the dotted line. with »=0.0 is performed at=0. The distributionF(z) is plotted att
=40. Curves(1), (2), and(3) correspond tod= m,6=0, and = 7/2, re-
spectively.

ment. On the other hand, the influence of the boundary layer

between the transit and trapped particles is still quite strong, ]

providing a noticeable deviation. Now we perform the adia-On€ can see a better agreement with @§) for the trapped
batic switch-on, described in detail earlier in this section. WeParticles in comparison to the finite collision cases. Such
present a case with=0.02. In Fig. 10 the electric field simulation allows one to estimate the influence of the bound-
velocity Vg vs time is plotted. In Fig. 11 the distribution ary layer, since it is knownsee, for example, Hinton and

F(2) is plotted at the timet—0.40, and 80. One can see, that Rosenblutf), that solution(29) is not valid there. Whes is

the magnetic pumping evolution in fact represents a quitéjecreased, the transition from the banana to plateau regime

complicated behavior. Apart from the dynamics of the tran-takes pIaAce. Namely, all the banana orbits are destroyed

~ 7,213 H ; i P .
sitional layer, there is an evolution of the banana distributioVhen e=v". Then representation Iike9) is not possible;
due to varyingVe andVy. For illustrative purpose we also all the particles are effected by collisions and participate
consider a “pure” collisionless case with=0.0. Namely equally in the formation of the friction force. Thus, there

. ~ ~ exists a saturation in the plateau regime. In Fig. 13
on reaching the steady state for-0.02 we puty=0.0 and Ofwp b 9 9

erform a usual adiabatic switch-on. In Fig. 12 the distribu-V& Plot the relaxation rateyp vs e for the caseq=3.0p
P 9 =0.015V,=0.0V19=0.2. Whene—0, and there is no mir-

tion F(z,6) is plotted att=40. As in Fig. 8 curvegl), (2), T . .
and(3) correspond t@= 1, 6=0, and6= /2, respectively. ror force at all, the only dissipative root in E) is ygam -

0.042
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€

FIG. 13. The relaxation rate of the magnetic pumpipge vs € in the
FIG. 11. For the case of Fig. 10 the distributiéi{z,6=0) is plotted. banana and plateau regime. Transition from banana to plateau corresponds
Curves(1), (2), and(3) correspond td=0,40, and 80, respectively. to e=0.061. Other parameters ave=0.02(=3.0.
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012 where we considerp= ¢(i), and ¢’ =d¢/dys. Equation

I (32) yields:
YVP  oa1p
V|| cl ¢'
01 B g7 =A(¥), (33
0.09 whereA is the integration constant, similar to the one, used
by Callen and Shaint We next consider the equation of
0.08 | motion, given by
0.07 dv 1
pm=—vp+EjXB—Vﬂ', (34
006 L I ST M| P S SR SR N S SR SR SR S S
0.0 0.05 0.1 0.15 0.2

where the viscosity tensor ig= pLIA+(pH—pl)bb. Note,
that the quasineutrality conditiovi-j=0 yields

9 i 2 Jgio—
e PACIR TRy (35
where\/g is the Jacobian, anid’ andj? are the contravariant
components of. Integrating Eq.(35) over 6 one obtains
(j¥y=0, where the average over magnetic surface is given
by(...)=/(...)\gda. This condition was used by Rosen-
bluth and Taylor® Multiplying Eq. (34) by V¢ andR?, the
later beingR?=1/(V{)?, one derives a fluid form of the
generalized toroidal momentum conservation:

FIG. 14. The relaxation rate of the magnetic pumpipge Vs € in the
plateau regime. Other parameters are0.25¢=3.0.

This is consistent with Ref. 31. To illustrate this effect in
more detail let us consider the marginal casessf0. Re-
markably, in the absence of the mirror force, there is a col
lisional damping of the GAM oscillations, but no magnetic
pumping at all! It is important, that the region of the inverse ~ —(R2v¢)=0, (36)
dependenceyyp VS € exists only in the banana regime, at

which is consistent with the qualitative picture, proposedwhere V¢ is the contravariant component d. Using the
above. In Fig. 14 we plotyyp vs € for the Caseq=3.0,;/ expression folV one obtains

=0.25V,,=0.0V1,=0.2. All the points correspond to the

plateau regime. One can see, that the magnetic pumping re- L Vil ce’ )
laxation rate decreases monotonicallyeadecreases. RAVISV-Vi= 7+ g(vlﬂ) : 37
IV. FLUID PICTURE OF RELAXATION Now, combining Eqs(33), (36), and (37), one obtains a

relation between time derivatives af andA:
It is interesting to consider some general properties of

the relaxation, common to all of the collisional regimes. N OP  OA

Moreover, a part of this section is devoted to a more general (R >7+| ot 0. (38)
toroidal geometry, rather than the one considered in the pre-

vious sections. Namely, we consider an axisymmetric torugMultiplying Eq. (33) by B?, differentiating the result in time,

and the magnetic field is given by and performing the surface averaging we get:
B=IV{+VyXV{, (30) F ViBY— (B2 A Ia¢’ -
— = —+cl—.
wherel =1 (), and the flux functiony, toroidal angleZ, and §t< 1B)=(B%) at ¢ ot (39

poloidal angled form a coordinate system. Since we are
interested in the time-dependent part of velocity only, we us
V=V, b+Vg, whereb=B/B. We consider the slow relax-

ation due to magnetic pumping only. Then, it is possible to

Substituting Eq.(38) into Eq. (39) one obtains the relation
%etweenVH and ¢’ time evolutions:

’ 2 2
use an approximation of the plasma incompressibiltyV 2 v By=cl d¢ /1_ (B°NR ))_ (40)
=0, which yields: at ot \ E
V)| 1 In approximationB?=12/R? we get instead of40):
B-V——c(Vé$XB)-V—=0, (31
B B2 5 &
which can also be presented as S{VB)=cl 7( 1_<§> (R?) | (41)
B.V ﬂ_ cle’ =0, (32) Let us estimate the toroidal relaxation given by E4fl) in
B B2 the low aspect ration approximation. We have
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FIG. 15. The Hazeltine parametkr(defined in the Introductionvs colli-
sionality.
d 1 cJd
Cl(ﬁ,ECBR&_(fW:@&_?' (42
Using 1-(1/R?)(R?=0(€?), one obtains
OV _ 0(62)%. (43
ot ot

Integration of Eq(43) with our “standard” initial conditions
Vg(t=0)=0, and Uj(t=0)=0, vyields OU(t=x)
=0(€?)Ve(t=2<). This explains the results of Figs. 1-11,
that the toroidal velocity is much smaller th&fg . Thus, in
accordance t¢43) and the formula for the steady-state po-
loidal velocity, given in the Introduction, in the “standard”
situationVg(t=o)=(k—1)V{i—V,.

pose of completeness. For simplicity we considg=V,
=0 in this section. Let us start from the Laplas transform of

Eq. (15):
of

x(1—2%)
% €E—

R
pf+zx 5 sin HE—St(f)

=sin x3(1+Z°)Vg. (44)
We solve Eq(44) by perturbations, considering=1. Then,
ne

fi= x2(1+ 2%) Vg, (45)

. of,  x(1-2% = of, S0, (46

p 2+zx% eTanﬁE (f1)=0, (46
which yields
sin 0

fo= Vex?rg(x)(2—62%), (47)

pZ

wherev.(x) is given by Eq.(12). Substituting Eq(47) into
Eg. (17) one obtains:

2

p+ jx6(1+22)2 exp(—x?)dxdz

4p771/2

q2

Wf x8(1+2%)(2—62%)
X exp( — x?) ve(x)dxdz=0. (48)

Performing the integration in Eq48) we get the dispersion
relation for GAMSs:

8 p '
which yields the collisional damping of GAMSygam
=4v;;/(7q). There is noe dependence here. Physically this

79 v;g? o

p2+ (49

To test the results of this section we studied the depenis because the GAMs are not sensitive to details of the ba-

dence of the steady statg velocity on collisionality with
the help of “ELECTRIC.” In these runs we performed the
adiabatic switch-on o¥/; from the very beginnindstarting
from V;=0) to avoid GAMs and to insure the zero initial
values forVg and Uj;. In Fig. 15 we plotk=(Vg+Vy
+0U))/Vr vs collisionality. The parametdr is just the Ha-
zeltine parametefsee Introduction One can see a good
guantitative agreement with analytical valukg0)=1.17
andk(«)=—2.1. At the same time in all of these runs the
equilibrium parallel velocity satisfied the relatio®U

= 0(62) VE .

V. DAMPING OF GAM OSCILLATIONS

In this section we consider the damping of the GAM

nana distribution.

VI. CONCLUSION

We have considered the time evolution of the radial
electric field in the neoclassical plasmas. It has been shown
that typically the relaxation is accompanied by the geodesic
acoustic modgGAM) oscillations as well as the magnetic
pumping. We have distinguished the slow magnetic pumping
relaxation from the GAM oscillations in low collisional plas-
mas. The GAMs have their own relaxation, sensitive to the
Landau resonance condition. This condition, written in terms
of the plasma safety factay, is q=1.2. If it is satisfied then
there is a strong Landau damping of GAM oscillations,
whereas fog> 1 there exists only the slow collisional relax-
ation with ygam= v;i . By performing a “soft” switch-on of

oscillations. The theory of the Landau damping of them haghe ion temperature gradient we have been able to separate

|31

been proposed by Lebedet al>* When the resonant condi-

GAM oscillations from the slower magnetic pumping relax-

tion is not satisfied, and the Landau damping is exponentiallytion. It has its own relaxation rate, sensitive to the mirror

small, we are left with the collisional damping. The tech-

nigue to determine/gay in EQ. (3) has already been pointed

force strength. As far as the dependence is concerned our
results are qualitatively consistent with predictions by

out in Ref. 31. Here we present the calculations for the purTaguchi®* Hsu et al,?®> Novakovskii et al,?® and Galeev
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