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A numerical simulation and analytical theory of the radial electric field dynamics in low collisional
tokamak plasmas are presented. An initial value code ‘‘ELECTRIC’’ has been developed to solve the
ion drift kinetic equation with a full collisional operator in the Hirshman–Sigmar–Clarke form
together with the Maxwell equations. Different scenarios of relaxation of the radial electric field
toward the steady-state in response to sudden and adiabatic changes of the equilibrium temperature
gradient are presented. It is shown, that while the relaxation is usually accompanied by the geodesic
acoustic oscillations, during the adiabatic change these oscillations are suppressed and only the
magnetic pumping remains. Both the collisional damping and the Landau resonance interaction are
shown to be important relaxation mechanisms. Scalings of the relaxation rates versus basic plasma
parameters are presented. ©1997 American Institute of Physics.@S1070-664X~97!03312-0#
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I. INTRODUCTION

The radial electric field dynamics and closely relat
phenomena of the poloidal and toroidal rotation of tokam
plasmas have been of considerable interest. In particular
build-up of the transport barrier, and the improvement
plasma confinement have been attributed to the generatio
the radial electric field. The most striking evidences are
lated to the famous low to high~L-H! transition in
tokamaks,1 and the recently discovered regimes of the e
hanced reversed shear~ERS! experiments2 and negative cen
ter shear~NCS! experiments.3 In all of these cases the for
mation of the transport barrier, which takes place in the e
region for the L-H transition, and in the core plasmas for
ERS and NCS discharges, could be explained by mean
the radial electric field generation. This electric field, exi
ing in the region of the sharp pressure gradients, produ
the E3B flow with a shear, which in turn has a strong st
bilizing influence on the plasma turbulence.4,5 The origin of
the radial electric field can be of complicated nature. Sev
theoretical mechanisms of such ‘‘spin-up’’ have been p
posed, in particular due to the Reynolds stress,6 the ion orbit
loss effect,7 and the Stringer–Hassam poloidal asymme
driving force.8,9 Usually these models exploit some particu
aspects of the plasma edge parameters, turbulence, inst
ties, etc. However, there has for a long time been know
universal mechanism of the radial electric field generati
discovered by Sagdeev and Galeev,10 due to the intrinsic
non-ambipolarity of the non-equilibrium neoclassical pla
mas. Namely, in the plasmas with density and tempera
gradients, an initially Maxwellian distribution inevitabl
evolves into a state with a finite radial electric field. It h
also been realized that this evolution towards the neocla
cal equilibrium depends strongly on the plasma collision
ity.

The goal of this paper is to study analytically and n
merically the problems related to this evolution, includi
determination of the steady-state values of the radial elec
field and temporary rates of evolution. Our major objective
4272 Phys. Plasmas 4 (12), December 1997 1070-664X/97
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to create a unified picture of evolution in high and low co
lisional plasmas and to find equilibrium distributions a
flows. It is important to understand that even the equilibriu
E3B flow can only be determined from the solution of th
non-steady-state problem. Hirshman11 showed that the neo
classical equilibrium is reached through a complicated p
cess involving the viscous damping of the poloidal rotati
and the generalized angular momentum conservation in
axisymmetric systems.

Let us recapitulate briefly the results devoted to the n
classical equilibrium in the tokamak plasmas. Three neoc
sical collisional regimes can be distinguished.12–16 As usual
we consider two characteristic time units: first,tb5qR/vT

the ion bounce or transit time, whereR is the major radius of
a torus,q is a safety factor, andvT5(2T/m)1/2 the thermal
velocity, and, second,t i51/n i i wheren i i is the ion–ion col-
lisional frequency. The collisional, or Phirsch–Schluter~PS!
regime, is characterized byn i i @vb , where the bounce fre
quency is given byvb51/tb . In this situation the regular
particle orbits in a torus are destroyed by collisions and
fluid approximation can be used. For weaker collisio
n i i tb<1 transit or circulating orbits exist, which correspon
to the plateau regime. Finally, for very weak collision
n i i tb<e3/2, where the inverse aspect ratioe5r /R is less than
unity, andr is the minor radius of a torus, both circulatin
and trapped~‘‘bananas’’! orbits exist, and this is the case o
the ‘‘banana’’ regime. A dimensionless parameter, con
niently describing the transition from the banana to plate
regime, isn* 5n i i tb /e3/2, such thatn* <1 corresponds to
the banana regime. In spite of necessity of the kinetic
proach in the plateau and banana regime, it was shown th
steady-state is conveniently described by a following flu
formula, given by Hazeltine,17 which relates the equilibrium
poloidal velocity to the temperature gradient diamagnetic
locity: Uu5kVT , whereUu5QU uu1VE1Vn1VT . In this
equation,U uu is the equilibrium parallel velocity, andU uu is
its poloidally average part,Q is the ratio of the poloidal
magnetic field to the toroidal one,VE is the E3B velocity
/4(12)/4272/11/$10.00 © 1997 American Institute of Physics
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given by VE52cEr /B, and the diamagnetic velocities a
given by VT5cT/(eBLT) and Vn5cT/(eBLn). Here Ln

5d ln n/d ln r and LT5d ln Ti /d ln r have the meaning o
the inverse density and ion temperature gradient lengths.
coefficientk depends on the plasma collisionality. It equa
22.1 in the PS regime,20.5 in the plateau regime and 1.1
in the banana regime. In spite of its simplicity this formu
does not determine explicitly the electric field andU uu and
the consideration of the temporal evolution is required.17

Several papers have been devoted to the solution of
non-steady-state neoclassical problem.18–28This problem can
be formulated as follows: suppose we have a tokam
plasma with a local Maxwellian~or some other non-
equilibrium in the neoclassical sense!! distribution, which
has the radial temperature and density gradients, and s
initial ~zero, for simplicity! radial electric field. How long
does take to reach the neoclassical equilibrium, and wha
the electric field and the distribution~in particularU uu veloc-
ity! at the end of the relaxation? Hassam and Kulsrud22 have
studied the PS regime, the only case where the fluid desc
tion is possible. It has been found that the relaxation is
scribed by a symbolic equation for the poloidal velocity:

]Uu /]t52nM P~Uu2kVT!, ~1!

wherek5kPS522.1, and the so-called magnetic pumpi
frequency is given bynM P5nPS>nb

2/n i i . The solution to
this equation, written in terms of the drift velocityVE , can
also be presented as

VE5VE`1A exp~2gM Pt !, ~2!

where the relaxation parametergM P is given by gM P

5nPS, and the equilibrium velocityVE` is controlled by the
initial condition.

For the lower collisional regimes, plateau and bana
the situation is more complicated. Technically the probl
lies in calculating the parallel plasma viscosity. It has be
realized that a ‘‘quasi-static’’ viscosity~see, e.g., Refs. 21
22! cannot provide a proper evolution picture, since it w
shown that the viscosity~where we speak about the so-call
parallel viscosity, resulting form the pressure anisotropy! de-
pends on the non-stationary terms like]VE /]t, which is a
manifestation of the enhanced polarization current in the
kamak plasma. The kinetic treatment of the problem
been proposed in several papers.23–28 Almost each of these
papers either derives a corresponding ‘‘fluid-like’’ equati
~1! for Uu or ~2! for VE dynamics, or numerically calculate
eigenfrequencies of such evolutionary equations. In part
lar, several different scalings forgM P have been proposed i
the banana regime:n i i ,n i i /e1/2,n i i /e. The important com-
mon feature of these approaches is the collisional~in the
fluid sense! nature of the relaxation. For very low collisiona
regions it leads to a situation, where the characteristic tim
relaxation is much longer than the corresponding tra
time, gM P!vb . Technically, it corresponds to a special o
dering, such that]/]t!vb in the process of solving the drif
kinetic equation; see, e.g., Refs. 24, 25.

If this ordering is not used and fast processes with]/]t
'vb are allowed, then there exists an additional branch
plasma waves, discovered by Winsor, Johnson
Phys. Plasmas, Vol. 4, No. 12, December 1997
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Dawson,29 and called the Geodesic Acoustic Mode~GAM!.
This mode is characterized by oscillations of the plasma c
umn in the vertical direction with a characteristic frequen
vGAM'VT /R. Hassam and Drake30 derived a cubic sym-
bolic equation, describing a coupling of this GAM mod
with a magnetic pumping mode@see Eqs.~1!–~2!#, and dis-
cussed some general properties of the resulting solution.
the later purpose, we shall present such a solution symb
cally as

VE5VE`1A exp~2gM Pt !1B cos~vGAMt1f!

3exp~2gGAMt !, ~3!

wheref is a phase factor. Recently Lebedevet al.31 consid-
ered a relaxation in the plateau regime. Most of Ref. 31
devoted to a pure collisionless case. It has been shown th
the resonance condition is satisfied,vb5vGAM , then there
exists a strong collisionless, Landau-like damping mec
nism. Remarkably, this mechanism depends strongly u
the value of the plasma safety factorq. Indeed givenvb

5VT /qR, and vGAM5zVT /R, where z is of the order of
unity, the resonant condition yieldsq51/z'1. In such a
situation the results of Ref. 31 in the limitn i i→0 can be
interpreted as follows. The third term in the right hand si
of Eq. ~3! is decayed withgGAM'vb . Reference 31 also
provides some insight as to what happens if the resona
condition is not satisfied, which is the case whenq..1. It
also contains the effects of small, but finite collisions. It
important to bear in mind, however, that the general case
Eq. ~3!, i.e. when all the three terms are present, has not b
considered in Ref. 31. Namely, the conventional magne
pumping term@second in Eq.~3!# has been neglected. Thu
the results of Ref. 31, corresponding to the ‘‘non-resona
case with finite collisions can be interpreted asgGAM'n i i .

In this paper we perform a direct numerical study of t
electric field dynamics in the neoclassical plasmas. For
purpose we have developed a numerical co
‘‘ ELECTRIC.’’ This code solves the ion drift kinetic equatio
with a full collisional term in the Hirschman–
Sigmar–Clarke32 form, and a quasineutrality equation. Th
form of the collisional operator makes it possible to consid
each collisional regime, and hence to obtain a unified pict
of the relaxation. ‘‘ELECTRIC’’ is an initial value code, it
calculates the evolution of the distribution functio
f (v,z,u,t), wherez5v uu /v is the pitch-angle, and the radia
electric field driftVE(t). The ultimate purpose of the paper
to study the general relaxation scenario, given by Eq.~3!,
and to determine the relaxation ratesgM P and gGAM . The
next important issue is related to different mechanisms
‘‘preparing’’ the plasma system. Namely, at least two po
sible types of switch-on can be considered. First one co
sponds to a sudden switch-on, and can be realized, for
ample, by the choice of the zero initial electric field and t
initial distribution function, taken to be a local Maxwellia
with given temperature and density gradients. This ca
which we will refer as ‘‘standard,’’ is more general in th
sense of Eq.~3!, since all three modes take off. In a re
experimental situation this case looks unlikely, except for
discharges with very fast disruptions, such that the press
4273Novakovskii et al.
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profile is changed for less than the collisional time. Anoth
case corresponds to an adiabatic switch-on. For exam
once a steady state is reached after a complete evolutio
the ‘‘standard’’ case, one slowly varies the temperature
density gradients. If it is done slower than the GAM oscil
tory time, or simply speaking, the ion transit time, then t
GAMs would not take off at all, and one is left with a pu
magnetic pumping relaxation. This ‘‘soft’’ switch-on ca
also be considered as closer to a real experimental situa
during the neutral beam heating, performed, for example
a Tokamak Fusion Test Reactor~TFTR! or DIII-D plasma
~see Refs. 2, 3, 5 for more detail on the neutral beam h
ing!.

Accordingly, Section II of the paper is devoted to fo
mulation of the problem and derivation of the basic eq
tions. In Section III the results of the numerical simulati
are presented. There we start from the ‘‘standard’’ case.
demonstrate here resonant and non-resonant scenarios
relaxation. Next we consider the ‘‘soft’’ switch-on. W
present both resonant and non-resonant cases in the ba
and plateau regimes. We also discusse dependence of the
relaxation ratesgM P andgGAM . In Section IV we discuss the
fluid approximation and some general properties of rel
ation, following from the incompressibility and conservatio
of the generalized toroidal angular momentum. In Section
we briefly discuss the collisional damping of the geode
acoustic oscillations. Finally Section VI is devoted to discu
sion and conclusions.

II. BASIC EQUATIONS

We consider a simple axisymmetric tokamak with t
magnetic field, given byB5B0(ez1Qeu)/(11e cosu),
wherez andu are the toroidal and poloidal angles of a toru
respectively. The poloidal angleu is chosen such thatu50
corresponds to the outboard of a torus. The inverse as
ratio e5r /R is assumed to be small. The major radius
given byR5R01r cosu, wherer is the minor radius. The
ion distribution functionf depends on the total velocity of
particlev, its parallel velocityv uu . It is also considered to be
a function ofu and r . The electric field is described by th
electrostatic potentialf(r ,u,t)5f0(r ,t)1f1(r ,u,t). For
simplicity we will neglect the partf1 in this paper, thus only
the radial electric fieldEr(r ,t)52df0(r ,t)/dr will be stud-
ied. For the functionf (v,v uu ,u,r ) we have a drift kinetic
equation, given by

] f

]t
1~Qv uu1VE!

] f

r ]u
1

dv uu

dt

] f

]v uu
1

dv2/2

dt

] f

]v2/2
1Vr

] f

]r

5St~ f !, ~4!

where the radial drift velocity is:

Vr52
v uu

21v2

2vBR
sin u2

1

vB

]VE

]t
, ~5!

with VE52cEr /B the E3B drift velocity, and vB

5eB/mc is the cyclotron frequency. The particle motion
described by the following equations:
4274 Phys. Plasmas, Vol. 4, No. 12, December 1997
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dv uu

dt
52e

v22v uu
2

2

sin u

qR
1

v uuVE sin u

R
, ~6!

dv2/2

dt
52

v uu
2R1v2

2
sin u.VE . ~7!

The safety factor is given byq5e/Q. We use the standard
neoclassical orderingr i /(QL)!1, wherer i5vT /vB , with
the thermal velocityvT5(2T/m)1/2, andL is the character-
istic scale of density and temperature variations. We n
linearize Eq.~4! by representingf as f 5 f M1 f̂ , where the
Maxwellian partf M is given by

f M5n~m/2pT!3/2 exp@2mv2/2T#, ~8!

The equation forf̃ reads:

] f̃

]t
1

v uu

qR

] f̃

]u
2e

v22v uu
2

2

sin u

qR

] f̃

]v uu
2St~ f̃ !

5sin u
m~v uu

21v2!

2RT FVE1Vn1S mv2

2T
2

3

2DVTG f M , ~9!

where the drift velocities are given byVn5cT/(eBLn) and
VT5cT/eBLT . Here Ln5d ln n/d ln r and LT5d ln Ti /
d ln r. Note that we have neglected the electric driftVE

5(c/B)dF/dr in the second term in Eq.~9!, since we re-
strict ourselves only by the case of the ‘‘moderate’’ elect
fields, such thatVE /(QvT)!1. Also the polarization drift
velocity has been neglected in Eq.~9!, which is consistent
with the orderingr i /(QL)!1.

It is convenient to rewrite Eq.~9! using new variables
z5v uu /v andv:

] f̃

]t
1

zv
qR

] f̃

]u
2e

v~12z2!

2

sin u

qR

] f̃

]z
2St~ f̃ !

5sin u
mv2~11z2!

2RT FVE1Vn1S mv2

2T
2

3

2DVTG f M . ~10!

Now we specify the collisional operatorSt( f ):

St~ f !5nc~x!
]

]z
~12z2!

] f

]z
1zŜ1f , ~11!

wherex25mv2/(2T), and the functionnc is

nc~x!5
3~2p!1/2n i i

4x3 F S 12
1

2x2D er f~x!1
exp~2x2

Apx
G ,

~12!

with n i i 54pne4l/(m2vT
3) the frequency of the ion–ion col

lisions,l the Coulomb logarithm, anderf(x) the error func-
tion. The operatorŜ1 in Eq. ~11! is taken to be in the
Hirshman–Sigmar–Clarke32 form:
Novakovskii et al.
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21

1

z f dz

13xnS~x! f M

E nS~x!x3S E
21

1

z f dzD dx

E nS~x!x4f Mdx

, ~13!

where the ‘‘slowing down’’ frequencynS(x) is given by

nS~x!5
2n i i

x3 Ferf~x!2
2x exp~2x2

Ap
G . ~14!

Next we perform a normalization of Eq.~10!. We use a
time unit, given in terms of the ion transit timet̂
5tvT /(qR), the collisional frequency is normalized in th
same way,n̂c5nc(x)vT /(qR). Finally, the distribution func-
tion f̂ is normalized in terms of the Maxwellian functionf M :
f̃ 5 f̂ f M . Using the above-described normalization Eq.~10!
may be written as

] f̂

] t̂
1zx

] f̂

]u
2e

x~12z2!

2
sin u

] f̂

]z
2Ŝt~ f̂ !

5sin ux2~11z2!F V̂E1V̂n1S x22
3

2D V̂TG , ~15!

where we have also normalized the drift velocities:V̂E

5qVE /vT ,V̂n5qVn /vT , and V̂T5qVT /vT . Note that the
‘‘stoss’’ term in ~15! is given by ~10!,~12! with n i î

5n i i vT /(qR).
We supplement Eq.~15! by the quasineutrality condi

tion:

^ j r&5E R f Vrd
3vdu50, ~16!

where the radial drift is given by~5!, andd3v52pv2dvdz,
such that the integration overx andz are taken from 0 tò
and from21 to 1, respectively. In our normalized units th
linearized version of this equation takes a form:

]V̂E

] t̂
1

q2

2p3/2E ~11z2!x4 exp~2x2! f̂ sin udxdzdu50,

~17!

where the same integration convention is used.
In the next sections we omit ‘‘hats’’ in Eqs.~15!,~17! for

simplicity. We are also interested in the poloidally averag
macroscopic parallel velocity. This quantity is given byŪ uu

5*v uu f d3vdu/(* f d3vdu). Its normalized versionÛ̄ uu , such

that Û̄ uu5eŪ uu /vT , is given by:

Ū uu5
e

p3/2E x3z exp~2x2! f dxdzdu, ~18!

where we have omitted ‘‘hats’’ inf andŪ uu in Eq. ~18!. Next
we representf̂ in Eq. ~15! as

f̂ ~u,z,x!5SFn~x,u!Pn~z!, ~19!
Phys. Plasmas, Vol. 4, No. 12, December 1997
d

wheren50,1,2,•••, and Pn(z) is the Legendre polynomia
of then order~it is instructive to compare with a steady-sta
solution, obtained by Hinton and Rosenbluth33!. Using the
following recursion properties of the Legend
polynomials:34

~n11!Pn115~2n11!zPn2nPn21 , ~20!

~z221!dPn /dz5nzPn2nPn21 , ~21!

we perform the following standard procedure. We substit
~19! into ~15!, then multiply each of equations byPn and
integrate from21 to 1. Note that the magnetic drift in th
right-hand side of Eq. ~15! is proportional to (4P0

12P2)/3. We use the following property of the collisiona
operator:

Ŝt~SBn~x!Pn!52S~n̂nBn!Pn , ~22!

where

n̂n~x!Bn5n~n11!@ n̂c2d1,n~ n̂c2 n̂S!#Bn

2xn̂Sd1,n

E x3n̂SBndx

E x4n̂S exp~2x2!dx

, ~23!

whered i , j is the Kronecker symbol, and we use normaliz
Eqs. ~12! and ~14! for n̂c and n̂S , respectively. Using the
integration property*PnPmdz5dm,n2/(2n11), we eventu-
ally come to a system of coupled equations for functionsFn :

]Fn

]t
1xS n

2n21

]Fn21

]u
1

n11

2n13

]Fn11

]u D
1

e

2
sin uxFn~n21!

2n21
Fn212

~n11!~n12!

2n13
Fn11G

1 n̂nFn5x2 sin u
4d0,n12d2,n

3 FVE1Vn1S x22
3

2DVTG ,
~24!

wheren̂n is given by Eq.~24!. The supplementary quasineu
trality equation has a form:

]VE

]t
1

4q2

3p3/2E ~F010.1F2!sin ux4 exp~2x2!dxdu50.

~25!

The parallel velocityŪ uu is given here by:

Ū uu5
2e

3p3/2E x3 exp~2x2!F1dxdu. ~26!

System~24!–~25! represents our basic equations for the n
merical simulation. Equation~24! is also subject to a bound
ary conditionF`50. For simplicity we neglect the contribu
tion from the electrons. The initial value code ‘‘ELECTRIC,’’
developed by us for modeling~24!–~25!, uses an operato
splitting technique and, accordingly, has a suitable comb
tion of implicit and explicit difference schemes. Typic
number of grid points in (x,z,u) space for very low colli-
sionality like n̂50.005 is 643128364. As it is known from
the neoclassical steady-state theory33 the
4275Novakovskii et al.
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number of the Legendre polynomials is scaled asn̂21/3. This
scaling is consistent with our simulation. Every run is ch
acterized by a triad (e,q,n* ). We note that each of thes
parameters has a special physical meaning:e controls the
mirror force and accordingly the number of bananas,n* is
the collisionality of plasmas, andq is responsible for the
Landau resonance. Thus, each combination provide
unique relaxation scenario. We present the cases for
lower collisional regimes mostly.

III. MODELING OF THE RELAXATION

We start presenting the results of the numerical simu
tion of Eqs.~24!–~25!. As was defined in the Section I, th
‘‘standard’’ relaxation scenario corresponds toFn(u,x,t
50)50, wheren50,1,•••, andVE(t50)50. Thus, the ini-
tial distribution is a local Maxwellian. Figures 1 and 2 co
respond to the plateau collisional regime withVT50.1,Vn

50.0,e50.1,n̂50.1. It is a non-resonant situation withq
53.0. Figure 1 shows the electric field driftVE evolution,
and Fig. 2 the parallel velocity, given by Eq.~26!. The time
unit corresponds to one transit time. One can see the p
ence of GAM oscillations. Clearly, the damping is of a pu
collisional mechanism in this case. The magnitude of
parallel velocity is much smaller than the effectiveE3B
velocity: uU uuu!uVEu. Figures 3 and 4 differ from Figs. 1 an
2 by one change:q51.2. This is a true ‘‘resonant’’ situation
Indeed, the collisionless limit of Ref. 31 provides the osc
lation frequency:vGAM

2 57/8q2 ~see also Section V!. Hence,
the condition for a particle to be in the resonance with
wave isqres5(8/7)1/2. As one expects, in Fig. 3 the GAM
oscillations are gone within several transit times. The para
flow is again very small in this case. In the remainder of t
section we do not present the parallel flow, since it was sm
in all our runs; see, however, Section V, where a relat
betweenVE and the parallel flow is discussed.

FIG. 1. The electric field driftVE evolution. The PLATEAU collisional

regime withVT50.1,Vn50.0,e50.1,n̂50.1. Figs. 1 and 2 describes anon-
resonantsituation withq53.0.
4276 Phys. Plasmas, Vol. 4, No. 12, December 1997
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We now consider the banana regime. We start from
same parameters as in the plateau regime, but withn̂50.02.
This corresponds ton* 50.63. Figure 5 corresponds to th
non-resonant case withq53.0 ~cf. Figs. 1–2!. One can see
that the relaxation time is strongly increased, which is app
ently related to a smaller collisionality. In Fig. 6 the resona
caseq51.2 is plotted. It has similar features as the one in
Fig. 3 in the sense of the rapid damping of the oscillatio
within several transit times. One can also see a slow resid
relaxation after the oscillations are gone. This is the fi
evidence of the existence ofanotherroot in Eq.~3!, namely,
the collisional magnetic pumping!

We have so far considered the ‘‘standard’’ case. T
GAM oscillations have always accompanied the relaxat
process. How can one extract the information about the m

FIG. 2. The parallel velocity evolution. The PLATEAU collisional regim

with VT50.1,Vn50.0,e50.1,n̂50.1.

FIG. 3. The electric field driftVE evolution. The PLATEAU collisional

regime withVT50.1,Vn50.0,e50.1,n̂50.1. Figs. 3 and 4 describes areso-
nant situation withq53.0.
Novakovskii et al.
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netic pumping in the system? To answer this question
propose the following numerical experiment. We start from
‘‘standard’ case and reach some steady-state. As we h
seen in Figs. 1–6, this usually requires many transit tim
Then we slowly change the temperature gradient:

VT5VT0* @11a tanh~~ t2t0!/dt !#, ~27!

where a is some number, anddt satisfies the condition
vbdt@1, or in our normalizing unitsdt@1. Thus, this
change is adiabatic in respect to the transit time. At the sa
time this time should be shorter thantR—the collisional
relaxation time. For example, in the case of Fig. 3 the rel
ation timetR'100. Thus, it is sufficient to takedt510. The
full run with parametersVT(t50)50.1,Vn50.0,e50.2,

FIG. 4. The parallel velocity evolution. The PLATEAU collisional regim

with VT50.1,Vn50.0,e50.1,n̂50.1.

FIG. 5. The electric field driftVE evolution. The BANANA collisional

regime with VT50.1,Vn50.0,e50.1,n̂50.02. Fig. 5 describes anon-
resonantsituation withq53.0.
Phys. Plasmas, Vol. 4, No. 12, December 1997
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n̂50.02,q53.0 is plotted~in Fig. 9 below!. The effective
neoclassical parametern* 50.22, so it corresponds to
‘‘deep’’ banana regime. Here the parametera in Eq. ~27! is
taken to bea510. Since we deal with the linearized syste
the value ofa is chosen only for better visualization prope
ties. The solid line in Fig. 7 shows the electric field veloc
VE and the dotted line theVT variation. First, one can see
that during and after the adiabatic change, given by Eq.~27!,
the GAM oscillations did not take off, as expected. On t
other hand, after the switch-on is complete, the system is
far away from the equilibrium. This late stage allows for t
exponential fit as in Eq.~2!. It providesgM P50.016 for this
case.

FIG. 6. The electric field driftVE evolution. The BANANA collisional

regime with VT50.1,Vn50.0,e50.1,n̂50.02. Fig. 6 describes aresonant
situation withq53.0.

FIG. 7. Relaxation with the adiabatic switch-on of the temperature grad
at the momentt5640. The electric field driftVE is plotted by solid line, the
VT velocity is plotted by the dotted line. The BANANA collisional regim

with VT50.1,Vn50.0,e50.1,n̂50.02, andnon-resonant q53.0.
4277Novakovskii et al.
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It is interesting to consider different values ofe, since
there has been a lot of controversial results, regarding the
dependence ofgM P . The run withe50.1 and the same othe
parameters as in Fig. 7 yields the relaxation rate for the m
netic pumpinggM P50.02. One can see a substantial chan
due toe. Qualitatively, the ‘‘soft’’ switch-on regime and th
consequent magnetic evolution can be understood as follo
In the neoclassical equilibrium the distribution of banan
can be obtained from the solution of the drift kinetic equ
tion

zx
] f̂

]u
2e

x~12z2!

2
sin u

] f̂

]z

5sin ux2~11z2!F V̂E1V̂n1S x22
3

2D V̂TGexp~2x2!,

~28!

which is just as Eq.~15! with no time derivative and colli-
sional terms, but with the restored exponential factor. T
equation corresponds to the orderingn̂!vb and ]/]t!vb .
It also allows for a slow change inVT(t) in comparison to
the transit time. Equation~28! is the leading order equatio
of Refs. 22, 25, and 26~written in a slightly different way!.
The solution to it, which can be called the banana qua
steady state, is

f̂ 52zx~11e cosu!
2

e FVE1Vn1S x22
3

2DVTG
3exp~2x2!1C, ~29!

whereC is a function, constant along the field line for give
m and energy, i.e.,C5C(x,m(x,z,u),E(x,z,u)). It is deter-
mined from the solubility condition in the next order
n̂/vb . However, it is important, thatC is zero for the
trapped particles because of the parity constraint; see,
example, Ref. 22. Introducing a distribution functio
F(z,u)5* f̂ x2dx, one obtains from Eq.~29!, that F;z(1
1e cosu)(VE1Vn10.5VT) for bananas. In a very simplified
way the picture of the magnetic pumping looks as follow
After we have adiabatically changed the temperature gr
ent in accordance with Eq.~28!, the bananas, insensitive t
collisions, reach their quasi-steady-state within a few bou
periods. For such a short time the distribution of the circ
lating particles has not changed essentially. Thus, there
pears a strong discontinuity at the boundary between
trapped and circulating particles, which yields a frictio
force ultimately controlling the magnetic pumping pheno
ena. It then becomes clear, that the magnetic pumping re
ation rate depends one, since the smoothing of the above
mentioned discontinuity happens with the effecti
collisional frequencyn i i /e.

Let us illustrate the abovementioned qualitative arg
ments by simulation results, provided by ‘‘ELECTRIC.’’ First,
we note that the trapping condition for particles at the po
u is uzu<(e(11cosu))1/2. We consider three different loca
tions, u5p,u50, andu5p/2, such that the first location
corresponds to the region of the strongest field with
trapped particles, the second, to the weakest magnetic
4278 Phys. Plasmas, Vol. 4, No. 12, December 1997
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with a fraction of the trapped particles, given byuzu
<(2e)1/2, and the third, to the top of the torus, with a fra
tion of the trapped particlesuzu<(e)1/2. We present the func-
tion F(z,u), averaged over one transit time. In Fig. 8 we p
the functionF for different locations, such that the curve
~1!, ~2!, and ~3! correspond tou5p,u50, andu5p/2, re-
spectively. This is a ‘‘standard’’ steady-state case, with
rametersq53.0,e50.15,n̂50.02,Vn50.0,VT050.2. In Fig.
9 the steady-state distributionF(z,u50) is plotted for two
values of collisional frequency,n̂50.02 ~solid line!, and n̂
50.01~dotted line!. One can see that the distribution is clo
to the linear dependence, given by the integrated Eq.~29!,
such that the smaller collision frequency is in a better agr

FIG. 8. The steady-state distributionF(z) ~integrated overx) vs z at the
different poloidal locations. Curves~1!, ~2!, and~3! correspond tou5p,u
50, andu5p/2, respectively. This is the end of the ‘‘standard’’ case, w

parametersq53.0,e50.15,n̂50.02,Vn50.0,VT050.2.

FIG. 9. The steady-state distributionF(z) is plotted for two values of col-

lisional frequency,n̂50.02 ~solid line!, and n̂50.01 ~dotted line!. Other
parameters areq53.0,e50.15,Vn50.0,VT050.2.
Novakovskii et al.
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ment. On the other hand, the influence of the boundary la
between the transit and trapped particles is still quite stro
providing a noticeable deviation. Now we perform the adi
batic switch-on, described in detail earlier in this section. W
present a case withn̂50.02. In Fig. 10 the electric field
velocity VE vs time is plotted. In Fig. 11 the distribution
F(z) is plotted at the timest50,40, and 80. One can see, tha
the magnetic pumping evolution in fact represents a qu
complicated behavior. Apart from the dynamics of the tra
sitional layer, there is an evolution of the banana distributi
due to varyingVE andVT . For illustrative purpose we also
consider a ‘‘pure’’ collisionless case withn̂50.0. Namely,
on reaching the steady state forn̂50.02 we putn̂50.0 and
perform a usual adiabatic switch-on. In Fig. 12 the distrib
tion F(z,u) is plotted att540. As in Fig. 8 curves~1!, ~2!,
and~3! correspond tou5p,u50, andu5p/2, respectively.

FIG. 10. The case with parametersq53.0,e50.15,n̂50.02,Vn50.0,
VT050.2. The electric field driftVE is plotted by solid line, theVT velocity
is plotted by the dotted line.

FIG. 11. For the case of Fig. 10 the distributionF(z,u50) is plotted.
Curves~1!, ~2!, and~3! correspond tot50,40, and 80, respectively.
Phys. Plasmas, Vol. 4, No. 12, December 1997
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One can see a better agreement with Eq.~29! for the trapped
particles in comparison to the finite collision cases. Su
simulation allows one to estimate the influence of the bou
ary layer, since it is known~see, for example, Hinton an
Rosenbluth33!, that solution~29! is not valid there. Whene is
decreased, the transition from the banana to plateau reg
takes place. Namely, all the banana orbits are destro
when e> n̂2/3. Then representation like~29! is not possible;
all the particles are effected by collisions and particip
equally in the formation of the friction force. Thus, the
exists a saturation ofgM P in the plateau regime. In Fig. 13
we plot the relaxation rategM P vs e for the caseq53.0,n̂
50.015,Vn50.0,VT050.2. Whene→0, and there is no mir-
ror force at all, the only dissipative root in Eq.~3! is gGAM .

FIG. 12. On reaching the steady-state forn̂50.02 the adiabatic switch-on

with n̂50.0 is performed att50. The distributionF(z) is plotted at t
540. Curves~1!, ~2!, and ~3! correspond tou5p,u50, andu5p/2, re-
spectively.

FIG. 13. The relaxation rate of the magnetic pumpinggM P vs e in the
banana and plateau regime. Transition from banana to plateau corresp

to e50.061. Other parameters aren̂50.02,q53.0.
4279Novakovskii et al.
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This is consistent with Ref. 31. To illustrate this effect
more detail let us consider the marginal case ofe50. Re-
markably, in the absence of the mirror force, there is a c
lisional damping of the GAM oscillations, but no magne
pumping at all! It is important, that the region of the inver
dependencegM P vs e exists only in the banana regime
which is consistent with the qualitative picture, propos
above. In Fig. 14 we plotgM P vs e for the caseq53.0,n̂
50.25,Vn50.0,VT050.2. All the points correspond to th
plateau regime. One can see, that the magnetic pumpin
laxation rate decreases monotonically ase decreases.

IV. FLUID PICTURE OF RELAXATION

It is interesting to consider some general properties
the relaxation, common to all of the collisional regime
Moreover, a part of this section is devoted to a more gen
toroidal geometry, rather than the one considered in the
vious sections. Namely, we consider an axisymmetric to
and the magnetic field is given by

B5I¹z1¹c3¹z, ~30!

whereI 5I (c), and the flux functionc, toroidal anglez, and
poloidal angleu form a coordinate system. Since we a
interested in the time-dependent part of velocity only, we
V5Vuub1VE , whereb5B/B. We consider the slow relax
ation due to magnetic pumping only. Then, it is possible
use an approximation of the plasma incompressibility,¹•V
50, which yields:

B–¹
Vuu

B
2c~¹f3B!•¹

1

B2
50, ~31!

which can also be presented as

B–¹S Vuu

B
2

cIf8

B2 D 50, ~32!

FIG. 14. The relaxation rate of the magnetic pumpinggM P vs e in the

plateau regime. Other parameters aren̂50.25,q53.0.
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where we considerf5f(c), and f85df/dc. Equation
~32! yields:

Vuu

B
2

cIf8

B2
5A~c!, ~33!

whereA is the integration constant, similar to the one, us
by Callen and Shaing.35 We next consider the equation o
motion, given by

r
dV

dt
52¹p1

1

c
j3B2¹p, ~34!

where the viscosity tensor isp5p' Î1(puu2p')bb. Note,
that the quasineutrality condition¹• j50 yields

]

]c
Ag jc1

]

]u
Ag ju50, ~35!

whereAg is the Jacobian, andj c and j u are the contravarian
components ofj . Integrating Eq.~35! over u one obtains
^ j c&50, where the average over magnetic surface is gi
by ^ . . . &5*( . . . )Agdu. This condition was used by Rosen
bluth and Taylor.36 Multiplying Eq. ~34! by ¹z andR2, the
later beingR2[1/(¹z)2, one derives a fluid form of the
generalized toroidal momentum conservation:

]

]t
^R2Vz&50, ~36!

where Vz is the contravariant component ofV. Using the
expression forV one obtains

R2Vz[V•¹z5
VuuI

B
1

cf8

B2
~¹c!2, ~37!

Now, combining Eqs.~33!, ~36!, and ~37!, one obtains a
relation between time derivatives off8 andA:

c^R2&
]f8

]t
1I

]A

]t
50. ~38!

Multiplying Eq. ~33! by B2, differentiating the result in time
and performing the surface averaging we get:

]

]t
^VuuB&5^B2&

]A

]t
1cI

]f8

]t
. ~39!

Substituting Eq.~38! into Eq. ~39! one obtains the relation
betweenVuu andf8 time evolutions:

]

]t
^VuuB&5cI

]f8

]t S 12
^B2&^R2&

I 2 D . ~40!

In approximationB2>I 2/R2 we get instead of~40!:

]

]t
^VuuB&5cI

]f8

]t S 12K 1

R2L ^R2& D . ~41!

Let us estimate the toroidal relaxation given by Eq.~41! in
the low aspect ration approximation. We have
Novakovskii et al.
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cIf8>cBR
]f

]r

1

]c/]r
>

c

Q

]f

]r
. ~42!

Using 12^1/R2&^R2&5O(e2), one obtains

]QVuu

]t
5O~e2!

]VE

]t
. ~43!

Integration of Eq.~43! with our ‘‘standard’’ initial conditions
VE(t50)50, and U uu(t50)50, yields QU uu(t5`)
5O(e2)VE(t5`). This explains the results of Figs. 1–1
that the toroidal velocity is much smaller thanVE . Thus, in
accordance to~43! and the formula for the steady-state p
loidal velocity, given in the Introduction, in the ‘‘standard
situationVE(t5`)>(k21)VT2Vn .

To test the results of this section we studied the dep
dence of the steady stateVE velocity on collisionality with
the help of ‘‘ELECTRIC.’’ In these runs we performed th
adiabatic switch-on ofVT from the very beginning~starting
from VT50) to avoid GAMs and to insure the zero initia
values for VE and U uu . In Fig. 15 we plot k[(VE1VT

1QUuu)/VT vs collisionality. The parameterk is just the Ha-
zeltine parameter~see Introduction!. One can see a goo
quantitative agreement with analytical valuesk(0)51.17
and k(`)522.1. At the same time in all of these runs th
equilibrium parallel velocity satisfied the relationQU uu
5O(e2)VE .

V. DAMPING OF GAM OSCILLATIONS

In this section we consider the damping of the GA
oscillations. The theory of the Landau damping of them h
been proposed by Lebedevet al.31 When the resonant cond
tion is not satisfied, and the Landau damping is exponenti
small, we are left with the collisional damping. The tec
nique to determinegGAM in Eq. ~3! has already been pointe
out in Ref. 31. Here we present the calculations for the p

FIG. 15. The Hazeltine parameterk ~defined in the Introduction! vs colli-
sionality.
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pose of completeness. For simplicity we considerVT5Vn

50 in this section. Let us start from the Laplas transform
Eq. ~15!:

p f1zx
] f

]u
2e

x~12z2!

2
sin u

] f

]z
2Ŝt~ f !

5sin ux2~11z2!VE . ~44!

We solve Eq.~44! by perturbations, consideringp>1. Then,

f 15
sin u

p
x2~11z2!VE , ~45!

p f21zx
] f 1

]u
2e

x~12z2!

2
sin u

] f 1

]z
2Ŝt~ f 1!50, ~46!

which yields

f 25
sin u

p2
VEx2nc~x!~226z2!, ~47!

wherenc(x) is given by Eq.~12!. Substituting Eq.~47! into
Eq. ~17! one obtains:

p1
q2

4pp1/2E x6~11z2!2 exp~2x2!dxdz

1
q2

4p2p1/2E x6~11z2!~226z2!

3exp~2x2!nc~x!dxdz50. ~48!

Performing the integration in Eq.~48! we get the dispersion
relation for GAMs:

p21
7q2

8
2

n i i q
2

p
50, ~49!

which yields the collisional damping of GAMs:gGAM

>4n i i /(7q). There is noe dependence here. Physically th
is because the GAMs are not sensitive to details of the
nana distribution.

VI. CONCLUSION

We have considered the time evolution of the rad
electric field in the neoclassical plasmas. It has been sh
that typically the relaxation is accompanied by the geode
acoustic mode~GAM! oscillations as well as the magnet
pumping. We have distinguished the slow magnetic pump
relaxation from the GAM oscillations in low collisional plas
mas. The GAMs have their own relaxation, sensitive to
Landau resonance condition. This condition, written in ter
of the plasma safety factorq, is q>1.2. If it is satisfied then
there is a strong Landau damping of GAM oscillation
whereas forq@1 there exists only the slow collisional relax
ation withgGAM>n i i . By performing a ‘‘soft’’ switch-on of
the ion temperature gradient we have been able to sepa
GAM oscillations from the slower magnetic pumping rela
ation. It has its own relaxation rate, sensitive to the mir
force strength. As far as thee dependence is concerned o
results are qualitatively consistent with predictions
Taguchi,24 Hsu et al.,25 Novakovskii et al.,26 and Galeev
4281Novakovskii et al.
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et al.,27 that gM P is inversely proportional toe. The exact
scaling index~if exists!! is hard to extract even in the regio
of very low collisions. We have studied the plateau regi
too, where the magnetic pumping relaxation rate decrea
monotonically ase decreases. We have also developed
fluid approach for calculating theE3B and toroidal flow
relaxation. We have found that typically the relaxation of t
parallel flow is weaker than theVE relaxation; see Eq.~43!.
Thus, the net poloidal flow consists primarily of theE3B
and the diamagnetic drifts. These general analytical res
are consistent with our numerical simulation.

Finally we would like to discuss possible practical im
plications of the obtained results. We see three proble
where they can be relevant. The first one is related to
equilibrium E3B. We have shown in Section IV that i
some simple situations~most notably in the absence of larg
toroidal flows! there exists a functional dependenceVE vs
the pressure gradient given by Fig. 15. This can be usefu
analysis of the H-mode, where the level of fluctuations
small, theory of Sections II–IV can be applicable, and
complete radial profile ofEr can be reconstructed. Secon
we have shown that the relaxation takes place on the sc
of the ion–ion collisional time. For typical DIII-D-like core
parameters n51014cm23,Ti510 keV, R5160 cm, this
yields t rel'1022 s. This is consistent with the time of th
L-H transition,4 thus the mechanism described in the pa
can be important for understanding of theE3B flow genera-
tion. Third, the quantitative information about the magne
pumping rate can be useful for analytical and numeri
models of L-H transitions~see, for example, Ref. 9!, where
the H-mode threshold is obtained as a balance between
turbulent drive and the magnetic pumping.
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