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ABSTRACT
We present two examples of current sheets that form in a magnetic conÐguration when it is sub-

jected to quasi-static motions at the footpoints. The entire system is two-dimensional. There are no
preexisting X-points and the footpoint motions are continuous. The calculations are motivated by the
hypothesis of Parker that quasi-static deformations of MHD equilibria are generally accompanied by the
formation of current sheets. The results demonstrate that three dimensions are not a necessary condition
for current sheet formation. In addition, the calculation of Van Ballegooijen is not contradicted, because
the initial magnetic Ðeld in our case is not dominantly collinear. Possible applications to the solar
corona are discussed.
Subject headings : MHD È Sun: corona È Sun: magnetic Ðelds

1. INTRODUCTION

The outer layers of the Sun are magnetized plasmas con-
sisting of the dense convection zone, the photosphere, and
the tenuous corona. The corona is a hot, low-b, highly ideal
MHD plasma, with density stratiÐed by the solar gravita-
tional Ðeld. Immediately below the corona exists the photo-
sphere, the interface marked by the depth below which the
plasma becomes dense enough to be opaque to visible light.
Threaded throughout the corona-photosphere region are
magnetic Ðelds. Since the plasma is well described by MHD
and the Reynolds numbers are very large, the magnetic
Ðelds are ““ frozen-in,ÏÏ i.e., they are convected along with the
plasma mass. These Ðelds typically form localized looplike
structures in the corona, with their ““ ends ÏÏ dipping back
into the photosphere and presumably entering the solar
convection zone. Since the subphotospheric region is much
more dense than the corona, its motion is thought to be the
driving force behind magnetic deformations in the corona.
In addition, the interface between the photosphere and the
corona has a much sharper spatial scale than these loop
structures in general, owing to the short gravitational scale
height. Thus the photosphere is an e†ective ““ boundary ÏÏ at
which the Ðeld is ““ line-tied.ÏÏ Regions where the loops inter-
sect this boundary can be thought of as ““ footpoints.ÏÏ The
footpoint motions determine the magnetic changes in the
corona.

One of the outstanding questions in solar physics is
whether or not the slow, churning photospheric deforma-
tions can cause spontaneous discontinuities in the coronal
magnetic Ðeld. If this is indeed the case, then this may shed
some light on the coronal heating problem (Zirker 1993),
since such discontinuities could generate currents large
enough to signiÐcantly heat the corona. hasParker (1994)
proposed that slow, sub-Alfve� nic deformations of a three-
dimensional equilibrium lead generally to ““ loss of
equilibrium ÏÏ resulting in current sheet discontinuities. On
the other hand, in a calculation wherein the cross-Ðeld dis-
placements are small compared with the scale length along
the Ðeld, Ballegooijen found no appearance ofVan (1985)
such current sheets ; nonsingular neighboring equilibria
were always found. The only exceptions, according to the
latter and other calculations, are if the driving deformations
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are themselves discontinuous or if the initial conÐguration
harbors a null in the magnetic Ðeld (Syrovatskii 1971 ;

& Lambert In particular,Antiochos 1987 ; Hassam 1996).
Van Ballegooijen assumes a uniform collinear magnetic
Ðeld connecting the footpoints about which deformations
are forced.

Generally speaking, it has proved difficult to Ðnd simple,
test-case examples to prove or disprove the above two
seemingly conÑicting scenarios. To be sure, many inter-
esting test cases that generate current sheets have been
examined (Low & Wolfson1987, 1989, 1991 ; Low 1988 ;

Priest, & Amari In all these calculations,Vekstein, 1991).
there were no nulls in the initial equilibrium and the foot-
point motions were not discontinuous. In this sense, our
present calculations have much in common with these
earlier papers, and the physical reasons why current sheets
were obtained in both sets of calculations are also quite
similar. However, the calculations we present in this paper
can be characterized as being relatively simple from an ana-
lytical standpoint : in the two cases we present, a complete
and unequivocal solution is possible with a minimum of
algebra. For the purposes of this paper, it is pedagogically
advantageous to Ðrst present our two cases and then discuss
the above-mentioned previous work in the context of our
results. A comparison with previous work is given in the
discussion section.

As mentioned, we were motivated to demonstrate current
sheet formation (or failure thereof) by considering the sim-
plest possible geometries that would allow this. Such a
demonstration would have to be for continuous footpoint
motions, and no magnetic nulls were to be allowed in the
initial conÐguration. Indeed, we present in this paper two
simple examples of current sheet formation. The calcu-
lations are almost completely analytically tractable, and an
unequivocal conclusion is possible. In demonstrating
current sheet formation, we are in support of ParkerÏs sce-
nario. However, our results do not contradict Van Balle-
gooijenÏs calculation. The reason for this is that Van
BallegooijenÏs initial magnetic Ðeld lines run from one foot-
point and all end up at another footpoint ; in our examples,
we relax this assumption. Our initial magnetic Ðeld lines
start from one footpoint, but some of these Ñux lines end up
at one footpoint and some end up at another, uncorrelated,
footpoint. Thus Van BallegooijenÏs proof does not apply to
our examples. As will become clear below, our chosen initial

968



x

z II

II IIII

FORMATION OF CURRENT SHEETS 969

FIG. 1.ÈInitial Ðeld in the domaint\ (B0/k)e~kz sin (kx)
[n \ kx \ n, 0 \ z\ L . The dashed lines denote the critical Ðeld lines

which separate regions I and II.oto\ (B0/k)e~kL,

conÐguration is smooth and continuous even though Ðeld
lines end up at di†erent footpoints. To reiterate, our model
incorporates several features that address the concerns dis-
cussed above. First, the initial magnetic Ðeld contains no
discontinuities, and the scale of spatial variation is compa-
rable to the system size. Second, the initial Ðeld contains no
nulls. Third, the boundary (footpoint) displacements are
continuous and smooth on the spatial scale of the system;
in fact, they are relatively simple displacements. Finally, the
footpoint motions are slow, i.e., much slower than the
Alfve� n speed. This renders the model quasi-static and is
consistent with solar coronal parameters.

We begin by describing our model in the next section. In
we present an analytic solution for current sheets that° 3

arise from axial footpoint motions. In we present° 4
another example of current sheet formation involving the
same initial Ðeld, but with transverse footpoint motions.
This case requires a partial numerical treatment. Finally, in

we discuss previous work done by others and possible° 5
implications for the solar corona.

2. MODEL

A quasi-static, low-b, ideal MHD plasma is governed by
the following equations (Gaussian units) :

J \ c
4n

$] B , (1)

J ] B \ 0 , (2)

LB
Lt

\ [c$] E , (3)

E \ [u ] B
c

, (4)

$ Æ B \ 0 (5)

where B is the magnetic Ðeld, E is the electric Ðeld, u is the
mass Ñow, J is the current, and c is the speed of light.

Consider a system with two parallel conducting plates at
z\ 0 and z\ L, which are inÐnite in extent in the andxü yü
directions. Between these plates exists an ideal MHD
plasma. Here, the plates play the role of the photosphere-
corona interface, while the plasma can be thought of as the
corona. We restrict ourselves to a two-dimensional system,

i.e., we impose Threaded through this system is anL
y
\ 0.

equilibrium magnetic Ðeld where SinceB(x
M
), x

M
\ xxü ] zzü .

and from B can be written, in general,L
y
\ 0, equation (5),

as

B(x
M
) \ B

y
yü ] yü ] $

M
t(x

M
) , (6)

where Using we cast equa-$
M

\xü L
x
] zü L

z
. equation (6),

tions in a more convenient form & Lambert(1)È(5) (Hassam
1996) :
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2 t\ 0 , (7)
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y

. (10)

As a general initial condition for both cases treated in this
paper, we choose for the magnetic Ðeld

B
y
(t \ 0)\ 0 , (11)

t(t \ 0) \ B0
k

e~kz sin (kx) , (12)

where the wavenumber k is an arbitrary real constant. In
general, we consider k to be of order L~1. See for aFigure 1
sketch of this system. Notice that in addition to the proper-
ties mentioned above, this Ðeld possesses other important
features. Chief among these is that the structure of B allows
for the distinction between two fundamentally di†erent
kinds of regions in the plasma. Region I Ðeld lines intersect
the bottom plate (z\ 0) only, while region II Ðeld lines
intersect both the bottom and top plates. The critical Ðeld
lines that separate the two regions just graze the top plate.
Note that the system is periodic in the xü -direction.

In what follows, we consider two cases. For case 1, the
top plate (z\ L ) is pulled rigidly in the whileyü -direction,
the bottom plate is held Ðxed. As will be shown, this gives
rise to immediate discontinuities in the magnetic Ðeld. For
case 2, the top plate is pulled rigidly in the whilexü -direction
the bottom plate is held Ðxed. As will be shown, this does
not give rise to immediate current sheets ; rather, they
appear spontaneously after a critical displacement Notem

c
.

that in both cases there are no nulls or discontinuities at
t \ 0. We describe each of these cases in turn in the follow-
ing sections.

3. CASE 1 : AXIAL DISPLACEMENTS

Let the equilibrium Ðeld given by equations exist(6)È(8)
at time t \ 0. We now set the top plate in motion with a
rigid displacement whose velocity is

o u o
z/L

\ m5 (t)yü , (13)

where the displacement m(t) is an arbitrary function of time
and the dot denotes di†erentiation with respect to t. We let
the bottom plate remain Ðxed, i.e.,

o u o
z/0\ 0 . (14)

The boundary conditions at the plates must be consistent
with the fact that they are perfect solid conductors. Thus we
have the familiar constraints that and must beE Æ t ü B Æ nü
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continuous at those interfaces. This implies that is alsou Æ t ü
continuous at the plates, and so we have all the information
we need to solve the problem. We assume that is suffi-m� (t)
ciently small to maintain a force-free system.

Let us consider small perturbations, i.e., assume
o m(t) o> L . Since the coronal plasma is ideal, the frozen-in
theorem is applicable, and we expect that the magnetic per-
turbation at any point is proportional to the displacement
at that point. Therefore, small displacements also imply that
the ordering is appropriate. In this limit,B

y
>o B

M
o B

y
, u

ydecouple from the remaining variables, as can be readily
checked from equations Since the only nonzero(7)È(10).
boundary condition is on we are free to set those remain-u

y
,

ing variables to zero and need not consider them further.
At this point, it is convenient to introduce the Ðeld coor-

dinate ", deÐned by

$
M

"4 yü ] $
M

t\ B
M

, (15)

namely

"\B0
k

e~kz cos (kx) . (16)

It will be more convenient to work in the new orthogonal
coordinates t, ". Note that Ðeld lines can be deÐned as
curves of constant t, and the background magnetic Ðeld B

Mis strictly in the direction. Using the new coordinates,$
M

"
becomesequation (8)

LB
y

L"
\ 0 . (17)

Thus is strictly a function of t and t.B
y

Equation (10)
becomes

LB
y

Lt
\ B

M
2 Lu

y
L"

. (18)

By making use of we can immediately inte-equation (17),
grate along an entire Ðeld line in the corona toequation (18)
get

(u
y
)endpoints\

LB
y

Lt
Q d"

B
M
2 . (19)

The integral is taken over a Ðeld line starting from the
bottom plate and culminating either at the top or the
bottom plate depending on the Ðeld line (see SinceFig. 1).

is known, the remaining freedom is Ðxed and the(u
y
)endpointssolution for is obtained.B

yThe importance of the di†erences between regions I and
II becomes apparent when considering the possible paths of
integration in In region I all Ðelds end at theequation (19).
bottom plate without ever reaching the top plate. Thus we
choose the Ðnal point of integration at z\ 0. In that"

fcase, the left-hand side of vanishes. Thisequation (19)
immediately implies

B
y
(t, t) \ 0 , ot o[

B0
k

e~kL . (20)

In contrast, all region II Ðeld lines reach the top plate, and
so we choose at z\ L to make use of boundary condi-"

f

tion (13). Solving for in givesB
y

equation (19)

B
y
(t, t) \ m(t)k2t

C
arcsin

Akt
B0

B
[ arcsin

Akte~kL

B0

BD~1
,

ot o\
B0
k

e~kL . (21)

It is clear that is discontinuous at the critical valueB
y and thus current sheets indeed exist forotcrit o\ (B0/k)e~kL,

t [ 0 at (seet\ tcrit Fig. 1).
The physics of this situation is straightforward. As the

top plate moves forward along it drags the Ðeld in theyü ,
plate with it via the frozen-in theorem. The Ðeld at the
bottom plate, however, is anchored in place. Thus the Ðeld
lines must ““ tip ÏÏ in the direction, which is why must beyü B

ygenerated. Since the plasma is ideal and the Ðeld is being
““ sheared ÏÏ into a symmetry direction, the tip of each indi-
vidual Ðeld line is independent of neighboring Ðeld lines, i.e.,
Ðeld lines exert no drag forces on one another. Thus the tip
of each Ðeld line is governed by how it intersects the top
plate. The Ðeld lines that never reach the top plate have
nothing to pull on them, so is never generated. However,B

yany Ðeld line that does intersect the plate must be pulled
along no matter how shallow the angle of intersection, thus
generating a nonzero Therefore, current sheets mustB

y
.

develop between the Ðeld lines that tip and those that do
not.

4. CASE 2 : TRANSVERSE DISPLACEMENTS

For this case, instead of the symmetry direction we letyü ,
the top plate move rigidly in the with velocityxü -direction

o u o
z/L

\ m5 (t)xü , (22)

and let the bottom plate be held Ðxed as in case 1. This case
is more difficult and requires some numerical treatment for
a full solution. Nonetheless, we can establish the appear-
ance of current sheets from analytical considerations.

Let us consider the boundary conditions for this case.
The initial magnetic Ðeld is given by equations and(6), (12).
SpeciÐcally, we have

B
M

\ [B0 e~kz[cos (kx)zü ] sin (kx)xü ] , (23)

which is the Ðeld at t \ 0, or equivalently m(t \ 0) \ 0. As
stated previously, equations and imply that the(3) (5)
tangential electric Ðeld and normal magnetic Ðeld must be
continuous at the plates. For the bottom plate, this implies

B
z
o
z/0\ [B0 cos (kx) , o E Æ t ü o

z/0\ 0 , o u Æ t ü o
z/0\ 0 .

(24)

To recover the boundary conditions for the top plate, we
make use of the frozen-in theorem. Since the top plate is a
perfect conductor, the magnetic Ðeld in that plate must be
convected along at the velocity given by Sinceequation (22).
the plate is rigid has no spatial variation), we can(u o

z/Linfer the magnetic Ðeld in the plate in the lab frame by using
the simple Galilean transformation x ] x [ m(t). Thus the
boundary condition for the magnetic Ðeld at the top plate
becomes

B
z
o
z/L

\ [B0 e~kL cos [kx [ km(t)] . (25)
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The electric Ðeld boundary condition, given by equations (3)
and is(22),

o E Æ t ü o
z/L

\ [B0 m5
c

e~kL cos [kx [ km(t)]yü . (26)

This system can be simpliÐed in a manner similar to case
1. Note that the above boundary conditions do not force
any contribution from or In that case, it can be seenB

y
u
y
.

from equations that and can be set to zero.(7)È(10) B
y

u
yThis leaves

$
M

t+
M
2 t\ 0 , (27)

Lt
Lt

\ [u
M

Æ $
M

t , (28)

as the remaining equations to solve. Note that no lineariza-
tion has been done in obtaining these equations.

We proceed as follows. The initial magnetic Ðeld is
nonzero everywhere in the domain. As long as this remains
the case during the displacement, and thus from$

M
tD 0

equation (27),

+
M
2 t(x

M
, t) \ 0 . (29)

Now, a unique solution to exists if we knowequation (29)
the boundary conditions. The initial condition is given by
equation (12) :

t o
t/0 \ B0

k
e~kz sin (kx) . (30)

To obtain an equation for E, we substitute for inB
MFaradayÏs law using The resulting(eq. [3]) equation (6).

equation can be inverted to give

E \ t5
c

yü . (31)

From this and equations we generate the necessary(24)È(26)
boundary conditions on t :

t o
z/0\ B0

k
sin (kx) , t o

z/L
\ B0

k
e~kL sin [kx [ km(t)] .

(32)

Thus the unique solution to with the bound-equation (29)
ary condition in equation (32) is given by

t\ B0
k

e~kL
sinh (kz)
sinh (kL )

sin [kx [ km(t)]

] B0
k

sinh (kL [ kz)
sinh (kL )

sin (kx) . (33)

gives, for the electric Ðeld,Equation (31)

E \ [B0 m5
c

e~kL
sinh (kz)
sinh (kL )

cos [kx [ km(t)] . (34)

Thus we have found unique solutions for and E that areB
Mwell behaved everywhere.

However, a problem arises when we consider Thisut.cross-Ðeld Ñow can be calculated directly from equations (4)
and (31) :

ut\ [ t5
o$

M
t o

\ u Æ $
M

t
o$

M
t o

. (35)

Evidently, if vanishes for nonzero then divergeso$
M

t o t5 , utand the solution must be discarded. Thus isequation (29)
not correct at the point in time where Now, as we$

M
t\ 0.

pointed out, there were no nulls in the equilibrium we
started out with. Subsequently, as we displace the top plate,
the solution given by can be examined forequation (33)
nulls that might develop. We Ðnd that indeed there are nulls
in for t [ 0, but, for early times, these nulls areequation (33)
outside the domain of the problem, i.e., for z[ L . We
emphasize that for these early times, the nulls outside the
domain are physically irrelevant, since we have a solution
inside the domain that satisÐes the boundary conditions.
Having said this, it is nonetheless mathematically instruc-
tive to examine these outside nulls as time progresses, as we
discuss below.

The possibility remains that the solution could(eq. [33])
eventually admit a null that appears inside the domain
0 \ z\ L . In such an event, at and beyond this critical time
another solution must be foundÈany nulls that appear
must occur for some or more to the point,t

c
[ 0, m(t

c
) \

To pinpoint when the solution fails, we must deter-m
c
[ 0.

mine when (if at all) the nulls enter the domain 0\ z\ L .
This can be done by using the equation to derive a$

M
t\ 0

relationship between (the z coordinate of the nulls) andznullm(t). After some algebra, we obtain

znull\
1
4k

ln
Ae2kLMcosh (2kL ) [ cos [km(t)]N

1 [ cos [km(t)]
B

(36)

as the needed formula. Inspection of revealsequation (36)
that the initial position of any nulls, i.e., at occursmo

t/0 \ 0,
only at This is consistent with the fact that thereznull] O.
are no nulls in the initial Ðeld inside or outside of the
domain. As m(t) increases, however, decreases mono-znulltonically until it Ðnally reaches Thus the nullsznull\ L .
enter the domain of the problem at the top plate, and so it is
at this critical displacement, that the solution fails. Tom

c
,

summarize, the above solution is valid only for

m(t) \ m
c
\ 1

k
arccos [e~kL cosh (kL )] , (37)

and at nulls enter the domain atm
c
,

znull\ L , xnull\
1
k

arcsin [^e~kL cosh (kL )] . (38)

After a new solution must be found. Them(t
c
) \ m

c
,

problem becomes intractable analytically, but can be
readily solved numerically. The essential behavior borne
out in the simulations is that the emerging null points
““ stretch out ÏÏ into y-point discontinuities (Syrovatskii 1971)
below the top plate to preserve topology. At these discon-
tinuities are current sheets, with currents in the yü -direction.

The numerical solution is provided by a two-dimensional
simulation of the full MHD equations. The code et(Guzdar
al. employs a Ðnite di†erencing algorithm that is1993)
second order in time using trapezoidal leapfrogging and
fourth order in space. A small hyperviscosity provides sta-
bility. Small viscosity l and resistivity g are included. The
simulation is carried out on a two-dimensional grid ; in this
case the resolution used is 120 points for each axis, with the
domain 0 \ z\ 1, [n \ x \ n. The simulation starts at
t \ 0 with the equilibrium Ðeld

t\ e~z sin x . (39)
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FIG. 2.ÈSimulation of magnetic Ðeld at in the domainm \ 2.04m
c0 \ z\ 1, [n \ x \ n. Extra contours are plotted near the current sheets

for emphasis.

The top boundary is ramped from rest into rigid motion in
the x direction according to

m(t) \ d(1 [ e~dt) , (40)

where d is a given parameter. In this case, d \ 0.1 to ensure
that the solution remains quasi-static, thus minimizing any
Alfve� nic e†ects. Line-tied boundary conditions are used on
the z boundaries, while periodic boundary conditions are
used on the x boundaries. The simulation is allowed to
proceed using a time step q\ 0.002, with g, l\ 0.001 until
the critical displacement is reached. Current sheets arem

cthen observed to form at the two critical points in the
domain. Given the relatively small values of l, g, the current
sheets continue to grow without noticeable reconnection for
signiÐcant shows the current sheets form [m

c
. Figure 2

(after some noticeable reconnection), andm \ 2.04m
c

Figure
shows a closeup of one of the current sheets. However, the3

reconnection process, driven by g, eventually smoothes out
the current sheets, and the equilibrium solution is regained
by the time m \ n.

5. DISCUSSION

Starting from a relatively simple magnetic conÐguration,
we have shown that relatively simple motions of footpoints
can give rise to current sheets, i.e., step discontinuities in
magnetic Ðelds. This result supports a well-investigated but

FIG. 3.ÈCloseup of current sheet at in the domainm \ 2.04m
c0.76\ z\ 1, [0.31n \ x \ 0.21n.

contentious theory of Parker that continuous quasi-static
deformations of footpoints result in neighboring MHD
equilibria that are not generally continuous themselves. The
resulting current sheets may heat the corona sufficiently to
explain the hot corona. One of the reasons for the conten-
tion accompanying this theory is the difficulty in Ðnding
analytically simple examples that demonstrate ParkerÏs
point. We were motivated to Ðnd simple examples of
current sheet formation and have been able to present two
in this paper. Our model is two-dimensional, thus allowing
analytical tractability. Other two-dimensional calculations
involving axial displacements (our case 1) (Low 1991 ;

et al. and transverse displacements (our caseVekstein 1991)
2) (Low & Wolfson have been1987, 1989 ; Low 1988)
reported. As in our cases, these systems feature initial mag-
netic Ðelds lacking nulls or discontinuities, and they are
driven by slow deformations. The examples involving axial
displacements possess topologies similar to our case 1. We
come to essentially the same conclusion that inÐnitesimal
displacements can lead to current sheets in such cases.
Whereas their approaches are more general, we give a
simple, speciÐc example. Unlike our case 2, the examples
involving transverse displacements use footpoint compres-
sions that are not explicitly given as a function of time. Thus
only the end states are calculated without clearly showing
the dynamics of the developing current sheets. In any case,
the magnetic conÐgurations used are considerably more
complicated than those presented here.

For the examples in this paper to be at all applicable to
the solar corona, they must in some way correspond to
possible three-dimensional conÐgurations. When extending
the analogy to three dimensions, the important features of
the two-dimensional model should be preserved so that the
essential physics remains qualitatively the same. With this
in mind, consider the three-dimensional potential Ðeld
sketched in Loosely speaking, the geometry is thatFigure 4.
of our two-dimensional model folded over so that both of
the boundaries coincide with the photospheric boundary.
The footpoints are spaced far enough apart so that their
displacements may be considered uncorrelated ; in this sense
the footpoints on the left are analogous to our bottom plate,
while those on the right are analogous to our top plate.
Note that the essential characteristics of region I and II Ðeld
lines are preserved, and accordingly there is still a critical
Ðeld line that just grazes the right-hand footpoint. Although
it is by no means proved, one can imagine how displace-
ments of any of the footpoints might generate current sheets
at the critical Ðeld line in analogy with the results of the
two-dimensional examples. Assuming that current sheets of
this nature are possible, the essential physics seems to stem
from the diverging nature of neighboring Ðeld lines at the
discontinuities : the Ðeld lines near current sheets may
emerge from the photosphere very close together, but
reenter the photosphere very far apart, in footpoints that
are not causally connected. Thus the independent motions
of the footpoints could drive correspondingly independent
perturbations of neighboring Ðeld lines, causing discontin-
uities.

An important caveat to the above scenario (Karpen,
Antiochos, & DeVore deserves mention at this point.1990)
An important characteristic of the magnetic Ðeld in our
model is that there are no preexisting nulls. This being the
case, region II Ðeld lines that are close neighbors of the
critical Ðeld line presumably do not penetrate very far into
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FIG. 4.ÈThree-dimensional analogy of the two-dimensional model problem. Note that the regions and critical Ðeld line correspond qualitatively to Fig. 1.

the photosphere (see the dashed lines of Thus forFig. 4).
Ðeld lines that penetrate an arbitrarily short distance into
the photosphere, the gravitational scale height of the solar
atmosphere needs to be considered. Two-dimensional simu-
lations carried out by et al. show that poten-Karpen (1990)
tial discontinuities near the corona-photosphere boundary
will be smoothed out over this scale. The physics is straight-
forward : Ðeld lines that do not penetrate substantially into
the photosphere cannot be efficiently anchored by the foot-
point inertia. Thus footpoint slippage occurs for these Ðeld
lines. Field line slippage becomes negligible below a depth
greater than the gravitational scale height and so over that
distance the magnetic Ðeld can undergo a continuous tran-
sition from region I to region II. It should be noted that the
interpretation of the simulations by et al.Karpen (1990)
have been debated. points out that the magneticLow (1991)
Reynolds numbers achievable numerically are only about
103, obviously incommensurate with the magnetic Reynolds

number in the corona that can be as large as 1018 : a small
Reynolds number could prevent or at least delay the
appearance of current sheets. Note, however, that our simu-
lations indeed show the development of current sheets for
correspondingly small Reynolds numbers. Another perhaps
more physically relevant point is that the gravitational scale
height could be small enough to allow relatively thin
current systems to develop, thus retaining the qualitative
properties of current sheet development.

To conclude, the two-dimensional examples presented
here highlight the importance of diverging magnetic Ðelds
in the development of spontaneous current sheets. Ana-
logies to the full three-dimensional problem, as discussed
above, are as yet unproved, but certainly show promise as
potential candidates for three-dimensional discontinuities
in previously quasi-static, continuous magnetic Ðelds.
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