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The plasma electron density oscillation produced in the wake of a ndivemm wais&plasma
wavelength ultrashort laser pulse is measured by frequency-domain interferometry with a temporal
resolution much better than the electron plasma period, and a spatial resolution across the laser focal
spot. The absolute density perturbation is observed to be maximum when the pulse duration equals
half the plasma period. The relative density perturbation varies from a few percent at high density
to 100% at low density. For nonlinear oscillations we measure the increase of the electron plasma
frequency predicted for radial oscillations. M. Dawson, Phys. Revl13 383 (1959]. The
damping of the oscillations is observed. It is very rafidfew periods when the oscillation is
nonlinear. Comparison with the coadeake [P. Mora and T. M. Antonsen, Jr., Phys. Rev5§
R2068(1996] indicates that the gas ionization creates a steep radial density gradient near the edge
of the focus and that the electrons oscillating near this density gradient are responsible for the
damping. © 1998 American Institute of Physids$$1070-664X98)00103-7

I. INTRODUCTION and 100 fs requires a focal spot radigs 40 um, leading to
o~Cty. This means that with current lasers, transverse ef-
The accelerating electric field in conventional accelerafects cannot be avoided, and a better knowledge of their
tors is limited to around 100 MV/m by the breakdown on thejpfluence is necessary.
structures. Fully ionized plasmas can sustain electron plasma Radial electron oscillations produced by the LWF pro-
WaVES(EPV\b with relativistic phase velocities and electro- cess have recenﬂy been studied. Hamg]taﬂ_l‘l have ob-
static fields that can exceed 100 GVimaking them very  served the quasiresonance of the LWF by measuring the tera-
attractive as compact high-energy particle accelerators Gfertz electromagnetic emission of the EPW. However, the
sources. The ponderomotive force of an intense laser pulseepw period was not resolved and no spatial information was
can excite such waves via the laser beat-wesBW),% the  ayailable. The electron density oscillations have been mea-
laser wakefieldLWF),® or the self-resonant laser wakefield sured with a temporal resolution much better than the elec-
processe$SRLWP).* Several experiments have observed thetron plasma frequencd?*> and spatial resolution in one
acceleration of injected electrons by the LBWand the  dimension® in experiments using longitudinal frequency-
LWF ® or of background electrons by the SRLWF Elec-  domain interferometry of short laser pulses. With the same
tric fields of the order of 1 GV/m for the LBW or the LWF, diagnostic, we have very recenffymeasured the temporal
and of 100 GV/m for the SRLWF have been produced. Anevolution of the EPW on a time scale much longer than the
overview of these methods and experiments can be found iglectron plasma period.
Ref. 11. These experiments have demonstrated the feasibility In this paper we present experiments in which we have
of each concept. However, only a few of them have meameasured radial electron plasma oscillations excited by laser
sured the EP\WR and identified the mechanisms that limit its wakefield using spatially resolved frequency-domain inter-
amplitude and lifetime. ferometry. The EPW amplitude, frequency, and damping are
Particle accelerators require a longitudinal electric field.studied in detail around the LWF quasiresonance. The LWF
The resonant excitation of the LWF is mainly longitudinal if theory and the difference between longitudinal and radial
o>cr, 1" Bwhereo is the laser focal spot radius angis  oscillations are presented rapidly in Sec. Il and in more detail
the pulse duration. The maximum longitudinal field is givenin Appendix A. The experimental setup and procedure are
by: E,(GV/m)~8.2x 10 1% (W/cm?)\%(um)/7(ps). Reach- described in Sec. Ill, while an extensive discussion on the
ing E,=1 GV/m with a Ti:sapphire lasen=0.8um) of 1J  spatially resolved frequency-domain interferometry diagnos-
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tic is presented in Appendix B. Section IV is devoted to @) Absolute perturbations ®) 80/,
experimental results. In particular, we have observed the in- il \/)\ , 7=V 1 —

crease of the electron plasma frequency for nonlinear radial
oscillations as predicted in Ref. 17. In this regime, we have
also observed a very rapid dampitm few plasma periods \
of the oscillation. We present simulation results obtained °C_ . . . | e
from the codewakE indicating that gas ionization creates a ' ' 1o 10" 1o 10" 10" A
steep radial density gradient near the edge of the focus.

When the EPW reaches nonlinear amplitudes, the electron @8u/n,

excursion is large enough to cross the radial density gradient. .}
This nonharmonic motion leads to the damping of the oscil-
lation. The codesvAKE and the codeMAGE that simulate the
frequency-domain interferometry diagnostic are presented in
Appendix C. Rl — —

L L
10[3 [0“ 1015 lolﬁ ]017 lolﬂ 1019
Electron density (cm‘z)

=3
7%

Normalized u
Normalized units
o
o

=

1.5

L.or

Arbitrary units

0.5

Il. BASIC THEORY FIG. 1. (a) Absolute amplitudes of radial and longitudinal electron density
) ) o ) perturbations versus the mean electron density: in our case the longitudinal
A two-dimensional, nonrelativistic, analytical model of contribution is absolutely negligibléb) Relative amplitude of longitudinal

the LWF process has been developed by Gorbunov anekrturbation(c) Relative amplitude of radial perturbati¢showing the ab-

Kirsanov? This model is detailed in Appendix A. The elec- Sence of resonance

tron motion is calculated assuming an electron density per-

turbation 6n small compared to the equilibrium density,

fixed ions, and a cylindrical geometry. It is also assumed that ~ The two contributions also have different transverse pro-

the radial and temporal parts of the potential can be sepdiles. The radial dependence of the transverse and longitudi-

rated, which is valid for a Gaussian beam if the Rayleighnal part of the perturbation is shown in Fig. 2. Both of them

lengthzg=2ma?/\ is much larger thar, as it is actually —Present a radial extension of the order of the laser focal spot

the case in the experiment. The laser intensity in the vicinityadius o. The central part of the transverse perturbation

of the focus can then be approximated Hyr,z,t) comes from the initial radial expulsion of the electrons lo-

= max €Xp(—r¥c?)exd — (t—2z/c)% ). cated near the high-intensity region=0). These expelled
The electron density perturbation is excited by the pon£lectrons increase the electron density on both sides of the

deromotive force associated with the temporal and the radidPcus, thus creating the bumps arourid=v2.

profile of the short laser pulse. The electron density oscilla-  The ratio of these contributions on the laser axis is

tion produced in the wake of the laser pulse is given by ~ ON;/on,(r=0)=(\,/70)? where \,=2mClwpe is the
plasma wavelength.

2 2 2
@: Al 1+ ) _ r_) exp< _ r_) Therefore the electron motion can be treated as longitu-
Ne Wpel o? 2 dinal whenwo>\, and radial whenro<\,. In this ex-
X Sin wpd —K2), 1) periment, the density perturbation is observed with a diag-

nostic proportional to the produttsn, where the interaction
where length L is of the order of the laser Rayleigh lengthy.
;{ (w 70\ 2 Equation(1) indicates that while the produekdn is inde-
pe
expg —
=

pendent ofo for the longitudinal perturbation, it increases as
()\p/a)2 for the transverse perturbatiorzzgén,aP\ but

is an amplitude factor characterizing the LWF quasiresoZzgdn,aP\(\,/0)?.

nance(P is the laser pulse power at maximum angl. is the

electron plasma frequency, proportional to the square root of

the electron densitp,). T T . T T
The perturbation is the sum of two contributionsn

=én,+ én, . The first one,on,, describes the longitudinal

oscillation of the electrons. It is only induced by the temporal

profile of the laser pulse. The second o#g, , corresponds

to the transverse motion induced both by the temporal and

radial profiles of the pulse. These perturbations are maxi-

mum when ng satisfieSwperoz\/E for on,, and wpe7g

=v2 for én, and én,/n,. The relative radial perturbation : : . . L

on, Ing, has no resonance and increases whgulecreases. 32 0 1 2 3

The absolute and relative amplitudes of the radial and longi- Radius (in G units)

t'“!dmal perturbations \_/ersus E|ECtron_ density are shown B, 2. Transverse profiles of the electron density perturbatiop(dashed

Fig. 1 for a pulse duration of 120 fs which corresponds to Ouiline), sn, (dotted ling. For the clarity of the graph, these amplitudes are

experimental conditions. multiplied by (—1). Solid line: laser intensity profile.

WpeTo

)\ 2

Normalized units
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The reflected part80%) is used as the pump beam, and the

Beam splitter transmitted part as the probe beam. The probe beam is fre-
Doubling crystal Interastion guency doubled and sent into a Michelson interferometer to
Diaphragm'___l chamber ' generate two colinear pulses with an adjustable time delay.
i 16 bits These two pulses pass through a circular aperture to improve

Delay || == fr8 £/2 ceo - : -
line ' \ ] the phase front homogeneity and increase their focal spot
—g 3T lccol diameter to a size much larger than the pump one. The time
Dleﬁggﬁw delay between the pump and the probe pulses is adjusted

Spectrometer with a delay-line. The probe beam is injected colinearly with

the pump by transmission through a dichroic mirror that re-
flects the pump. The pump and probe pulses are focused by a
/I8 MgF, lens in a low-pressure helium gésmound 1 mbar
The perturbation amplitude is maximum for a plasmaThe gas pressure is measured with a precisiort @fubar
wavelength\, that satisfies the quasiresonance conditiorPy a capacitance manometer. _ _ _
wpeTo~1. For a given laser pulsé® and \), the product The pump focal spot is almost Gaussian with a radais
zron, is fixed, while the productgén, can be increased by 1/e of the maximum intensity c=6=1um, while the
tightly focusing the laser bearfdecreasings). The trans-  Probe radius is 14@m. The maximum pump intensity is 2
verse oscillation then becomes much easier to measure thanl0'’ W/cn?, easily creating a fully ionized helium plasma
the longitudinal one. For these reasons, we have chosen 8 the focal area? The focal plane is imaged on the spec-
excite mainly the radial osci||atio[1]_8s()\p/ﬂ-o-)zsﬁoo in trometer slit with a f/4 doublet, with a spatial resolution of
our experimerit We can also reach the nonlinear regimeabout 2um and a magnification of 16. The pump beam is
more easily becausén, is proportional to (14)%. attenuated before the imaging lens by a dielectric mirror. The
Let us note that if this radial oscillatiofransverse field ~ spectrometer slit is imaged on a CCD camera to control the
may not be used for particle accelerators, it can be useful forlignment on the slit and the pump/probe spatial overlap.
photon acceleratiotf the longitudinal density gradient re- We have designed our spectrometer to minimize the ab-
quired to shift the laser frequency is also present in a radig@rrations and the energy losses. This spectrometer uses one
oscillation. single spherical mirrotfocal length of 1.5 m and aperture of
f/18). The holographic grating is used near the Littrow angle.
This configuration allows a reduction of the angle of inci-
dence on the spherical mirror and thus minimizes the spheri-
The principle of the experiment is the following: a pump cal aberration. It also minimizes the anamorphic magnifica-
beam is focused into a chamber backfilled with helium gastion and maximizes the grating efficiency. With a 1Qfn
The laser ionizes the gas near the focus and excites the eleslit, the spectral resolution is 0.3 A. At the output of the
tron perturbation. Two twin colinear probe pulses, separatedpectrometer, the twin probe pulses are stretched to 57 ps.
in time and frequency doubled, are focused on the same axi$he output spectrum is recorded on a 16 bit CCD camera.
Because the group velocity of each probe pulse is almost The experimental procedure is the following: For each
equal to the phase velocity of the EPW, each pulse stays igas pressure, the time separation of the two probe pulses is
phase with the density modulation during the propagation. ldjusted to 1.5T ¢ (T =27/ w,e is the EPW period for a
the electron densities seen by the pulses are different, thefully ionized helium gak In this configuration, when one of
relative phase is modified during the propagation. We meathe probe pulses coincides with a maximum of the density
sure this relative phase shift by the spatially resolvedperturbation, the other pulse is located on a minimum. In that
frequency-domain interferometry technigtiésee Appendix case, the phase difference between the two pulses corre-
B): at the output of the plasma, the two probe pulses are timeponds to the peak-to-peak density perturbation. This opti-
recombined: the temporal beating creates a system of fringamizes the signal-to-noise ratio. It also avoids a contribution
in the frequency domain. The position of the fringes dependsf the singly ionized region, the pulse separation being in
on the relative phase between the two pulses. The easiestat region almost equal to the electron period of the He
way to recombine the two pulses is to send them into glasma.
spectrometer: when the grating disperses the frequencies it Two modes of measurements are possiBl@hey are
also temporally stretches the pulses. The spatial informatiorepresented in Fig. 4. In the absolute mode, the first probe
is obtained along the vertical slit of the spectrometer. Thepulse propagates in the gas before the pump beam while the
output spectrum is recorded on a charge-coupled deviceecond one propagates in the plasma after the pump beam
(CCD) camera. On each image, the horizontal axis gives th¢Fig. 4a)]. In this configuration, the phase shift between the
position of the fringes and so the perturbation amplitudepulses arises from the plasma formation. The amplitude and
while the vertical axis gives a one-dimensional transversehe spatial extent of this phase shift come from the integra-
resolution. tion along the laser axis in the singly and doubly ionized
The experimental setup is shown in Fig. 3. The LOA 10regions. This measurement also provides the absolute time
Hz Ti:Sapphire laser beam at a wavelength of 800 nm, wittseparatiorAt between the pump and the two probe pulses:
a maximum energy of 40 mJ and a duration of 12(ftsl we first adjust the pump—probe delay so that the probe pulses
width at half maximum(FWHM)], is split into two parts. arrive before the pump pulse. As we decrease the delay, a

FIG. 3. Experimental setup.

IIl. EXPERIMENTAL SETUP AND PROCEDURE
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FIG. 4. Two modes of measuremefd) the relative mode(b) the absolute (@)
mode. The three pulses are collinearly propagating from the left to the right. -20 : L L L L
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phase shift appears. It saturates when the second probe pulse Radius (um)
is at the end of the ionization front. This corresponds to theFIG. 6. Experimental radial profiles of the relative phase at a maximum
pump pulse maximumAt=0). In the relative mode, the (_To”df ItiI?E)’ O.Hpglatfnr(go:_tg?_rl]ine). _chaS,*:eld "_“;: m;asrﬁr;d ime:‘sﬁ Fl)“t’_'
two probe beams propagate after the pump beam, so th o e bl 0 e e Wi ClfEies: Maximuim measured fefaive
they both travel after the plasma formatidfig. 4(b)]. Their
relative phase is due to a plasma perturbation produced in the
wake of the pump pulse. By recording the relative phase for
various pump/probe time delays, one can measure the terf Fig. 5 and saturates when the second probe pulse arrives
poral evolution of the perturbation. at the end of the ionization process. The phase shift de-

The spatial resolution of our frequency-domain interfer-creases when the first probe pulse also begins to see the
ometry enables us to probe both the perturbed and the unpeplasma. The continuous part of the relative phase shift then
turbed regions in a single shot. This provides a phase refeianishes and only the oscillating part coming from the
ence and avoids errors due to laser spectrum fluctuations. Tdasma perturbatioEPW) remaing(relative mode presented
eliminate errors due to the spectrometer slit imperfect qualityvith a different color scale in part B of Fig)5
(see Appendix B¥ we also substract the relative phase  Vertical line-outs of Fig. 5 are presented in Fig. 6. These
measured with a reference shishot without pumpto all ~ radial profiles are the result of the integration of the relative

other relative phase measurements. phase shift along the propagation axis at each radius. The
integration length is the minimum between the perturbation
IV. EXPERIMENTAL RESULTS length and the Rayleigh length o_f the collecting opti_cs.
) ) Curve(d) shows the transverse profile of the phase obtained
A. Spatial and temporal resolution in the absolute modépart A of Fig. 5. This curve shows the

A typical result of the relative phase measurement is_radial plasma extent. Even if the h_elium gas is doubly ion-
presented in Fig. 5. It has been obtained at a pressure of 0i&ed near the focus, the phase profile does not present a step-
mbar (ne=2.5x 10 cm™3 for fully ionized helium). Each like shape. This is due to the integration along the laser axis
vertical line is an average of 40 shots recorded at 10 Hz. Théhe radial location of the H¢He** interface changes along
horizontal coordinate is the time delayt and the vertical the laser axis _
coordinate is the radius from the laser axis. %<0 both Curve (a) corresponds to a delay for which the phase
the probe pulses propagate in the gas. Whérincreases, amplitude is maximum in the relative mode. Because the
the second probe pulse begins to overlap with the pumgmplitude of the laser wakefield is significant only in regions
pulse and is modified by the plasma formation. A relativeOf high laser intensityr <o, |z|<zg), the relative phase has

phase shift appea(abso'ute model Corresponding to part A a much smaller radial extent in part B than in part A. Curve
(c) is the intensity profile of the pump focal spot. As ex-

pected from Eq(1), the phase transverse profile of cufag
phase presents two parts: a central partrato (=6 um) and

(mrad) bumps on each side. Cuny®) is obtained half a plasma
0 - period later. As expected, it presents a reversed shape. We

note that a flat profilgnull phase is measured when we
delay the probe beams by a quarter of a plasma period after
an extremum.

A horizontal line-out of Fig. 5 is presented in Fig. 7. It
represents the relative phase on the laser axis as a function of
time. The insert shows a vertical zoom of the phase oscilla-
tion in the relative mode, with a fit using an exponentially

:i Mt S b damped sinusoidal curve.

-80 Typical measurements of the phase difference on the la-
ser axis versus the pump/probe time delay are presented in

FIG. 5. Spatially and temporally resolved relative phase measurement withrig. 8 for various helium gas pressures. Th? different curves
ne=2.5x10' cm™3. Part A and part B have different color scales. have been separated by 20 mrad. The relative accuraty in
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FIG. 7. Relative phase on the laser axis versus time) (at n,=2.5
<10 cm 3. FIG. 9. Full circles: maximum relative phase on the laser axis versus the
electron density. Solid line: numerical fit of the forming,,{wpem)
XEXF[*Z(a)peTO/Z)Z]. Open circles: relative density perturbation times the
Rayleigh length calculated from the black circle’s values. Dashed line: nu-
merical fit of the formB ex(f —Ce}l/wpe.
is limited by the delay-line translation control digit and is
better than 3 fs. The relative phase is oscillating with a well-
defined period. As expecteq, this period de_creases with thg LwF amplitude
gas pressure. The phase difference is maximum around 1.5 ] )
mbar on the LWF quasiresonance. One can observe an im- 1h€ maximum relative phas& ¢, measured on the
portant damping of the oscillation at lower pressures. Iaser_ axis is p_Iotted in F_|g._9 as a functlon_ of the electron
For each gas pressure, we apply to the curves of Fig. 8 density assuming a fully ionized He gas. This plot shows the
fit of the form: A ¢ exy — U t—to)*sifwyt—t)]. The LWF guasiresonance. The solid line is a fit using the expres-
P 0 AN sion of 8N, = SN e @peTo)eXH —2(wpemo/2)?] obtained from
parameters of the fit are the maximum relative phase ampl='O" | r = Olmax WpeTo A\ WpeT )
tude A ¢hya the damping ratey, and the frequency,, of the the linear theory(see A.ppend|x A where the adjustable
electron oscillation. We calculate the uncertainty of this nu-Parameters are an amplitudan,, and the pumgand probg

merical calculation and add it to the experimental error barsPulse durationro. The factor 2 in the exponential is due to
the temporal convolution induced by the probe envelope: for

a Gaussian envelope and a sinusoidal perturbation, the con-
volution decreases the phase shift by a factor of
ex;{—(wpeq/Z)z], wherer, is the half width at ¢ in inten-

T T T T

L LA AANAAA 3.3 mbar sity of the probg pulgcésee Appendix B If we considerr;
Moy vy s =71, the fit is obtained for 7,=7,=84fs
(FWHM=140+6 fs) which is close to the laser pulse dura-
AAAAANARAN, 2.5 mbar tion.
AU RVAVAVRVAYAVRYRVAVAVAY A more rigorous calculation must take into account the
50 mbar precise valge ofr,. The probe beam is first frequency
100’\ A MNANARAA A : doubled. This reduces the pulse length by a factovf It
V \/ VUV VA \/ then goes through several dispersive media: 2 cm of BK7
{\ /\ /\ [\ /\ /\ /\ /\ /\ A 1S mbar (Michelson cubg 1.4 cm of fused silicgdichroic mirrop,
3 80 \ and 6 mm of Mgk (chamber entrance window and focusing
£ \/ V \/ V \f \1 V V \/ V lens. Measurements of the pump spectrum show that the
= 120+ 5 fs pulse is Fourier limited. From the frequency band-
<60 A /\/\Vf\\/\\/\\/\\/\ 10 mbar width, one can easily deduce that the duration of the probe
v \./ pulses (FWHM) in the interaction chamber is 16( fs.
0.5 mbar When the curve in Fig. 9 is fitted by the theoretical expres-
4 O\//\\\/\uf\\//\\//\u/\\/\\//\\/ sionén,= 5nma)(wpe70)exq—Z(wper/Z)Z] with the adjustable
parameterssn,.x and =, we then have to compare=_84
o~ o~ 02 mbar + 4 fs obtained from the fit with/(72+ 72) =85+ 6 s.
W T T T A probe laser pulse that propagates through a thickness
dz in an underdense plasmaJ(/n.<<1), undergoes a phase
e 0.1 mbar modification d¢=(2/\,)(ne(2)/2ns)dz, where A, and
' . . . . n. are the probe wavelength and the corresponding critical

density. The relationship between the measured relative
phase shift and the maximum density perturbation at the fo-
cal plane is obtained by integration along the laser axis. The

. . . . . . 4
FIG. 8. Relative phase on the laser axis as a function of time for differenf@dial den5|_ty OSC"lat_'()mnr(Z) IS proportlonql to 14°(2),
helium gas pressures. Successive curves are incremented by 20 mrad. Wherea(z) is the radius of the intensity profile atelat the

0 1000 2000 3000 4000 5000 6000
Time (fs)
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12— tron densityn,. A positive shift(frequency higher than the
T _ theoretical linear frequengyan be clearly seen. It increases
with decreasing electron density, and reaches 5%nfor
~10'® cm™3. The results of the codeAkE originally devel-
~ - oped by Mora and Antonsen, Jrare represented by open
B L ] triangles. This code is a two-dimensioriatD) (cylindrical),
I %IQ fully relativistic particle code, in which the laser field acts on
T

<
I

, (%)

pe
[o]
J

pe

4

(-0 )/ o

¥ the particles via the ponderomotive force. The new version
N WYV IR it cA SRNERRTTY of the code used here also simulates the plasma formation by
0 10' 10" 1o tunneling ionization(via a Monte Carlo methdgthe propa-
n_(cm™ gation of the two fr_equency <_j01_JbIed probe pulses, the i_mag—
¢ ing lens, and the time domain interferomef{see Appendix
FIG. 10. Relative increase of the electron plasma frequency as a function d€). To simulate the kinetic energy produced during the ion-
the electron density. Full circles: experimental results. Open triangles: simuizgtion, the electrons can be generated with a Maxwellian
lations with the codevake. . . s .
radial velocity distribution. The plasma frequency increase
obtained from the code is in good agreement with the mea-

positionz a|0ng the laser axis. Assuming a Gaussian propasurements. As we have noted for the experimental results in
gation and z=0 at the focal plane, theno(z) Sec. IV B, even when the density perturbation is nonlinear,

— o\(1+ 2% 23). Integration along gives the code sh.ows that the measurgd phase s:hift has a sinusoidal
time evolution and a radial profile very similar to the one
I on,(z=0) zg o (wperi/2? obtained from linear theory. Applying the same fit
max Neg Mg ' (A prmav* €XH — At—to) J*sil wy(t—to)]) to much later periods

The exponential term comes from the temporal convolution(When the EPW relative amplitude is smajlshows that the

: - : : shift disappears, both in the experiment and in the simula-
induced by the finite probe pulse duratiaee Appendix A : e .
The productzgan, /n, obtained from this formula is pre- tions. This indicates that the shift does not come from an

sented in Fig. 9. The solid line is a fit using the expression ofé;rl?gr;?iot:ebﬁﬁzsfer; tg:jeijl:;]imneonglig;;:og] trlliteu(;jglg?/-tlrl]r;e
én, /In.=B exp[—Cw,ZJe]/wpe, obtained from the linear theory ' P

(see Appendix A In this experimentzg is estimated to be Epvgéw mechanisms can modify the electron plasma fre-
between 100 and 200m, so that the relative density pertur- uency. In a hot plasma the frequenc increaspes with the
bation at the focus i$n, /n,~10% at the resonance density q Y- P 2 2 2q 5 y

(N~ 107 cm3®) and reaches on, Ing~100% for n, electron temperaturev, = wp+ 3k“v,. The transverse re-

<10 3. Let us underline that even when the densityS|dual energy produced by a linearly polarized laser pulse

perturbation is nonlinear, the measured phase shift presentécgp!z'ng a helium gas can be calculated using the tnneling

; 92223 1 :
in Figs. 5—8 still has a sinusoidal temporal behavior and onnlzz?itrlr?nn{alté nditiltnls (_)Ifhthe OdrSZLEOf E}OWth;o; (t)#r
smooth radial profile. This is due to two main reasons: withoXperimental co ons. 1he co shows fhat fhe

a time separation of 15, between the probe pulses, the electron temperature does not affect the plasma frequency so

measured phase corresponds to the peak-to-peak amplitu@eUCh: changing the temperature from 0 to 50 eV leads to a

and that leads to a symmetric behavior around zero. Mor t_hoz:r:tlt\r/weefrrneéq:seunr(;)(/j Ssm Olfnaa];e(;’vmg(z' ttr:]:tshsif;[edrilsgme;lfstfter
over, the maxima of a nonlinear density perturbation are ver ' ’ PP

y . :
ratou in pce and tme. The temporal cnelope of e 4 P10 €108, and e do ot ik bat e lecon,
probe pulsegsee Appendix Bthe finite spatial resolution of P '

the imaging system, and the integration along the laser axi%ffeCt is not related to the electron temperature. The plasma

average these narrow peaks, as confirmed by simulatiorpserIOd can .a!sq be mo§i|_f|e9 When the electrons of the EPW
. reach relativistic velocitie&' This shift has recently been
presented in Sec. IV C. observed by Modenat al.in SRLWF?® The increase of the
A calculation of the tunneling ionization rate of helium y ' '

by the pump laser pulse indicates that the plasma should beelectron relativistic factory induces a decrease of the fre-

singly ionized for|z|<7zg, and doubly ionized forz| guency(negative shift. Our simulation shows that the veloc-

<2.5z; on the laser axis. Therefore the phase amplitudéiylé)li3 the_3 elec(;crohns Idogs not ﬁ_);tce?dc~8.;5((;t Me
ratio A ¢,/ A between the absolute and the relative mode F cm .)"ar? t ".’“ e%_gto ashio O?IIV 'ff O d
measurements should be about 4 at low dengity or osc a“°'.‘? n a space, two other efiects induce
<10%cm 3 where on /n,~1) and proportional to gfrequengy modificationa) When electrons elxecgte an el-
(n,/ny) "L, This is in good agreement with our measure—IIptIC moﬂ%" current Ipops and magnetic flelds_ are
ments. produgedz. : The magqetlc field deflec_ts electron motion to
the third order in amplitude and that induces a decrease of
the electron plasma frequendp) In the case of nonlinear
cylindrical electrostatic oscillations, the radial displacement
The relative difference ¢,— w,e)/wpe between the of an electron away from the symmetry axis produces a
measured frequenay, and the theoretical linear plasma fre- charge density at the center which is greater than in planar
quencyw,, is presented in Fig. 10 as a function of the elec-geometry. This produces a stronger restoring electric field

C. Nonlinear frequency increase
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and leads to an increag@ositive shify of the electron 10°
plasma frequenc{/Awp/wpe~(6r/r0)2/12, wheredr is the
electron displacement from its initial positiony, and

LN I N A T T T 1337

1

orirg<1]t’ 10 3
The total frequency shift depends on the relative ampli- §° E ]
tude of the thermal, the relativistic, the electrostatic, and the E 10_; ’

magnetic effects, or, in other words, on the geometry and
amplitude of the oscillation. In the context of the laser beat-
wave accelerator, Bell and GibbSrhave shown that these
effects can have similar amplitudes and comparable spatial
profiles. The codavAaKke includes all these effects. Measure-
ments and simulations both indicate that the electrostatic ef-
fect (frequency increagds predominant in this experiment. FIG. 11. Damping rate of the electron oscillation versus the electron den-
It is to our knowledge the first observation of this effect thatsity. The open triangles are the results of the coege. The solid line is a
was predicted by Dawson in 1959. Alne fit.

TT IHHII

10'3 Ll Lol [ R
1 OIS 1 016 1 017 1 le

n, (cm'3)

D. Damping of the oscillations So the typical time of the damping induced by the ion motion

We have obtained the value of the damping ratieom  expressed in plasma period units is about 60 and is indepen-
the fit of Fig. 8 in Sec. IV A. The dependence gfas a dent of the electron mean density.
function of the mean electron density is shown in Fig. 11, Several mechanisms can attenuate the oscillation. One of
together with the values obtained by simulatidppen tri-  them is the fine scale mixint:the frequency of the oscilla-
angles. At high electron densities10'” cm3), the damp-  tion depends on its relative amplitude. Electrons with differ-
ing is very slow(tens of periods due to the limited time ent equilibrium radii have different frequencies. After some
range we have used, the relative uncertainty of these lowime, crossings of electrons can occur and induce a damping.
values of y is large. When the density is lower With a maximum frequency shift of 5% at,= 10" cm3,
(<10 cm™3), the oscillation is damped in two or three pe- electrons should appear with opposite phases after at least
riods only. The solid line is a fit of the formA/n, that shows ten periods, which is five times longer than the observed
that y/wy. is approximately inversely proportional to the damping rate. Another possible mechanism is the thermal
electron density. convection: The density perturbation propagates at the group

This damping cannot be the signature of the ion motionvelocity v,=dw/dk, where w?= w§e+ 3k%v3,. Simulations
Indeed, the ion plasma frequency is 60 times lower than thenade in a preionized homogeneous plasma show a much
electron plasma frequency for a fully ionized helium plasmaslower attenuatioriten times slower than experimental re-

(a) (b
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= =15
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S 3 ’
& 2 512
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0 1000 2000 3000 4000 5000 6000
Time (fs) Time (fs)

FIG. 12. (a) Electron density at the laser focus as a function of radius and time obtained from thexadeBottom graph: tunneling ionized helium plasma
with N =5X10 cm™3. Top graph: preionized homogeneous fully ionized helium plasma mgth10'® cm™ and T,=50 eV. (b) Radial electron trajec-
tories at the focal plane versus time correspondingaioBottom graph: tunneling ionized helium gas. Top graph: preionized homogeneous fully ionized
helium plasma.
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FIG. 13. Solid line: ionization state calculated as a function of the radiusF|G. 14. Relative phase shift on the laser axis obtained from the warie

Dashed line: laser intensity profile used to calculate the ionization. in the conditions of Figs. ¥2) and 12b). Solid line with open circles:
preionized plasma witfi,=50 eV. Solid line with full triangles: tunneling
ionized gas withT,=50 eV. Dotted line: tunneling ionized gas wiff,
=0eV.

sults at 18° cm™3), indicating that neither the convection nor

the fine scale mixing can explain the observed damping rate.

A good agreement is only obtained by taking into ac-force and explains why the electrons come back in the

count the gas ionization as we have done in the Simulation§|asma later than in the case of an infinite p|asma_

in Fig. 11. Two simulations at.= 10" cm™* are presented A simulation of the relative phase shift oscillation in the

in Fig. 12a), one in a preformed homogeneous plastop  conditions of Figs. 1@&) and 12b) is presented in Fig. 14.

graph), and the other in a tunneled-ionized helium gast-  One can see the sinusoidal behavior of the phase shift and

tom graph. They show the electron density at the laser focakhe damping. We also added a curve corresponding to an

plane as a function of the radiugertical axi3 and time jonization without heatingT,=0). In that case the damping

(horizontal axi$. One can see the electron density oscillationjs a little bit slower than wheff,=50 eV (two times slower

around the laser axis. In the case of the tunneling ionizegt 103:® cm3) but still remains much faster than in a pre-

helium gas, the plasma exists only in a small region near theyrmed plasma.

laser axis (<15 um). A similar plasma edge effect has been observed in

The radial profiles of the laser intensity and of the cal-particle-in-cell (PIC) simulations by Bonnauét al?® in the

culated electron density at the laser focal plane are shown igase of an EPW excited in a planar geometongitudinal

Fig. 13. One can see the two steep density gradients corrg\WF) and in a cold plasma. This damping mechanism is

sponding to the two ionization stages of helium. The fully more important at low density because the electron excursion

ionized helium plasma has a radial extent of onlyr@. increases withsn, /n, which is larger at low densitycf. Fig.
The electron radial positions at the laser focal plane arg),

presented in Fig. 1B) as a function of time. At time 0, the
electrons begin to feel the ponderomotive force of the pump
laser pulse and move away from focus. After the !asgr puls&; coNCLUSION
the electrons are pulled back by the electrostatic field and
they oscillate at the plasma frequency. In the homogeneous We have performed the first detailed experimental study
plasma, this oscillation decreases quietly with time. In theof the electron density oscillation produced in the wake of a
case of a plasma created by tunneling ionization, the radidhser pulse. The electron oscillation is measured with a time
density profile of the plasma modifies the electron trajectoresolution much better than the electron plasma period, and a
ries: when it is pushed by the ponderomotive force of thespatial resolution smaller than the pump focal spot radius.
laser pulse, an electron close to the?Hele" interface can  The spatial shape and size of the perturbation agree with the
explore the Hé region or even the neutral gas. In theselaser wakefield linear theory. The laser wakefield quasireso-
regions, the electrons do not follow the collective motion ofnance is observed. Depending on the background electron
the EPW, they come back into the plasma after a few oscildensity, the relative density perturbation amplitude is be-
lations of the EPW. These electrons are not in phase with theveen a few percent and 100%. In the density range of our
EPW and destroy the oscillation. experiment, the damping rate normalized to the plasma fre-
This phenomenon can be understood as follows. In @uency varies approximately linearly with the radial relative
preformed plasma radially larger than the perturbation, wherlectron density perturbation. The damping time goes from
an corona electron moves away from the laser axis, a postwo periods at 5% 10" cm 3 (nonlinear oscillation ampli-
tive charge is created. This induces a restoring electrostatitide to tens of periods for densities above!16m™2 (linear
force which is proportional to the electron displacement: it isamplitudg. The simulations show that because the oscilla-
an harmonic oscillator at the electron plasma frequency. Ition is radial, electrons exit from the plasma and lead to the
the case of a radially limited plasma, when the corona elecdestruction of the plasma oscillation. In the nonlinear re-
tron leaves the plasma, the number of positive charges igime, the electron plasma frequency increases, as predicted
fixed by the plasma radius. This induces a lower restorindry Dawson in 195¥ for radial (cylindrical) oscillations.
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APPENDIX A: LASER WAKEFIELD LINEAR THEORY

A two-dimensional, nonrelativistic, analytical model of

the LWF process has been developed by Gorbunov and
Kirsanov? The electron motion is calculated by solving the

linear fluid equations:

AL
St eV V=0

av
meE: _eE+eV¢NL,

e
— — on,

€0

V-E=

where the electric field is related to the potentiap by E
=—-V ¢, and wherem,, e, andv are the electron mass,
charge, and velocitygg is the vacuum permittivityn,, is the
electron density at equilibriumin is the electron perturba-
tion (én<<ng), and ¢y, the ponderomotive potential associ-
ated to the laser pulse:

me (V650
e 2 '
which is equivalent to

|
~ 2ecn.

NL—™ ™

=

(vosc is the quiver velacity in the laser field,) denotes a
temporal average on a laser periddis the laser intensity,
andn, the critical density at the laser wavelengtBecause

or

T

f(7)=coq T)f fo(r")sin(7")dr’

—sin(r)fT fo(')cog 7' )d 7.

In the laser pulse wakerg-1), and iff is an even function,
this solution is

+ o

f(7)=—sin(7) j_ fo(7")cog 7" )d7'.

In the case of a laser pulse with a Gaussian temporal
profile, fo(7) = — exp(— 7%/ (wpeTo)?), We get

2
(wpeTO)

f(r)= ﬁ(wpero)exp( - T) sin(7).

If the radial envelope is also Gaussiaf(r)=(mc>/2€e)
X(v2./c?) ma@Xp(—r%/d?), the potential in the laser pulse
wake is(in real dimensions

2

o(r,z,t)=¢ ex;{ - %) Sin(wpet —Kp2) (A3)
with
mec? Ugsc WpeTo WpeTo
or
i {7

we are interested in time scales of the order of the electron he electric field can be obtained froff=—V¢, and the

plasma period, the ions can be assumed to be fixed. THlectron density perturbation from the Poisson lain
evolution of the potential is obtained by combining these=(€0/€)A ¢, or

equations: e € | 3 N 19 9
> 5 n=el\Ztva " a?
W—’—wpe d):_wped)NL! (Al) . . .
The electron density perturbation is the sum of two

where wp. is the electron plasma frequencwa)e terms: én=dn,+ én,. The first onesn, comes from the

=ngee%/Meeg. longitudinal oscillation of the electrons induced by the tem-
This equation can be solved in a cylindrical geometryporal profile of the laser pulse, while the second aim

assuming that the radiat and the temporalg—ct) part of ~ corresponds to the transverse motion induced by the radial

the ponderomotive potential can be separated:

OnL(r,Z,t) = do(r) fo(z—ct).
This implies

$(r,z,t) = o(r)f(z—ct).
In the dimensionless form, EGAL1) becomes
82
F'f’ 1

f(7)=—"fo(7), (A2)

profile of the pulse.

5n_A 1+( 2c \? L r2 r2
e A e |7 2] |9 2
X sin(w,e(t—2/C)), (A4)
where
A |\/; WpeTo WpeTo 2
S cBneme | 2 ex 2
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- FIG. 16. Solid line: typical spectrum of the frequency-domain interferom-
FIG. 15. The frequency-domain interferometry setup.

etry.
or 2. Theory
2 2
A521P(TW)<£) (“’peTO)eXF{_(‘”peTO) Let us consider a point along the entrance slit of the
o 2 2 spectrometer which is the image of a point of the object to
the studied. The electric field associated to the twin pulses
APPENDIX B: THE FREQUENCY DOMAIN can be expressed by
INTERFEROMETRY Lont .
o E (t)=Eg(t)e'?o" (first pulsg,
1. Principle

= — i wg(t—6t) _ iAg(t—5t)
Tokunageet al?® have demonstrated that the spectral in- Ea(t)=Eo(t—ot)e T(t—ét)e

terference of two twin ultrashort laser pulses can be used to (second pulsg

measure the temporal evolution of the refractive index of anWhere is the laser pulse frequency. and where we have
excited absorptive material. Geinde al?° added to this @o P quency,

. : : . . supposed that during the interaction, the probe pulse has un-
technique a one-dimensional spatial resolution and measuré ? . .
ergone a phase shift¢ and an intensity decrease charac-

the expansion of the critical density surface of a femtosecon Lrized by the transmission coefficiefit The frequency

laser-produced plasma with subnanometer spatial resolutiosr) ectrum in intensity is obtained by the Fourier transform of
and a sub-100 fs temporal resolution. TempGraand P Y y

spatiotemporaf*® measurements of the electron density os-Ne total electric field:

cillation produced by the laser wakefield process has been €oC )
performed with this technique. The principle of this (@)= [TF(Ey(t) +Ex(1)]".

frequency-domain interferometry of ultrashort laser pulses is o o ]
the following. If the transmission coefficient and the phase shitk¢ do

In the new method that we have developed, two collineaft evolve during the laser pulse, the intensity spectrum is
ident@cal laser _pulse;, overlapped in space, are createo_l by |(w):|0(w)[1+1—+2ﬁ cogwdt—A )],
sending a low-intensity short laser pulse in a Michelson in-
terferometer. The output pulses are separatedtbyfollow  Where
exactly the same path, and irradiate the object to be studied. €oC
The perturbation of the object can be done before the arrival |5(w)= > |Eo(@— wg)|?.
of the twin pulses, or between them, for example, by the
interaction with a high-intensity laser pulse. The interactionThe spectrum of the twin pulses has an envelope that is iden-
with the object modifies the relative phase of the twin pulsestical to the spectrunm (w) of a single probe pulse, but
After the interaction, the two pulses are sent in a spectrommodulated by a cosine functigof. Fig. 16. The fringes are
eter. By dispersing the pulse spectrum, the grating also tenseparated in frequency byr2 6t, so that the larger ist, the
porally stretches the two pulses, which makes them overlamore fringes are present in the spectrum. Their contrast de-
in time. Their temporal beating creates interference fringes ipends on the transmission coeffici@htand is maximum for
the frequency domain. The position of these fringes depend=1. One can obtain simultaneously the transmission coef-
on the relative phase between the pulses. The interactidiicient from the contrast of the spectrum and the relative
region is imaged on the vertical entrance slit of the spectromphase shift from the displacement of the system of fringes.
eter. The spectrum and so the relative phase are then spa- What makes this diagnostic very performable is that
tially resolved along the slit axigcf. Fig. 15. Let us note each point along the spectrometer slit corresponds to a com-
that because the object is irradiated by the far field of theplete system of fringes along the dispersion axis. The signal-
probe beam, relative phase shifts produced by defects on the-noise ratio is then strongly increasgatoportional to the
Michelson mirrors(near field are smoothed at the object number of points along a line of the detegt@nd the results
plane. are largely insensitive to the local defects of the detector.
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The phase information is extracted from the spectral do3. Error on the measured relative phase
tmhaln by callculatmg therllnverse Fourier transform @b). In Let us estimate the phase error made by neglecting the
e general case, one has termsG(at) andG(241):

FTH|FT(EL(t)+Ea(1)|?] IM{LA[FT Y 1()](6)]}=A ¢+ Im{Ln[1+u]},

=E1(D)®ET(—1)+Ex()®EZ (—1) where
+El(t)®E;(—t)+Ez(t)@)Ef(—t), (1+T)G(5t)eiwoé‘t G(Zét)eziwoé‘t
where® is the convolution product. u= JTG(0)e'2¢ G(0)e?2¢

Let us noteG(t') = (eqc/2)f T ZEq(t)ES (t—t')dt. This

autocorrelation function is centeredtat=0 and has a width Assumingu<1, one gets

of the order of the prlobe.pulse duratien. (1+T)G(8t) . -
If T andA¢ are time independent, then dm(S)~Ad+Im \/TT(O) gl(@odt=44)
FT 1 1(@)](t")=(1+T)G(t")e'wo"

; 'S a—iA +@e2i(w0mfA¢)
+\T[G(t' + ot)el oot + Mg-ise G(0) '
+G(t' — ot)elwolt ~dgidd] which gives for a small phase shift

Taking the inverse Fourier transform equal at the tithe (1+T)G(8)
= 8t, one gets dm(St)~Ad+ \/TT(O) Sin wqot
FT H1(w)](8t)=(1+T)G(t)e'“o®
. . G(26t)
+\TG(26t)e'2@0del2¢ + (;(O) sin Zuoﬁt]
+\TG(0)e'2. 1+ T)G(a0
If the probe pulse duration, is much smaller than the probe - —=_—— COSwyot
pulses separation (< ét), the dominant term isG(0) ﬁG(O)
=(€0C/2)[ T2 Eo(t)|?dt which is the integralreal) of the G(261)
reference pulse intensity. The phagg(édt) att= 6t of the +2——~ cos 200&1_
inverse Fourier transform of the spectrum in intensity is then: G(0)

IM{TF I(w)](8t)} An advantage of having a spatial resolution is that the phase

Re[TF 1[I (w)](&)}} ~A¢. shift is obtained by subtracting from the phase measured in a
perturbed regiorfaround the laser axisthe phase of an un-

If A¢ andT vary in the laser pulse temporal envelope, thenperturbed regior(far from the laser axjs In that case, the

dm(St)= arcta+

the dominant term at' = ot is second term of the above expression is subtracted, and one
o gets:
FT Y ot ~f Lo()VT(t)e'4¢Mdt,
(@180~ | 10T  roagl TS
~ —————Cosw
wherel o(t) = Eq(t) EX (1). § VTG(0) °
One then gets
G(24t)
TTE6(0)VT(1) siAg(t)]dt ~2-Gg) 05 2odt .
dm(ot)~arcta - \/_ .
[ ==to(WNT(1) cog Ad(t)]dt In the case of a Gaussian laser pulggy(t)=E
For a small phase shifiN¢<1), xexp(— (t/71)?/2), one gets
TEo(H)VT(H)Ag(t)dt 1+T
ooty Il WTDAG(ndE oo~ 1 T e v og o
[E2la(NT(Ddt VT

If the two probe pulses are temporal Dirac functions, ,
then the measured phase is exactly the relative phag¢). —2e” " cos 2wt
The finite duration of the pulses induces a smoothing of the
information: the measured phagg,(6t) is the temporal av- For T=1, the maximum relative error on the phase is smaller
erage of the phase shit¢(t) weighted by the intensities of than 1% fordt~37;. In the experiment presented in this
the pulsedy(t). In the case of Gaussian laser pul§es(t) article, the pulse separation was adjustedtte 1.5T ... The
=1 max€Xp(— (t/71)?)] in an electron plasma waye ¢(t) pulse duration was;~ 95 fs, so that the phase relative error
= A prmaxSin(wpd)], and assumingT(t)~1, the measured was smaller than 5% fom,<2x 10" cm 3, which was al-
phase ism(St) ~ A prax €XP(— (wpeT1/2)?). ways the case.
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A more realistic calculation taking into account the time The detector noise can be writtenBs B,,+ 6B. The aver-
dependence oA¢ and the limited width of the recorded age noiseB,, has been measured on the CCD without laser
spectrum(CCD chip sizg increases this relative error to less signal: it is the same for all the pixels. The stochastic vari-
than 15% forn,<2x 10" cm3. So, in our case, these ef- able 5B satisfies(sB)=0. This leads to
fects are not limitative at all.

o?(Ap)=

1 2
ﬁe<0>)

4, Noise sources on the measurement of the relative
phase X

N/2 2

Sw Y, 5B(m6w)sin(m5w5t—A¢)) >

=—N/2
The shot-to-shot fluctuations of the spectrum recorded "
on the CCD and oft can induce a phase error. If we assumelf we assume that the pixels are not correlated and that the
that the pulse spectrum does not depend on the position icise does not depend on the signal on the pixel, then
the beam, then we can take the reference in a nonperturbed 2

) L. Sw
region of the probe beam and these errors are eliminated. UZ(Aq;)Z( )
This is an other advantage of having a spatial resolution. VTG(0)

Anyway, each measure is obtained from the averaged N/2

>< < > ,

spectrum of 40 shots. This procedure reduces drastically the 2 SB2(Méw)sir(Mdwdt— A )
stochastic noise coming from the laser fluctuations. We have m=—N/2
measured the rms of this noise: it is around 5 mrad without
averaging, and it decreases to 0.5 to 1 mrad with a 40 shot
averaging. In fact, the rms is yet at this value when we op-
erate only a 20 or a 30 shot averaging. Consequently, there is
another noise source which prevents us from improving our ) ( )2 )
signal-to-noise ratio. o (Ap)=| =_——| 5 (6B%(w)).
, . . JVTG(0)) 2

The second noise source is the dete¢@ED) noise. At
each position on the spectrometer slit, the detected signalsing the fact that
S(w) is the laser signdl(w) plus a background noid(w), N/2

so that G(0)~dw 72,\”2 I(Mdw)=SwNIy,,
Im{In(ET~ [ S(w)](81))} e

FT_l[B(w)](ﬁt)H
FT TI(w)](8t) )]

o (AD)=

2 N/2
5—“’) %< D 5BZ(m5w)>,

JTG(0) m="Ni2

we finally get

=¢m+ImiiIn{ 1+

Ad)= 1 o(B)
O-( ¢)_\/m Iav,

If the CCD noise is much smaller than the laser signal, and

assumingg,,~A ¢, the detected phasg, is whereo?(B)=((B—B,)?).
FT-1B(w)]() This phase noise can be decreased by working close to
bg~Ap+Im - @ } the saturation of a high-dynamic CCD camerg) and with
FT {1(w)](ot) a large number of pixelsN). It does not depend on the

number of fringes. With our 16 bits CCD cameids=512,
o(B)~7 counts. The average signal is arounck T
1 +oo counts, so that the phase noise coming from the camera is of
da~Adp+ TG0 f B(w)sinwdt—Ag¢)dw. the order of 102 mrad, indicating that the measured noise
(0) J == (of the order of 0.5 to 1 mrads not coming from the detec-
Experimentally, the signal is sampled on tRepixels of the  tor.
CCD camera. Let us notéw the frequency step of the sam- ~ Another source of phase noise is coming from the de-
pling, the inverse Fourier transform is then fects of the spectrometer slit. This one is imaged on the
frequency plangCCD chip. Each point of the slit corre-
1 i sponds to a system of fringes. If the slit is not quite vertically
ba=Ad+ JTG(0) 5“’m:2_N/2 B(mdw)siiméwdt—Ad).  giraight, the fringes are not straight either. A horizontal de-
fect 6x on the slit induces a translation of the system of
If we note o(A¢) the standard deviation of the phase, fringes, which gives the same result as a phase §hift

o*(Ag)=((Ad—q)?), we have de

2 Sp=
) wheredw/dx is the frequency dispersion of the spectrom-
N/2 2 eter. This phase noise increases wsthwhich means with
Sw Z B(MSw)sinmdwst— A ¢) _ the number of_ fringes. This dependence on the number of
m=—N/2 fringes is confirmed by our measurements of the noise rms

or

N/2

5t1

o*(Ag)=

1
JTG(0)

.
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with different 8t. In our experiment, dw/dx~4.1  cal probing, and plasma temperature into account and a
% 10" rad s L mm~L. With 8t=750 fs(corresponding to an Vacuum propagation code calledace for ultrashort laser
electron density n,=5x10"cm™3 and ox=1 um, Pulses.
one getsdg~3 mrad. First the codewakE simulates the interaction of a very
Our measurements are made without changingf the intense pump laser pulse with the gas medium and the action
slit does not move, the systematic phase noise coming frorfif the varying medium on a pair of probe laser pulses. The
the slit defect is the same from shot-to-shot and can then bePatial regions covered by the simulation being typically of
eliminated by making a reference shot. The method we us&o™me Rayleigh lengths, the laser pulse distributions worked
keeps contributions from the vibration of the slit: high- OUt by WAKE belong to an intermediate-field region. The ac-
frequency vibrations %1 Hz) coming from the vacuum tual frequency-domain interferometry being performed
pump system are smoothed by the 40 sidos) averaging, most qptical diagnostias'n the near-field region, a second
but low-frequency position shifts of the slit are not elimi- humerical code is needed for the propagation of the probe
nated and contribute to the background noise. pulses through the optical collecting system and up to the
A modification A(8t) of 8t is equivalent to a phase spectrometer. The vacuum propagation cngesE has been
modification 8= woA(St). In our experimentwo=4.7 conceived for broad spectrum waves such as ultrashort
X 10® rad %, so that a variation of 1.3 fs oft is equiva- ~ PUlSes. . . _ _
lent to a phase shift of 2 However, the spatial resolution We recall in the following the main features of the simu-
along one direction allows us to get rid of it: the calculatedlation codewAkEe (more details on the structure of the algo-
phase shift is obtained for each CCD image recorded byithm can be found in recent specific pagers) and we
comparison with a reference line on the CQinperturbed ~describe the propagation code:GE. At the end of this sec-
fringes. tion the wave propagation algorithms of the two codes are
The number of photonBl,, follows a Poisson distribu- compared and discussed.
tion so that its standard deviation on the CCD camera i wake interaction code
a(Ny) =Ny, The ratio betweem,, and our correspond- , , _ _
ing CCD counts is of 6 photon@t 0.4 um) for 1 CCD ~ WAKE is a 2—.D partlclg code that can be us_ed in cylin-
count. If we expres(w) in CCD count units, then the pho- drical as well as in Cartesian geometry. Its algorithm is based

tonic noise on each pixel isph(l)z(ll\/é) JI. Assuming  UPOn three approximations: the ponderomotive and quasi-

noncorrelated pixels, this photonic noise leads to the foIIow-SE)atIC approximations and an extended paraxial approxima-

ing phase standard deviation: tion

s N2 Electron trajectories are governed by the ponderomotive
) 1 Sw ] force of the laser field and the self-consistent electric and
op(Ag)= 5 (m) mZZN/Z l(Méw)sinf(méwdt magnetic fields of the plasma wake. Within this approxima-
tion, their low-frequencyi.e., plasma frequency bandom-
—A@). ponents can be obtained by integration of the motion law
As the square of the sinus function is overestimated by 1,
one can easily deduce that d _ — Vv e’ —_
—p=—el E+-0B| - ——V|A,|?
dt c 2ym.C

1
opr(Ap)s ———.
NE6TNIay where the bar quantities are the low-frequency band compo-
With our experimental parameters, this noise is lower thaments,p is the momentumy is the velocity,E and B are,
0.1 mrad and is not so limitative. This photonic noise can bgespectively, the electric and magnetic fields, ands the
reduced by increasing the number of probe photons on thBigh-frequency band component of the vector potential. The
CCD. guasistatic approximation consists of assuming that the form
of the laser pulse, and consequently that of the wakefields,
does not change significantly during the time it passes over
This diagnostic allows one to detect phase shifts withindividual electrons. Electron motion is then defined by this
on-live spatial resolution, and with a precision under theequation together with the definition of the high-frequency
mrad. The main limitation of this detection seems to comecomponent of the momentum
from the spatial quality of the spectrometer slit, and from the
control of its vibrations.

5. Conclusion

~_e%
P=s

APPENDIX C: THE CODES wAKE AND IMAGE
and of the average Lorentz factor

The simulations we show this paper are obtained with a
special numerical toolkit made up of two codes. These are a
= \/ 1+

[PI2+ (elc)?Al2

laser-plasma relativistic interaction code calle@dke, re-
2-2 '
mec

cently modified in order to take gas ionization, plasma opti-
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Pulse propagation is solved in an extended paraxial approxthermal equilibrium distribution at a given temperature. This

mation, realized by introducing the variabfe=ct—z, and temperature is arbitrarily set by an external parameter of the

by separating the laser vector potential into a complex amsame order of the average ionization potential.

plitude modulating a plane wave 5 .
. IMAGE propagation code

A(r,é,2)=A(r,§,2)explikoé) +c.c., IMAGE is a spectral code for the propagation of electro-

wherek, is the central wave number of the laser pulse. Thehagnetic waves in vacuum. With the spectral components of
evolution of the amplitude is obtained by dropping thethe waves being treated separately in the paraxial approxi-

highest-order term in the wave equation. This gives the equa[pation, the narrow spectrum condition is not required. Three

different transformations of the wave are taken into account

tion
by the code, namely the propagation from the interaction
5 .0 3\ . B w,ZJ A region up to a collecting lens, the modifications of phase and
Vi+2iko 5_2 agaz)” T yc? A, (€D amplitude due to the interaction with a finite size collecting

) ) _ _ lens, and the final propagation from the lens to the output
wherew,, is the classical plasma frequency. The ratigy  screen.

tories. o o ~wave is the paraxial approximation of the Kirchhoff—Fresnel
lonization of the gas medium is included in this versionjniegra)33

of the code. In the regime of pulse durations and intensities

of interest, tunneling ionizatioA>! is dominant. lonization ~ ko explikoz) oor? -~

rates are given by this model for any atomic ion. The for-  A(NzD=5—————exg iko 5~ f fA(r 01)

mula for the tunneling ionization rate in terms of the ampli-

tude E of the wave electric field is A
Xexp ikg 57

12 XX’+ ’
iko Yy

dx’ dy’,

o @Ena+mt g
R = 0aCo ST T[T ey

(279)2"* ~Iml=1 o o .
where the origin for the longitudinal distanzés taken at the

input plane of the propagation. For a narrow spectrum wave,

Xexp(— 5 7), a phase and a slowly varying amplitude can be separated as
where n
e |92 E,, A(r,z,t)=A(r,£,2)exp —ikod) +c.c., (C2)
n= « E

where we have introduced the spatial varialfle z—ct

is the normalized electric field; is the ionization potential, =—§. One then obtains the transformation law for the
| andm are the initial angular momentum quantum numbersslowly varying envelop

of the ion, n* is the effective final main quantum*

; 2
=Z\eyl€;, Z is the ionic charge after ionization, amrf* A(r,g,z)= k_f{w f f A(r’,g,O)
=[2 exp(L)h* ™ /\27n*. The constantss, and E, being, 2! z

respectively, the typical atomic frequency and field, are ' xx tyy
wa=4.16x10% st and E,=5.142<10° V/cm. Xexp(lko 57 1Ko dx’ dy’.

In the code, rates are used to compute the probabilities
of ions to emit a number of electrons in an elementary time (C3
step. By recurrence one can show that the probability within
an intervalA¢ for a decay withn-electron emission is given
by the formula

When the spectrum of the wave is not narrow, even if

the definition of a main phase as in formy@?) still applies,

the slowly varying amplitude approximation is lost and the

exp(—R;(A&/c)) transformation law(C3) becomes incorrect. In this case the
integral (C3) must be applied to every spectral component

separately. After recombination of the spectral components,

where thekth ionization rate at the local value of the electric ©ne obtains for the propagated wave

field has been indicated B . Electrons are then emitted by .

a Monte Carlo procedure in agreement with these probabiIiA(r'g'Z)

ties.

n

Pse=COlL e 2 e R Ry

2
Because of the interaction with the electric field of the = %2% J exp —ik{) (Kot K)exr{i(k(ﬁ— K) %}
laser wave during the ionization process, electrons are given
an initial transverse low-frequency drift according to a dis- _ xx'+yy' r'?
tribution. According to some theoretical resuitshe aver- XJ j ex;{ —ilkot &) ————Filkot k) o

age initial energy of the free electrons is very close to the
ionization potential. In the cod&AKE electrons are injected

in the medium with a random initial energy belonging to a Xf explixd)A(r',Z",0)dl dx’ dy” d«.
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Since for the simulations shown in this paper we as-
sumed rotational invariance around the optical axis for both
the matter and the radiation distributionsthe above inte-
gral can be simplified. After integration over the rotation One can state that ea&g+ « spectral component of the in-

angle, the above transformation can be written as tegral (C4) is a solution of the corresponding spectral com-
ponent of the paraxial wave equation. The inted@d) is

then a solution of the extended paraxial approximation of the
wave equation in a vacuum.

o This means that the two cod®@ske and IMAGE solve
Jo[i(ko+;<) _} the same equatiofiCl). The approximation of the whole

z toolkit is then well defined and corresponds to a frequency-
by-frequency paraxial approximation.

VZ+2i(kot &) % FIA(r',¢,2)](x)=0

r2

A(r,0,2)= 1F1[(k0+x)ex+(ko+x) —

(2m)?iz 2z
r/2
Xf r’ exp{i(koﬂLK) 57

XF[A<r',§,0>]<K>](§>, (C4
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