
PHYSICAL REVIEW E AUGUST 1998VOLUME 58, NUMBER 2
Route to chaos for a two-dimensional externally driven flow
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We have numerically studied the bifurcations and transition to chaos in a two-dimensional fluid for varying
values of the Reynolds number. These investigations have been motivated by experiments in fluids, where an
array of vortices was driven by an electromotive force. In these experiments, successive changes leading to a
complex motion of the vortices, due to increased forcing, have been explored@Tabeling, Perrin, and Fauve, J.
Fluid Mech.213, 511 ~1990!#. We model this experiment by means of two-dimensional Navier-Stokes equa-
tions with a special external forcing, driving a linear chain of eight counter-rotating vortices, imposing stress-
free boundary conditions in the vertical direction and periodic boundary conditions in the horizontal direction.
As the strength of the forcing or the Reynolds number is raised, the original stationary vortex array becomes
unstable and a complex sequence of bifurcations is observed. Several steady states and periodic branches and
a period doubling cascade appear on the route to chaos. For increasing values of the Reynolds number, shear
flow develops, for which the spatial scale is large compared to the scale of the forcing. Furthermore, we have
investigated the influence of the aspect ratio of the container as well as the effect of no-slip boundary condi-
tions at the top and bottom, on the bifurcation scenario.@S1063-651X~98!07008-1#

PACS number~s!: 47.20.Ft, 47.27.Cn, 47.54.1r
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I. INTRODUCTION

The transition to chaos from simple laminar flow to ch
otic flow is a fascinating phenomenon in nature. Sophi
cated experiments with better diagnostics have been set u
study this transition, with the aim of obtaining a better u
derstanding of the underlying mechanisms. From the theo
ical viewpoint, bifurcation theory provides a proper fram
work to describe and classify these instabilities. In a serie
papers, the linear stability of two-dimensional Navier-Stok
flows with different geometry@1–6# has been investigated
The application of bifurcation methods to the Navier-Stok
equations~NSE!, which go beyond a linear stability analysi
is a relatively new area of research, and hitherto has o
been applied to the simplest flows, like the so-cal
Kolmogorov-flows@7–14#. The objective of the present pa
per is to apply methods of nonlinear dynamics to investig
the qualitative behavior of the two-dimensional NSE, driv
by an external forcing, which can be used as a model
experiments performed in Refs.@15–18#.

In these experiments the transition to turbulence in a
ear chain of electrically driven vortices was studied. By
creasing the Reynolds number, which was controlled by
strength of the applied current, variation in the spatial str
ture and temporal evolution of the flow was explored. Mo
vated by these experiments, numerical calculations of
two-dimensional NSE were performed in Refs.@19,20#. The
formation of large scale shear flow patterns, which could
interpreted as a consequence of the inverse energy casca
two dimensions, was observed in these theoretical invest
tions, in agreement with the experiments. Independently,
kamura also studied the transition to turbulence for suc
linear vortex array but using a slightly different model@21#.
He imposed no-slip conditions for the lateral boundaries,
introduced an additional friction term modeling the influen
of the bottom. These investigations are aimed as compa
PRE 581063-651X/98/58~2!/1927~6!/$15.00
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the numerical results with the experimental observations
scribed in Ref.@22#. An analytical approach to model thes
experiments was proposed in Ref.@23# using the Mallier-
Maslowe vortex street@24# as an exact solution of the Eule
equations. The authors estimated its stability both for
ideal and viscous situations, and discussed their result
relation to the experimental observations.

The purpose of the present paper is to continue the st
of Guzdaret al. @20#, but for the case of eight driven vorti
ces. As a model we have used the two-dimensional NSE w
periodic boundary conditions in the horizontal direction, a
stress-free boundary condition in the vertical direction.
should be noted that the idealized two-dimensional mo
cannot capture all details of the experiment mention
above, but it can demonstrate typical features of fluid d
namics on its route to chaos. The goal of the present pap
to examine the qualitative changes employing special bi
cation techniques. In Sec. II, we introduce the basic eq
tions and explain the forcing term, modeling the Loren
force applied to the electrolyte in the experiments. Then
Sec. III, we start our investigations imposing stress-f
boundary conditions at the top and bottom. We present
bifurcation scenario on the route to chaos, and describe
corresponding qualitative changes of the flow. In Sec. IV,
study the variations of the bifurcation structure and the
sulting dynamics, using no-slip boundary conditions inste
of the free-slip conditions. Finally, Sec. V gives a short d
cussion about the practical importance of the theoretical
sults, and provides arguments for the necessity to extend
model to three dimensions.

II. BASIC EQUATIONS AND NUMERICAL METHODS

To model the experiment of Tabeling, we have used
two-dimensional NSE with an external forcing which im
tates the Lorentz force due to the current flowing through
1927 © 1998 The American Physical Society
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1928 PRE 58R. BRAUN, F. FEUDEL, AND P. GUZDAR
electrolyte in a plexiglass cell, with an array of alternati
north and south pole magnets at the bottom of the cell.
start with the incompressible NSE in the rescaled form

]v
]t

1~v•¹!v5¹2v2¹p1f, ~1!

¹•v50, ~2!

wherev is the fluid velocity field,p is the thermal pressure
and f represents the external force which is chosen to be

f5 f S sin k1x cosk2y

2cosk1x sin k2yD . ~3!

To obtain the NSE in the nondimensional form of Eqs.~1!–
~3!, a rescaling transformation to the typical length and ti
scales, which can be found explicitly in Ref.@14#, has been
applied. The two constantsk1 andk2 in Eq. ~3! are fixed to
k158p/Lx andk25p/Ly , thereby driving an array of eigh
counter-rotating eddies on the setV5@Lx ,Ly#. By means of
a further rescaling transformation, the lengthLy can be nor-
malized top, and there remain only two free parameters
the equations. They are the horizontal lengthLx and the
strength of the forcingf, which is in turn related to the Rey
nolds number. For weak forcing, the termf in Eq. ~1! can be
evaluated to be equal to the Laplacian term. Hence the R
nolds number can be estimated to be Re' f . For strong forc-
ing, on the other hand, this term is approximately balan
by the convective term, and it turns out that Re' f 1/2 @25#.
For the sake of simplicity we consider periodic bounda
conditions for the velocity field in the horizontal directio
v(x,t)5v(x1Lx ,t), but impose both stress-free and no-s
boundary conditions at top and bottom of the tw
dimensional fluid, with the aim of studying their influence o
the bifurcations.

In our numerical computations we did not directly int
grate Eq.~1!, but rather the corresponding equation for t
vorticity v5¹3v. By restriction to two spatial dimensions
this equation reduces to one scalar equation for the only n
vanishing componentv5vz of the vorticity:

]v

]t
1~v•¹!v5¹2v1 f ~k11k2!sin k1x sin k2y. ~4!

Successive bifurcations of an array of counter-rotat
vortices, produced by the external forcing in the form of E
~3!, will be analyzed by changing the scalar control para
eterf. This is the essential bifurcation parameter in our st
ies. In other words we will study the transition from a simp
motion to chaotic dynamics of the fluid for increasing valu
of the Reynolds numbers, both for stress-free and no-
boundary conditions, as well as for different aspect ratios
the driven cells, determined by the second free param
Lx .

For the case of stress-free boundary conditions,

]vx

]y U
y5y0

50, vy~x,y0!50 for y050, Ly , ~5!
e

e

y-

d

n-

g
.
-
-

s
ip
f
er

which in turn impliesv(x,y0 ,t)50, we have used a pseu
dospectral code based on a Fourier expansion of the vort
in the form of

v5 (
kx ,kyPZ

v̂k~ t !eikxx sin~kyy!,

k5~2pkx /Lx ,2pky /Ly!. ~6!

Inserting this Fourier ansatz into Eq.~4! leads to an infinite
system of ordinary differential equations~ODE’s! for the real
and complex components of the Fourier componentsv̂,
which has been studied numerically by a finite-dimensio
truncation using a pseudospectral code with a resolution
64332 gridpoints.

Besides the pseudospectral code, we have used a fi
difference code with the same resolution, mainly to study
dynamics for the no-slip conditions, but also to cross che
the results for the stress-free boundary conditions for wh
the finite-difference code can be easily modified.

III. BIFURCATION SCENARIO FOR STRESS-FREE
BOUNDARY CONDITIONS

In this section we present a detailed bifurcation analy
of Eq. ~4! for the case of stress-free boundary conditions
the transverse direction, and for a fixed aspect ratio given
the conditions,Ly5p andLx54p. To find out the qualita-
tive behavior of the solutions, we have applied bifurcati
techniques on the truncated finite-dimensional system
ODE’s for the Fourier coefficientsv̂k . For instance, the
steady state branches have been traced as a function o
bifurcation parameterf by means of a special continuatio
program. Simultaneously, the eigenvalues of the Jacob
matrix were calculated in order to detect bifurcations, wh
some eigenvalues cross the imaginary axis.

For a small forcing, i.e., for small values off, the array of
eight counter-rotating vortices@see Fig. 1~a!# is the only
time-asymptotic state. Here only the forced modes are
cited, and the solution of Eq.~4! can be expressed analyt
cally in the form of

v~x,y!5
f ~k11k2!

k1
21k2

2
sin~k1x!sin~k2y!. ~7!

Increasing the strength of the forcing, this primary stea
state loses its stability producing a secondary steady fl
with a shear component. The formation of the shear flow w
already described in detail by Guzdaret al. for the case of
four driven vortices@20#. This secondary steady state bran
consists of four corotating vortices and a shear compon
which are separated by heteroclinic lines connecting the
perbolic fixed points of the flow@cf. Fig. 1~b!#. Tracing this
secondary steady branch, a further pitchfork bifurcation ta
place. It creates tertiary steady states, for which the shap
the flow is changed, such that the middle points of neighb
ing corotating vortices are shifted up and down. This bran
is only stable within a small interval of the bifurcation p
rameterf, and is finally terminated by a Hopf bifurcation.

A complete overview on all solution branches which w
found is compiled in Table I and presented schematically
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Fig. 2. The three steady state branches described abov
labeled here as Steady I, Steady II, and Steady III, resp
tively.

The Hopf bifurcation at Steady III produces a period
solution branch Period I, for which the streamlines are s
ject to a complex reconnection process. In Figs. 3~a!–3~f! the
contours of the streamline portrait are plotted at a few
stants of time during a period. This helps to visualize
time evolution of the velocity field. For most of the time, th
pattern consists of two pairs of combined eddies which
separated by slender vortices as presented in Figs. 3~a! and
3~f!. A rapid reconnection process, demonstrated in F
3~b!–3~e!, transforms both of the states, quasistable in tim
into one another. For increasing Reynolds number the b
of attraction of this periodic branch shrinks and finally d
appears forf 554.7.

As seen in Fig. 2, for higher Reynolds number, anot
branch dominates the dynamics of the system. So we h
found a further steady state~Steady IV!, partly coexisting
with the periodic branch Period I. Its streamlines are dra
in Fig. 1~d!. This steady state ends up again in a Hopf bif

FIG. 1. Streamlines of the steady state branches:~a! Steady I
( f 526.7),~b! Steady II (f 543.3),~c! Steady III (f 544.7), and~d!
Steady IV (f 5100.0).

TABLE I. The different solution branches.

Branch Stability interval Remarks

Steady I f ,29.7 eight counter-rotating vortice
Steady II 29.7, f ,43.7 four corotating vortices
Steady III 43.7, f ,45.7 four tilted vortices
Period I 45.7, f ,54.7 created by a Hopf point
Steady IV 47.7, f ,106
Period II 106, f ,227
Period doubling 227, f ,240
Chaos 240, f
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cation creating the periodic branch Period II, which in tu
undergoes a period doubling cascade leading finally to ch
In Figs. 4~a!–4~c!, the projection of the trajectory onto th
real parts of certain Fourier modes are depicted for the or
nal periodic orbit and for the orbits after the first two perio
doublings. The final chaotic attractor, projected in this su
space, is shown in Fig. 4~d!. To verify that the state is truly
chaotic, we have calculated the largest Lyapunov expon
for selected values of the bifurcation parameter, using
algorithm developed by Shimada and Nagashima@26#. Fig-
ure 5 shows, forf 5245, the cumulative values of the fiv
largest Lyapunov exponents as a function of the integra
time. It demonstrates the good convergence of the algorit
and reveals that one of the exponents is positive. This pro

FIG. 2. Schematic bifurcation diagram.

FIG. 3. Snapshots of streamlines belonging to a periodic s
tion ~Period I! at different time points.
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that for this value of the forcing parameter, the state is ind
chaotic. The streamline portraits of the upper branches of
bifurcation diagram in Fig. 2 are much the same, and
structure of the corresponding velocity fields are compara
to that of Steady IV as in Fig. 1~d!, varying only weakly in
time, even for the chaotic state.

To study the influence of the aspect ratio on the bifur
tion, we have modified the horizontal lengthLx of the box to
3p and to 5p. In both cases we have found the same bif
cation scenario as described above. We conclude that
bifurcation structure is relatively insensitive to changes
the aspect ratio. Only the bifurcation points are shifted
higher values of the forcing parameter for a smaller value
Lx , and they shift to lower values of the forcing parame
for larger values ofLx .

FIG. 4. Projection of the trajectory onto the real parts of t
modesk5(0,1) andk5(0,2) in the period doubling cascade on th
route to chaos for~a! a periodic orbit~Period II!, ~b! an orbit after
first period doubling,~c! an orbit after second period doubling, an
~d! a chaotic attractor~Chaos!.

FIG. 5. The five largest Lyapunov exponents vs integration ti
for f 5245.
d
e
e
le

-

-
he

o
f
r

IV. COMPARISON WITH NO-SLIP BOUNDARY
CONDITIONS

In this section we report on bifurcations when no-s
boundary conditions are imposed at the top and bottom
our computation box,

v~x,y0 ,t !50 for y050, Ly . ~8!

The lengths of the computation box have been chosen, a
Sec. III, to beLx54p andLy5p, respectively. We are in-
terested in the influence of the boundary conditions on
bifurcation behavior in general, even though the bound
conditions that were realized in experiments performed
Tabeling, Cardoso, and Perrin are nearly stress free@16#.

For a small forcing strength the only stable solution, s
isfying the no-slip boundary conditions, is again the flo
consisting of eight counter-rotating vortices@cf. Fig. 6~a!#. In
contrast to the case of stress-free boundary conditions,
no-slip conditions have a stabilizing effect on this prima
steady state, which loses its stability for a much higher va
of the forcing parameter,f 5138. In the vicinity of the bifur-
cation point the changes of the streamlines are very sim
to the stress-free boundary conditions, and, as describe
more detail by Guzdaret al. @20#, every alternate vortex is
compressed compared to its neighbor. But, due to the no
boundary conditions, no shear flow has been created, and
secondary steady state branch finally settles down t
streamline portrait very similar to the one presented in F
6~b!. Tracing this branch for larger forcing, a further pitc
fork bifurcation leads to a tertiary steady state for which t
center points of neighboring vortices are shifted into opp
site directions away from the horizontal center line of t
fluid region @Fig. 6~c!#. Again the situation is analogous t

e

FIG. 6. Streamlines of the steady state branches:~a! primary
steady state (f 5100), ~b! secondary steady state (f 5170), ~c! ter-
tiary steady state (f 5180), and ~d! additional steady state (f
5250).
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that of Steady III in Table I. This branch in turn ends up in
Hopf bifurcation atf 5188, producing a periodic solution.

It is not the intention of this section to determine all t
bifurcation points exactly, but just to study the qualitati
behavior of different bifurcations in comparison to the ca
of stress-free boundary conditions. Similar to the bifurcat
diagram in Fig. 2, the periodic branch is only stable for
certain interval of the forcing parameter and another ste
state, at first coexisting with the periodic solution and fina
forming the global attractor, appears. The correspond
streamline portrait is presented in Fig. 6~d!. This branch is
comparable with the upper branch~Steady IV! in Fig. 2 but
its solutions does not show the dominating large scales
shear flow as in the case of stress-free boundary conditi

For increasing values of the strength of the forcing, qu
tative changes of the flow occur, which are different fro
those bifurcations observed in the case of stress-free bo
ary conditions. In Figs. 7~a!–7~e! the time history at one
spatial location point is plotted with the aim to identify an
classify the different dynamical regimes. The first bifurc
tions, namely, a Hopf bifurcation leading to a periodic so
tion @cf. Fig. 7~a!#, which is followed by a period doubling
bifurcation, presented in Fig. 7~b!, are still the same as in th
scenario described in Sec. III. But for larger values of
forcing parameter a large time scale modulation of the a
plitude, first observed atf 5287 in Fig. 7~c!, has an essentia
influence on the subsequent nature of the route to chaos.
slow modulation frequency could be a result of a second
Hopf bifurcation, but might also be a consequence of a

FIG. 7. Time history of the vorticity at a spatial location poi
x50, y5p/2 for ~a! f 5277, ~b! f 5282, ~c! f 5287, ~d! f 5296,
and ~e! f 5350.
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generate bifurcation, producing traveling-wave-like so
tions. By a further increase of the forcing strength this s
ond frequency becomes a bit larger, and the time history
the amplitude looks much more like a generic torus solut
@cf. Fig. 7~d!#. As seen in Fig. 7~e!, the motion eventually
becomes more and more irregular, and we conjecture a t
sition to chaos via a torus destruction, another well-kno
route to chaos@27,28#. But the final proof of the chaotic
nature of the attractor, by calculation of the largest Lyapun
exponent, at present remains work for the future. We
going to develop a separate code using Chebyshev pol
mial expansions in the vertical direction for a better tre
ment of the no-slip boundary conditions. This will allow u
to cross check the resulting dynamics with those obtai
from our finite-difference code, and will also allow us
compare the routes to chaos with the two codes.

V. DISCUSSION AND CONCLUSION

Motivated by experiments of Tabeling and co-worke
@15–18#, we have investigated the bifurcation scenario fo
chain of eight externally driven vortices in a two
dimensional Navier-Stokes fluid by increasing the strength
the forcing, which corresponds to an increase of the R
nolds number. According to the experimental setup, stre
free boundary conditions at the top and bottom are appro
ate to model this experiment, and, in our studies, we h
mainly focused on this case. We found a complex bifurcat
sequence including a period doubling cascade, which le
finally to a temporally chaotic motion of the velocity field. A
direct comparison of the numerical results with the expe
ments is only possible for the first pitchfork bifurcations. T
bifurcations experimentally observed for higher Reyno
numbers depend strongly on the thickness of the fluid lay
and this three-dimensional effect cannot be modeled by
two-dimensional NSE used here. For a more extensive
cussion, we refer to a companion paper in Ref.@20#. Other
essential features, such as the appearance of large scale
dominating the dynamics at a higher Reynolds number,
in good agreement with the observations. Also, for vario
magnet configurations~four, six, and eight!, for large forc-
ing, the experiments of Tabeling and co-workers have sho
a clear indication of the period-doubling~subharmonic! route
to chaos, cf. Ref.@16#. To obtain a more detailed agreeme
between experiment and numerical bifurcation analysis, b
the three-dimensional effects and the different boundary c
dition in the direction of the array of vortices need to
considered. We have assumed a periodic boundary condi
However, in the actual experiment, the region beyond
driven vortices is open. In preliminary investigations,
studying the influence of the bottom friction, we showed th
this stabilizing effect shifts the bifurcations to higher valu
of the Reynolds number but that the qualitative features
the dynamics survive, at least for moderate Reynolds nu
bers @29#. We conclude with this discussion that even wi
our very idealized simulations we have captured many in
esting features observed in the experiments.

The influence of no-slip boundary conditions on the bifu
cations are, in our opinion, of general interest. We dem
strated that, at least for the two-dimensional Navier-Sto
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flow considered here, the bifurcation scenario is relativ
robust with respect to variations of the imposed bound
conditions. As expected, the no-slip boundary conditio
have, in comparison to stress-free boundary condition
stabilizing effect. Up to the first period doubling~cf. Fig. 2!,
we recover the same bifurcations for no-slip boundary c
y
y
s
a

-

ditions as we did for the free-slip case. Only the final route
chaos deviates. In contrast to the period doubling casc
observed for stress-free boundary conditions, a second
quency appears for the no-slip case, and the chaotic mo
in this case is seemingly a result of a destruction of
two-frequency torus.
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