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Route to chaos for a two-dimensional externally driven flow
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We have numerically studied the bifurcations and transition to chaos in a two-dimensional fluid for varying
values of the Reynolds number. These investigations have been motivated by experiments in fluids, where an
array of vortices was driven by an electromotive force. In these experiments, successive changes leading to a
complex motion of the vortices, due to increased forcing, have been explbabeéling, Perrin, and Fauve, J.

Fluid Mech.213 511(1990]. We model this experiment by means of two-dimensional Navier-Stokes equa-
tions with a special external forcing, driving a linear chain of eight counter-rotating vortices, imposing stress-
free boundary conditions in the vertical direction and periodic boundary conditions in the horizontal direction.

As the strength of the forcing or the Reynolds number is raised, the original stationary vortex array becomes
unstable and a complex sequence of bifurcations is observed. Several steady states and periodic branches and
a period doubling cascade appear on the route to chaos. For increasing values of the Reynolds number, shear
flow develops, for which the spatial scale is large compared to the scale of the forcing. Furthermore, we have
investigated the influence of the aspect ratio of the container as well as the effect of no-slip boundary condi-
tions at the top and bottom, on the bifurcation scendfd.063-651X98)07008-1

PACS numbdps): 47.20.Ft, 47.27.Cn, 47 .54r

[. INTRODUCTION the numerical results with the experimental observations de-
scribed in Ref[22]. An analytical approach to model these
The transition to chaos from simple laminar flow to cha-experiments was proposed in R¢23] using the Mallier-
otic flow is a fascinating phenomenon in nature. Sophisti-Maslowe vortex streg24] as an exact solution of the Euler
cated experiments with better diagnostics have been set up gsluations. The authors estimated its stability both for the
study this transition, with the aim of obtaining a better un_ideal_ and viscous s!tuations, and di_scussed their results in
derstanding of the underlying mechanisms. From the theoretelation to the experimental observations. .
ical viewpoint, bifurcation theory provides a proper frame-  The purpose of the present paper is to continue the study
work to describe and classify these instabilities. In a series o®f Guzdaret al. [20], but for the case of eight driven vorti-
papers, the linear stability of two-dimensional Navier-Stokesces. As a model we have used the two-dimensional NSE with
flows with different geometry1-6] has been investigated. Periodic boundary conditions in the horizontal direction, and
The application of bifurcation methods to the Navier-Stokesstress-free boundary condition in the vertical direction. It
equationgNSE), which go beyond a linear stability analysis, should be noted that the idealized two-dimensional model
is a relatively new area of research, and hitherto has onlgannot capture all details of the experiment mentioned
been applied to the simplest flows, like the so-callegabove, but it can demonstrate typical features of fluid dy-
Kolmogorov-flows[7—14]. The objective of the present pa- namics on its route to chaos. The goal of the present paper is
per is to apply methods of nonlinear dynamics to investigatd0 examine the qualitative changes employing special bifur-
the qualitative behavior of the two-dimensional NSE, drivencation techniques. In Sec. Il, we introduce the basic equa-
by an external forcing, which can be used as a model fofions and explain the forcing term, modeling the Lorentz
experiments performed in Refil5—18. force applied to the electrolyte in the experiments. Then, in
In these experiments the transition to turbulence in a linSec. lll, we start our investigations imposing stress-free
ear chain of electrically driven vortices was studied. By in-boundary conditions at the top and bottom. We present the
creasing the Reynolds number, which was controlled by th&ifurcation scenario on the route to chaos, and describe the
strength of the applied current, variation in the spatial struccorresponding qualitative changes of the flow. In Sec. IV, we
ture and temporal evolution of the flow was explored. Moti- Study the variations of the bifurcation structure and the re-
vated by these experiments, numerical calculations of théulting dynamics, using no-slip boundary conditions instead
two-dimensional NSE were performed in Rd:f$9,2q The of the free—slip conditions. Fina”y, Sec. V giVeS a short dis-
formation of large scale shear flow patterns, which could bgussion about the practical importance of the theoretical re-
interpreted as a consequence of the inverse energy cascadeSHts, and provides arguments for the necessity to extend the
two dimensions, was observed in these theoretical investigdnodel to three dimensions.
tions, in agreement with the experiments. Independently, Na-
Kamura also studied the 'transitic')n to tqrbulence for such a || gagc EQUATIONS AND NUMERICAL METHODS
linear vortex array but using a slightly different modi2L].
He imposed no-slip conditions for the lateral boundaries, and To model the experiment of Tabeling, we have used the
introduced an additional friction term modeling the influencetwo-dimensional NSE with an external forcing which imi-
of the bottom. These investigations are aimed as comparingtes the Lorentz force due to the current flowing through the
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electrolyte in a plexiglass cell, with an array of alternatingwhich in turn impliesw(X,yq,t)=0, we have used a pseu-
north and south pole magnets at the bottom of the cell. Welospectral code based on a Fourier expansion of the vorticity
start with the incompressible NSE in the rescaled form in the form of

J ~ X
a—lt)+(v-V)v=V2v—Vp+f, 1 “= > . (1) sin(kyy),
x 1Ky €
V-v=0, (2) k:(ZWkX/LX,Zka/Ly) (6)

Inserting this Fourier ansatz into E@) leads to an infinite
system of ordinary differential equatiof®@DE’s) for the real

and complex components of the Fourier components
which has been studied numerically by a finite-dimensional
3 truncation using a pseudospectral code with a resolution of
64x32 gridpoints.

Besides the pseudospectral code, we have used a finite-
To obtain the NSE in the nondimensional form of E@S—  difference code with the same resolution, mainly to study the
(3), a rescaling transformation to the typical length and timedynamics for the no-slip conditions, but also to cross check
scales, which can be found explicitly in R¢L4], has been the results for the stress-free boundary conditions for which
applied. The two constants andk, in Eq. (3) are fixed to  the finite-difference code can be easily modified.
ky=8m/Ly andk,=7/L,, thereby driving an array of eight

wherev is the fluid velocity field,p is the thermal pressure,
andf represents the external force which is chosen to be

sin kyx cosk,y
—coskyx sinkyy/”

counter-rotating eddies on the $@t=[L,,L,]. By means of IIl. BIFURCATION SCENARIO FOR STRESS-FREE

a further rescaling transformation, the lengthcan be nor- BOUNDARY CONDITIONS

malized tow, and there remain only two free parameters in _ _ _ . _ _
the equations. They are the horizontal length and the In this section we present a detailed bifurcation analysis

strength of the forcind, which is in turn related to the Rey- Of Ed. (4) for the case of stress-free boundary conditions in
nolds number. For weak forcing, the tefrin Eq. (1) can be  the transverse direction, and for a fixed aspect ratio given by
evaluated to be equal to the Laplacian term. Hence the Reyhe conditionsL.,=m andL,=4m. To find out the qualita-
nolds number can be estimated to besfte For strong forc-  tive behavior of the solutions, we have applied bifurcation
ing, on the other hand, this term is approximately balancedechniques on the truncated finite-dimensional system of
by the convective term, and it turns out that=R"? [25]. ODE’s for the Fourier coefficientss,. For instance, the
For the sake of simplicity we consider periodic boundarysteady state branches have been traced as a function of the
conditions for the velocity field in the horizontal direction, bifurcation parametef by means of a special continuation
v(x,t)=v(x+Ly,t), but impose both stress-free and no-slip program. Simultaneously, the eigenvalues of the Jacobian
boundary conditions at top and bottom of the two-matrix were calculated in order to detect bifurcations, when
dimensional fluid, with the aim of studying their influence on some eigenvalues cross the imaginary axis.
the bifurcations. For a small forcing, i.e., for small values Hfthe array of

In our numerical computations we did not directly inte- eight counter-rotating vorticesee Fig. 1a)] is the only
grate Eq.(1), but rather the corresponding equation for thetime-asymptotic state. Here only the forced modes are ex-
vorticity w=VXwv. By restriction to two spatial dimensions, cited, and the solution of Eq4) can be expressed analyti-
this equation reduces to one scalar equation for the only norgally in the form of
vanishing componenb = w, of the vorticity:

f(kyt+ka) :
Jw o(X,y) = ————sin(k;x)sin(k,y). (7)

2 2
— W Ve=V2o+flk+ky)sinkix sinkyy. (@) kitks

Increasing the strength of the forcing, this primary steady
Successive bifurcations of an array of counter-rotatingstate loses its stability producing a secondary steady flow
vortices, produced by the external forcing in the form of Eq.with a shear component. The formation of the shear flow was
(3), will be analyzed by changing the scalar control param-already described in detail by Guzdet al. for the case of
eterf. This is the essential bifurcation parameter in our studfour driven vorticed20]. This secondary steady state branch
ies. In other words we will study the transition from a simple consists of four corotating vortices and a shear component,
motion to chaotic dynamics of the fluid for increasing valueswhich are separated by heteroclinic lines connecting the hy-
of the Reynolds numbers, both for stress-free and no-sliperbolic fixed points of the floicf. Fig. 1(b)]. Tracing this
boundary conditions, as well as for different aspect ratios opecondary steady branch, a further pitchfork bifurcation takes
the driven cells, determined by the second free parametgllace. It creates tertiary steady states, for which the shape of

Ly. the flow is changed, such that the middle points of neighbor-
For the case of stress-free boundary conditions, ing corotating vortices are shifted up and down. This branch
is only stable within a small interval of the bifurcation pa-
Iy rameterf, and is finally terminated by a Hopf bifurcation.
By =0, vy(XYyo)=0 for yo=0, Ly, 5 A complete overview on all solution branches which we

Y=Yo found is compiled in Table | and presented schematically in
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FIG. 2. Schematic bifurcation diagram.

cation creating the periodic branch Period Il, which in turn
undergoes a period doubling cascade leading finally to chaos.
In Figs. 4a)—4(c), the projection of the trajectory onto the
real parts of certain Fourier modes are depicted for the origi-
nal periodic orbit and for the orbits after the first two period
doublings. The final chaotic attractor, projected in this sub-
space, is shown in Fig.(d). To verify that the state is truly
chaotic, we have calculated the largest Lyapunov exponents
FIG. 1. Streamlines of the steady state brancli@sSteady |  for selected values of the bifurcation parameter, using an
(f=26.7),(b) Steady Il =43.3),(c) Steady Ill f=44.7), andd)  algorithm developed by Shimada and Nagashj2®&. Fig-
Steady IV f=100.0). ure 5 shows, foif =245, the cumulative values of the five
largest Lyapunov exponents as a function of the integration

Fig. 2. The three steady state branches described above dH&€. It demonstrates the good convergence of the algorithm,
labeled here as Steady I, Steady I, and Steady lIl, respeélnd reveals that one of the exponents is positive. This proves
tively.

The Hopf bifurcation at Steady Il produces a periodic o) b)
solution branch Period |, for which the streamlines are sub-
ject to a complex reconnection process. In Figa)-33(f) the
contours of the streamline portrait are plotted at a few in-
stants of time during a period. This helps to visualize the
time evolution of the velocity field. For most of the time, the
pattern consists of two pairs of combined eddies which are
separated by slender vortices as presented in Figs.aBd
3(f). A rapid reconnection process, demonstrated in Figs.
3(b)—3(e), transforms both of the states, quasistable in time,
into one another. For increasing Reynolds number the basit
of attraction of this periodic branch shrinks and finally dis-
appears foff =54.7.

As seen in Fig. 2, for higher Reynolds number, another
branch dominates the dynamics of the system. So we havs
found a further steady stat&teady IV, partly coexisting
with the periodic branch Period I. Its streamlines are drawn
in Fig. 1(d). This steady state ends up again in a Hopf bifur-

TABLE I. The different solution branches.

Branch Stability interval Remarks
Steady | f<29.7 eight counter-rotating vortices
Steady I 29.%f<43.7 four corotating vortices >
Steady I 43. % f<45.7 four tilted vortices
Period | 45 f<54.7 created by a Hopf point
Steady IV 47. <106
Period Il 106< <227
Period doubling 227 f <240 ) ¥
Chaos 246 f FIG. 3. Snapshots of streamlines belonging to a periodic solu-

tion (Period ) at different time points.
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FIG. 4. Projection of the trajectory onto the real parts of the
modesk=(0,1) andk=(0,2) in the period doubling cascade on the
route to chaos fofa) a periodic orbit(Period Il), (b) an orbit after
first period doubling{c) an orbit after second period doubling, and
(d) a chaotic attractofChaos.
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FIG. 6. Streamlines of the steady state branclki@sprimary

steady statef(=100), (b) secondary steady staté= 170), (c) ter-
tiary steady state f=180), and(d) additional steady statef (

=250).

that for this value of the forcing parameter, the state is indeed

chaotic. The streamline portraits of the upper branches of th

bifurcation diagram in Fig. 2 are much the same, and the
structure of the corresponding velocity fields are comparable

to that of Steady IV as in Fig.(d), varying only weakly in
time, even for the chaotic state.

IV. COMPARISON WITH NO-SLIP BOUNDARY
CONDITIONS

e

In this section we report on bifurcations when no-slip
boundary conditions are imposed at the top and bottom of
our computation box,

To study the influence of the aspect ratio on the bifurca-

tion, we have modified the horizontal lendth of the box to
37 and to 5. In both cases we have found the same bifur-

v(X,Y0,1)=0 for y,=0, L,. (8)

cation scenario as described above. We conclude that the

bifurcation structure is relatively insensitive to changes in

the aspect ratio. Only the bifurcation points are shifted to
higher values of the forcing parameter for a smaller value ot)

L,, and they shift to lower values of the forcing parameter
for larger values ot .

I
5

[
15

10 Time 20

The lengths of the computation box have been chosen, as in
Sec. lll, to beL,=4m andL,= m, respectively. We are in-
erested in the influence of the boundary conditions on the
ifurcation behavior in general, even though the boundary
conditions that were realized in experiments performed by
Tabeling, Cardoso, and Perrin are nearly stress[ftég

For a small forcing strength the only stable solution, sat-
isfying the no-slip boundary conditions, is again the flow
consisting of eight counter-rotating vortides. Fig. 6@)]. In
contrast to the case of stress-free boundary conditions, the
no-slip conditions have a stabilizing effect on this primary
steady state, which loses its stability for a much higher value
of the forcing parametef,= 138. In the vicinity of the bifur-
cation point the changes of the streamlines are very similar
to the stress-free boundary conditions, and, as described in
more detail by Guzdaet al. [20], every alternate vortex is
compressed compared to its neighbor. But, due to the no-slip
boundary conditions, no shear flow has been created, and the
secondary steady state branch finally settles down to a
streamline portrait very similar to the one presented in Fig.
6(b). Tracing this branch for larger forcing, a further pitch-
fork bifurcation leads to a tertiary steady state for which the
center points of neighboring vortices are shifted into oppo-

FIG. 5. The five largest Lyapunov exponents vs integration timesite directions away from the horizontal center line of the

for f=245.

fluid region[Fig. 6(c)]. Again the situation is analogous to
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generate bifurcation, producing traveling-wave-like solu-
tions. By a further increase of the forcing strength this sec-
ond frequency becomes a bit larger, and the time history of
the amplitude looks much more like a generic torus solution
[cf. Fig. 7(d)]. As seen in Fig. ®), the motion eventually
becomes more and more irregular, and we conjecture a tran-
sition to chaos via a torus destruction, another well-known
route to chaog427,28. But the final proof of the chaotic
nature of the attractor, by calculation of the largest Lyapunov
exponent, at present remains work for the future. We are
fime going to develop a separate code using Chebyshev polyno-
mial expansions in the vertical direction for a better treat-
3 ment of the no-slip boundary conditions. This will allow us
° ji\/WWW\AW\/V\/WMN\M/\/\NVWW\/WWV\E to cross check the resulting dynamics with those obtained
E E from our finite-difference code, and will also allow us to
time compare the routes to chaos with the two codes.
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3 V. DISCUSSION AND CONCLUSION

-20 Motivated by experiments of Tabeling and co-workers
time [15-18, we have investigated the bifurcation scenario for a
) chain of eight externally driven vortices in a two-
i dimensional Navier-Stokes fluid by increasing the strength of
the forcing, which corresponds to an increase of the Rey-
3 nolds number. According to the experimental setup, stress-
0 10 o 20 50 free boundary conditions at the top and bottom are appropri-
ate to model this experiment, and, in our studies, we have
FIG. 7. Time history of the vorticity at a spatial location point mainly focused on this case. We found a complex bifurcation
x=0, y=m/2 for (a) f=277, (b) =282, (c) f=287,(d) =296, sequence including a period doubling cascade, which leads
and(e) f=350. finally to a temporally chaotic motion of the velocity field. A
direct comparison of the numerical results with the experi-
that of Steady Il in Table I. This branch in turn ends up in aments is only possible for the first pitchfork bifurcations. The
Hopf bifurcation atf =188, producing a periodic solution.  bifurcations experimentally observed for higher Reynolds
It is not the intention of this section to determine all the numbers depend strongly on the thickness of the fluid layer,
bifurcation points exactly, but just to study the qualitative and this three-dimensional effect cannot be modeled by the
behavior of different bifurcations in comparison to the casetwo-dimensional NSE used here. For a more extensive dis-
of stress-free boundary conditions. Similar to the bifurcationcussion, we refer to a companion paper in Raf)]. Other
diagram in Fig. 2, the periodic branch is only stable for aessential features, such as the appearance of large scale flows
certain interval of the forcing parameter and another steadgominating the dynamics at a higher Reynolds number, are
state, at first coexisting with the periodic solution and finallyin good agreement with the observations. Also, for various
forming the global attractor, appears. The correspondingnagnet configurationfour, six, and eight for large forc-
streamline portrait is presented in Figdh This branch is ing, the experiments of Tabeling and co-workers have shown
comparable with the upper bran¢Bteady IV} in Fig. 2 but  a clear indication of the period-doubliigubharmonigroute
its solutions does not show the dominating large scales of # chaos, cf. Ref{16]. To obtain a more detailed agreement
shear flow as in the case of stress-free boundary conditionbetween experiment and numerical bifurcation analysis, both
For increasing values of the strength of the forcing, quali-the three-dimensional effects and the different boundary con-
tative changes of the flow occur, which are different fromdition in the direction of the array of vortices need to be
those bifurcations observed in the case of stress-free boundensidered. We have assumed a periodic boundary condition.
ary conditions. In Figs. (&8)—7(e) the time history at one However, in the actual experiment, the region beyond the
spatial location point is plotted with the aim to identify and driven vortices is open. In preliminary investigations, in
classify the different dynamical regimes. The first bifurca-studying the influence of the bottom friction, we showed that
tions, namely, a Hopf bifurcation leading to a periodic solu-this stabilizing effect shifts the bifurcations to higher values
tion [cf. Fig. 7(@)], which is followed by a period doubling of the Reynolds number but that the qualitative features of
bifurcation, presented in Fig([@), are still the same as in the the dynamics survive, at least for moderate Reynolds num-
scenario described in Sec. lll. But for larger values of thebers[29]. We conclude with this discussion that even with
forcing parameter a large time scale modulation of the ameur very idealized simulations we have captured many inter-
plitude, first observed &t=287 in Fig. 1c), has an essential esting features observed in the experiments.
influence on the subsequent nature of the route to chaos. The The influence of no-slip boundary conditions on the bifur-
slow modulation frequency could be a result of a secondargations are, in our opinion, of general interest. We demon-
Hopf bifurcation, but might also be a consequence of a destrated that, at least for the two-dimensional Navier-Stokes
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flow considered here, the bifurcation scenario is relativelyditions as we did for the free-slip case. Only the final route to

robust with respect to variations of the imposed boundanchaos deviates. In contrast to the period doubling cascade,
conditions. As expected, the no-slip boundary conditionsobserved for stress-free boundary conditions, a second fre-
have, in comparison to stress-free boundary conditions, guency appears for the no-slip case, and the chaotic motion

stabilizing effect. Up to the first period doublirigf. Fig. 2,

in this case is seemingly a result of a destruction of the

we recover the same bifurcations for no-slip boundary contwo-frequency torus.
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