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Stability of spiral wave vortex filaments with phase twists

Keeyeol Nam,* Edward Ott,† Parvez N. Guzdar, and Michael Gabbay‡

Institute for Plasma Research, University of Maryland, College Park, Maryland 20742
~Received 24 February 1998!

In this paper we investigate the stability of a straight vortex filament with phase twist described by the
three-dimensional complex Ginzburg-Landau equation~CGLE!. The results of the linear stability analysis
show that the straight filament is stable in a limited region of the two parameter space of the CGLE. The stable
region is dependent on the phase twist imposed on the filament and shrinks in size as the phase twist is
increased. It is also shown numerically that the nonlinear evolution of an unstable initial straight filament can
lead to a helical filament.@S1063-651X~98!13508-0#

PACS number~s!: 82.40.Ck, 47.20.2k, 47.54.1r, 47.32.Cc
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I. INTRODUCTION

Pattern formation in nonequilibrium systems has bee
very active area of research in recent years@1,2#. Diffusing
reacting chemicals, colonies of social amoebae, and pr
gation of electrical excitations in the heart are typical e
amples of such systems@1#. One of the simplest mathemat
cal equations which has been investigated extensively
pattern formation is the complex Ginzburg-Landau equat
~CGLE!,

]A

]t
5A2~11 ia!uAu2A1~11 ib!¹2A, ~1!

whereA is the complex order parameter which governs
slow spatial and temporal behavior of the system, anda and
b are real numbers. This equation can be derived when
homogeneous state of a spatially extended system is in
vicinity of a Hopf bifurcation@1,2#. Although the CGLE is
strictly only valid near the bifurcation, it often shows qua
tative behavior very similar to physical systems even in
rameter regimes far from the bifurcation point. One- a
two-dimensional analyses of the CGLE have been the s
ject of exhaustive studies over the last two decades. For
ample, the dynamics of the spiral wave solution@3#, spiral
wave domain patterns@4#, and the transition to spatiotempo
ral chaos@5–8# in two dimensions have been extensive
investigated. However, study of the three-dimensional~3D!
CGLE has received attention only recently. Using pertur
tion theory, the evolution of scroll wave filaments~the three-
dimensional analog of the 2D spiral waves! has been inves
tigated in the regime where straight filaments are stable@9#.
For example, in the special case of a circular filament w
radiusR, the rate of collapse of the ring is governed by t

*Author to whom correspondence should be addressed. F
301-405-1678. Electronic address: kynam@chaos.umd.edu

†Also at Department of Physics, Department of Electrical En
neering, and Institute for Systems Research, University of Ma
land, College Park, Maryland 20742.

‡Present address: Laboratory of Applied Mathematics, Mt. S
School of Medicine, One Gustave L. Levy Place, New York, N
10029-6574.
PRE 581063-651X/98/58~2!/2580~6!/$15.00
a

a-
-

or
n

e

he
he

-
d
b-
x-

-

h

equation dR/dt52(11b2)/R. For the parameter region
whereb is larger thanbc(a) it was shown in Ref.@10# that
a straight vortex filament becomes unstable to perturbat
along its length. They also see stable evolution of the ins
bility to apparently stable helices. In the analytical part
their work the authors of Ref.@10# have derived this insta
bility as a three-dimensional extension of the tw
dimensional core instability of spiral waves@11#. This paper
was restricted to the case of 3D linear filaments withou
phase twist. One of the important properties of the thr
dimensional spiral waves of the CGLE is the possibility
scroll waves with a phase twist along the filament directio
which we refer to as a ‘‘phase-twisted filament.’’ It wa
shown in@9# that straight filaments with a small twist wer
stable at long wavelength, but the stability at shorter wa
length was not examined. In addition, we have recently
ceived a preprint@12# in which the authors study the evolu
tion of phase-twisted filaments using a three-dimensio
nonlinear code. In this paper we investigate the stability o
straight filament with arbitrary phase twist. For this purpo
we use a linearized set of equations for perturbations to
phase-twisted straight filament. Stability diagrams in t
(a,b) parameter space obtained from the linear stabi
code are presented and discussed. Using a full th
dimensional nonlinear simulation, evolution to nonline
states in the form of helical filaments is observed for ca
we tested near the boundary of the unstable region of
phase-twisted straight filament.

II. PERTURBATION EQUATION

A. Spiral wave solution of 2D CGLE

The spiral wave solution of the two-dimensional CGL
has the form

A0~r ,u,t !5r~r !exp$ i @2vt1su1c~r !#%, ~2!

wheres561 is the ‘‘topological charge,’’ (r ,u) are polar
coordinates~later, z direction will be added for the consid
eration of the three-dimensional spiral wave!, andr(r ) and
c(r ) are real. The phase change ofA0 going counterclock-
wise around the origin is 2ps. The amplitude ofA0 at the
origin is zero due to the phase singularity there. Thus
spiral wave can be viewed as a vortex whose center
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topological point defect. For large distances from the def
the wave front asymptotically approaches a plane wave w
a wave numberk. Thus asr→`,

r→A12k2,
dc

dr
→k, ~3!

wherek is uniquely determined by the parametersa andb
@3,13#. The frequency of the spiral is given by the pla
wave dispersion relation,v5a1(b2a)k2. As r→0

r→0,
dc

dr
→0. ~4!

Note that the sign ofk has to be chosen so that the rad
group velocity is outgoing,vg52(b2a)k.0 or sgn(k)
5sgn(b2a). Inserting Eq.~2! into Eq. ~1! yields a nonlin-
ear eigenvalue equation forr(r ) and c(r ) which can be
numerically solved@3# for k(a,b) with the boundary condi-
tions ~3! and~4!. ~In our work we solved this problem usin
the relaxation method@14#.!

A solution representing a filament with constant pha
twist k can be constructed by writingA15a1(r )expi(2v1t
1su1kz). Inserting this ansatz into the CGLE~1!, one can
obtain @9# the following relationships between the solutio
for a filament with no twist~subscript 0! and one with twist
~subscript 1!:

v15v01~b2v0!k2, ~5!

a1~r !5A12k2a0~ r̂ !, ~6!

wherea05r0(r )eic0(r ) and v0 are the radial direction de
pendence and the frequency of the spiral solution of tw
dimenstional CGLE, repectively, andr̂ is a scaled radial co
ordinate, r̂ 5rA12k2. Thus the solution for a three
dimensional straight filament with twist can be construc
from the two-dimensional solution by rescaling the fr
quency, amplitude, and radial variable. The radial asympt
wave number of a spiral wave solution with phase twist,k1,
becomesk0A12k2, wherek0 is the asymptotic wave num
ber for the two-dimensional spiral wave solution~filament
with no twist! and the total larger asymptotic wave vector is
given by

kW t5k ẑ1k1r̂ , ~7!

kt5Ak0
21~12k0

2!k2. ~8!

B. Perturbation equations for a straight filament with twist

We assume that the equilibrium and perturbed solut
has the form

A~r ,u,s,t !5@a11u~r ,u,z,t !#exp$2 iv1t1 isu1 ikz%,
~9!

whereu is the linear perturbation imposed ona1, the equi-
librium solution derived in the preceding section. Substit
ing Eq. ~9! into the CGLE ~1! and assumingu(r ,u,z,t)
5u1est1 ikzz1 imu1ū2es* t2 ikzz2 imu, we obtain the following
linearized system of equations foru1 andu2 :
t,
th

l

e

-

d

ic

n

-

~2 iv11s!u15u11~11 ib!

3S 1

r

]

]r
r

]

]r
2

~m1s!2

r 2
2~kz1k!2D u1

22~11 ia!ua1u2u12~11 ia!a1
2u2 , ~10!

~ iv11s!u25u21~12 ib!

3S 1

r

]

]r
r

]

]r
2

~m2s!2

r 2
2~kz2k!2D u2

22~12 ia!ua1u2u22~12 ia!ā1
2u1 . ~11!

We will considerm51 in this paper. Dividing by 12k2 and
defining a new radial coordinater̂ 5rA12k2, a scaled wave
numberk̂z5kz /A12k2, a scaled twistk̂5k/A12k2, and a
scaled growth rateŝ5s/(12k2) we obtain

F iv02 ŝ111~11 ib!

3S 1

r̂

]

] r̂
r̂

]

] r̂
2

~m1s!2

r̂ 2
2~ k̂z

212k̂zk̂ !D
22~11 ia!ua0u2Gu12~11 ia!a0

2u250,

~12!

F2 iv02 ŝ111~12 ib!

3S 1

r̂

]

] r̂
r̂

]

] r̂
2

~m2s!2

r̂ 2
2~ k̂z

222k̂zk̂ !D
22~12 ia!ua0u2Gu22~12 ia!ā0

2u150,

~13!

where we use Eq.~5! and the relationship betweena1 and
a0, a0( r̂ )5a1(r )/A12k2. In this form, the numerical solu
tion for a radially dependent function~i.e., a0) from the 2D
CGLE is explicitly independent of the twistk, and, after the
trivial rescalings ofs andkz , the twist parameterk̂ appears
only in the terms62k̂zk̂. ~See Sec. III A for boundary con
ditions.! For smallkz andk, Eqs.~12! and ~13! can be ana-
lytically solved using the technique in@9#. To lowest order in
kz;k2, we obtain damping of a straight filament perturb
tion,

s52~11b2!kz
2 . ~14!

Another solvable case occurs fork2 close to, but less
than, one~recall that we require 12k2.1 for existence
of the twisted equilibrium, Sec. II A!. In this case, to
lowest order in (12k2) Eqs. ~12! and ~13! reduce to@s
1(16 ib)(kz

262kzk)#u6>0, which yields the solutionss
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>2(11ib)(2kzk1kz
2) ~with uu1u@uu2u) and s>(1

2 ib)(2kzk2kz
2) ~with uu2u@uu1u). In both cases there i

instability ~either for 0.kz.22k or 0,kz,2k). This
simple case clearly shows the potential destabilizing effec
twist.

III. NUMERICAL STABILITY RESULTS

A. Numerical methods

In order to find the growth rate Re(s) numerically, we use
the following scheme. If we replaces with the partial time
derivative ]/]t operator, Eqs.~12! and ~13! become time-
dependent partial differential equations in one spatial v
able, r̂ . We solve these coupled linear equations using
semi-implicit split-step method. The typical number of me
points used in our studies is 400, but for certain param
values ofa, b, we increased the resolution to 1000, or 20
mesh points for the purpose of double checking the resu
The maximum length of the radial box size used ranges fr
20 to 40~for some cases, 70 or 100!. The behavior ofu1 and
u2 as r goes to zero, is

u1~r !→r 2,

u2~r !→const1O~r 2!.

~15!

Thus, atr 50, we use the boundary conditions thatu1(0)
50 anddu2 /dru050. For the boundary condition at larger ,
we useu1(Lmax)5u2(Lmax)50. As noted earlier, the defec
launches outgoing waves. Furthermore, we are intereste
the (a,b) regime where these outward plane waves are
absolutely unstable~Sec. V!. In this case inward waves ex
cited atr 5Lmax are rapidly damped and our condition atr
5Lmax serves as an effective absorbing boundary for out
ing waves. For the purpose of examining the sensitivity
the eigenvalues and eigenfunctions to the boundary co
tions at larger , we have variedLmax for several parameter
and found no significant~less than 0.1%! differences in the
computed growth rate. By taking a random initial conditi
or a Gaussian-like initial condition~which we have chosen in
this paper!, the numerical solution relaxes to the eigenmo
which has the largest growth rate. We record the growth
each instant of time and use a stringent convergence crite
to accept the computed value as a legitimate growth rate
validate the code, we first considered the case for smakz
and k50, a region of parameter space where Eq.~14! ap-
plies. Figure 1 shows that the numerical result~open circles!
closely follows the theoretical damping rate~solid curve!
~14! for a50.6,b520.5. We also have tested other para
eter values. Due to small numerical error, the numerica
computed magnitude of the growth rate forkz50 is typically
of the order of 1024 ~rather than the theoretical result o
zero!.

B. Parameter space for filament stability

We first address the stability of a filament with no tw
and compare our results with those previously obtained
Aransonet al. @15# using a different numerical method. I
Fig. 2~a!, the phase diagram of the straight filament witho
phase twist is presented. In the region to the right of
circles, the straight filament is unstable to the perturbat
of
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with a finitekz . These results are consistent with the work
Aransonet al. @15# for the straight filament with no twist
Above the solid line, the asymptotic plane wave of the sp
wave becomes absolutely unstable. For the phase-twi
straight filament the stability boundary ina, b parameter
space is shown in Figs. 2~b!, 2~c!, and 2~d! for phase-twist
wave numberk50.1, 0.15, and 0.2, respectively. The circl
~dots! represent parameter values numerically found to
unstable~stable!. Compared to the case of the untwisted fil
ment, it is seen that the stable region of parameters is
duced by twist. It is also observed that an additional unsta
region emerges for low values of2b @e.g., the circles in
2b,1 for Fig. 2~c!#, which does not exist for the untwiste
case. As the phase twist increases, the stable region o
straight filament gets smaller.

In Fig. 3 the growth rate versuskz is shown fora50.1,
b521.0, andk50.15. These values correspond appro
mately to a marginally stable situation@see Fig. 2~c!#. We
note that forkz,0.1 the growth rate is negative and in a
proximate conformity with the theoretical result~14!. Near
kz;0.1 there appears to be a mode crossing in the sense
an eigenfunction that is more strongly damped forkz,0.1
than the eigenfunction corresponding to Eq.~14! becomes
less strongly damped forkz*0.1. Askz is increased past 0.1
the growth rate of this eigenfunction rises, becoming ma
mum atkz5kz

max50.2. At this maximum the growth rate i
near zero. For the samea and k values, the growth rate a
kz

max increases~becomes positive corresponding to instab
ity! as2b increases from its marginal stability value, and
decreases~becomes negative, corresponding to stabili!
when 2b is decreased from its marginal stability valu
~Note from Fig. 3 thatkz

maxÞk.! The same mode crossin
phenomenon observed fork50.15 ~Fig. 3! is also found for
other values ofk including the untwisted case (k50).
Hence we see that, although the long wavelength anal
yielding the result~14! continues to hold in the unstabl
regime, the stable long wavelength modes will eventually

FIG. 1. Comparison between the numerical results and theo
ical results for smallkz with a50.6, b520.5. Circles correspond
to the numerical results and the solid line is from the theoret
results,s52(11b2)kz

2 , wheres is growth rate,kz is the wave
number of modulation along the straight filament.
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FIG. 2. Phase diagrams with various values of the phase twist.~a! k50.0 case~untwisted!. To the right of the circles, the straight filamen
is unstable. At the region of the parameters above the solid line, the spiral wave is absolutely unstable.~b! Phase diagram fork50.1, in the
region with circle and the region to the right of the circled region, the straight filament with the phase twistk50.1 is unstable.~c! Phase
diagram fork50.15. Same as~b! with k50.15. The region where the filament is stable is smaller than the case of~b!. ~d! Phase diagram
for k50.2. Same as~b! with k50.2.
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overcome by short wavelength unstable modes not descr
by the long wavelength perturbation analysis that gives
~14!. Thus the results of Ref.@9# yielding the slow evolution
of arbitrarily shaped filaments with weak curvature~analo-
gous to long wavelength! and weak phase twist are phys
cally relevant only in the regime where the filament is sta
to short wavelength modes. We emphasize, however, tha
stable region where the results of Ref.@9# are physically
relevant is relatively large, particularly for small or ze
twist.

IV. THREE-DIMENSIONAL NONLINEAR
SIMULATION RESULTS

The full numerical simulation of the three-dimension
CGLE has been done using periodic boundary condition inx,
y, andz via a time split-step technique. In the first step, t
nonspatial part of the CGLE]A/]t5A2(11 ia)uAu2A is
solved exactly by A(t1Dt)5A(t)eDt@11uA(t)u2(e2Dt
ed
q.

e
he

l

21)#2(11ia)/2. Then, in the second step, the diffusive pa
]A/]t5(11 ib)¹2A, is solved by fast Fourier transformin

to the wave number space@A(xW ,t)→Ã(kW ,t)#, integrating
analytically „Ã(t1Dt)5Ã exp@2(11 ib)k2Dt#…, and trans-
forming back to real space (Ã→A).

The straight vortex filament is used as an initial conditi
for the three-dimensional simulation. For topological re
sons, there are always two of them with opposite charge
the box. To ensure that the interaction between the pair
interactions with vortices in other periodicity cells do n
significantly influence the instability, we used a large co
putational box. Theory predicts that vortex interaction is e
ponentially small in the distance between vortices. The
sumed lack of significant vortex interaction is supported
the observation that during the linear phase of the growth
the instability, the growth rates obtained from the 3D co
were in reasonable agreement with results from our sin
filament vortex linear stability code.
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Figure 4~a! shows a final helical state resulting from sat
ration of such an instability for the casea50.0, b521.6
with the phase twistk50.1. These parameters are just to t
right of the stability boundary@see Fig. 2~b!#. The pitch of
the helix has a value of 2pn/Lz with the integern equal to 4.
This corresponds tokz

max calculated from our linear stability
analysis. Another interesting unstable region of the stra

FIG. 3. The growth rate versuskz with a50.1, b521.0, k
50.15, when the parameters are on the boundary of the uns
region. Note that thekz

max which gives the instability at finitekz has
different value from the wave number of the phase twist,k50.15.

FIG. 4. ~a! Helical vortex filament fora50.0, b521.6 with
the phase twistk50.1. Lx520p, Ly520p, Lz540p, mesh size5
643. IsosurfaceuAu50.65 is shown.~b! Helical vortex filament for
a50.2, b520.3 with the phase twistk50.2. Lx550p, Ly

550p, Lz520p, mesh size equal to 1283128332. Isosurface
uAu50.85 is shown.
ht

filament with the nonzero phase twist is where the param
2b is smaller. In this region, the linear stability analys
shows a very weak instability~usually the growth rate is les
than 1022). Figure 4~b! shows a helical structure evolve
from an unstable initially straight filament fora50.2,
b520.3, k50.2 @see Fig. 2~d!#. For this case~the box size
Lx550p, Ly550p, Lz520p) the helical structure keep
growing. Eventually parts of the two helices of oppos
charge approach each other and reconnect@16#. ~We cannot
rule out the possibility that with a bigger box size, a sa
rated helical state might result.!

V. ABSOLUTE INSTABILITY OF THE ASYMPTOTIC
PLANE WAVE OF A TWISTED FILAMENT

We now investigate the change in the absolute stab
boundary for a filament with phase twist. We find that th
change is rather small for thek values we investigate. As
discussed in Sec. II A, a filament with phase twist has a la
r asymptotic wave number different from that of the u
twisted filament. This causes a change of the condition
the absolute instability of the asymptotic plane wave so
tion.

The complex growth ratel(qW ) for a modulational pertur-
bation to the plane wave solution with spatial depende
e6 iqW •xW is

l~qW !52q222ibkW t•qW 2Rkt

2

6A~11a2!Rkt

4 2~bq222ikW t•qW 1aRkt

2 !2, ~16!

whereRkt

2 512kt
2 . The above equation has the same form

the growth rate for the two-dimensional spiral wave ca
with k0 replaced bykt5Ak21(12k2)k0

2. The time evolu-
tion of the perturbation,u(x,t), is given by

u~xW ,t !5E
2`

1`

d3qW exp@ iqW •xW1l~qW !t#uqW~ t50!, ~17!

whereuqW(t50) is the Fourier transform of an initial pertur
bation which is three-dimensionally localized about so
point xW0. For t→`, this integral can be evaluated at the po
xW0 using the saddle point method. Then the condition
absolute instability becomes@5,17#

Re@l~qW * !#.0, ~18!

S ]l~qW !

]qW
D

qW*

50, ~19!

FReS ]2l~qW !

]qW ]qW
D G

qW*

,0, ~20!

where the third of these conditions indicates that the real
of the matrix of partial derivatives]2l/]qW ]qW is negative
definite. It is convenient to useqW coordinates qW

5qi(kW t /ukW tu)1qW' with qW'•kW t[0. From Eq.~16! we see that
l depends onqW' only throughq'

2 and hence]l/]qW'50 for

qW'50. Thus we takeqW to be parallel tokW t and Eqs.~19! and

ble
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~20! becomel(qi* ,qW'50).0, @]l(qi ,qW'50)/]qi#qi5qi*

50. From these conditions, we compute a marginal stab
line in (a,b) space. To check that Eq.~20! is satisfied along
this line we note that the matrix]2l(qW )/]qW ]qW is diagonal at
qW'50, and thus Eq.~20! becomes the two scalar condition
Re@]2l/]qi

2#,0, Re@]2l/]q'
2 #,0 at qi5qi* , qW'50. We

find these to be satisfied on the computed marginal stab
line. The solid line in Fig. 5 is the stability curve for th
asymptotic plane wave of the untwisted filament and the d
ted line is for the result for a phase-twist wave number

FIG. 5. Diagram showing the absolute instability line. The so
line is for the untwisted case, and the dotted line is for the cas
the phase-twisted case withk50.2. The dashed line is for th
Benjamin-Feir instability, 11ab50, where all the plane wave so
lutions are unstable.
an

ce

ys
y

ty

t-
f

k50.2. As can be seen, a phase-twisted filament beco
absolutely unstable for smaller values ofa ~for b.22.8)
compared to an untwisted filament. For b
,22.8, one can see the crossing of the two stability lin
However, in this parameter region, the phase-twisted fi
ment is already unstable due to the instability discussed
lier.

VI. CONCLUSION

A time-dependent code, using a split-step algorithm, w
developed to investigate the linear stability of twisted CG
filaments. The code was benchmarked by comparing res
with analytical solutions of Gabbayet al. @9# for the smallkz
case. The agreement was excellent. For the filament with
twist, the stability boundary for the core instability was d
termined in the (a,b) parameter space. This boundary w
found to be in good agreement with the recent work of Ara
sonet al. @15# who use a different numerical technique. W
then studied the stability boundary for scroll wave filame
with twist. It was found that the twist reduces the stab
region of the straight linear filament. Nonlinear saturated
growing helical states that develop due to the instability ha
been obtained using our three-dimensional nonlinear c
@9#. The stable region of the straight filament in parame
space shrinks as the phase-twist wave number is increa
The absolute instability analysis for the asymptotic pla
wave solution of a three-dimensional spiral wave with pha
twist shows that there is a shift of the stability bounda
This shift in the absolute plane wave stability boundary
small even with a phase twist large enough to significan
reduce the stability region~e.g.,k50.2).
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