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Stability of spiral wave vortex filaments with phase twists
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In this paper we investigate the stability of a straight vortex filament with phase twist described by the
three-dimensional complex Ginzburg-Landau equatiGELE). The results of the linear stability analysis
show that the straight filament is stable in a limited region of the two parameter space of the CGLE. The stable
region is dependent on the phase twist imposed on the filament and shrinks in size as the phase twist is
increased. It is also shown numerically that the nonlinear evolution of an unstable initial straight filament can
lead to a helical filamen{S1063-651X98)13508-(

PACS numbes): 82.40.Ck, 47.26-k, 47.54+r, 47.32.Cc

[. INTRODUCTION equation dR/dt=—(1+ 8%)/R. For the parameter region

Pattern formation in nonequilibrium systems has been é/vhere,B is larger thangc(a) it was shown in Ref{10] that

very active area of research in recent yefarg]. Diffusing a straight vortex filament becomes unstable to perturbations

reacting chemicals, colonies of social amoebae, and prop long its length. They also see stable evolution of the insta-

} : B . . ility to apparently stable helices. In the analytical part of
gation of electrical excitations in the heart are typical ex- - : .
; -~ their work the authors of Ref10] have derived this insta-
amples of such systenfig]. One of the simplest mathemati- bil ; ) )

. 4 . ; . ility as a three-dimensional extension of the two-
cal equations which has been investigated extensively foéimensional core instability of spiral wavgs]. This paper
pattern formation is the complex Ginzburg-Landau equation . . -~ :
(CGLE), was restr!cted to the case of 3D linear flla_ments without a

phase twist. One of the important properties of the three-
dimensional spiral waves of the CGLE is the possibility of

%=A—(1+ia)|A|2A+(1+iﬁ)V2A (1) scroll waves with a phase twist along the filament direction,

at ' which we refer to as a “phase-twisted filament.” It was

shown in[9] that straight filaments with a small twist were
whereA is the complex order parameter which governs thestable at long wavelength, but the stability at shorter wave-
slow spatial and temporal behavior of the system, arahd  length was not examined. In addition, we have recently re-
B are real numbers. This equation can be derived when theeived a preprinf12] in which the authors study the evolu-
homogeneous state of a spatially extended system is in tH&n of phase-twisted filaments using a three-dimensional
vicinity of a Hopf bifurcation[1,2]. Although the CGLE is nonlinear code. In this paper we investigate the stability of a
strictly only valid near the bifurcation, it often shows quali- straight filament with arbitrary phase twist. For this purpose,
tative behavior very similar to physical systems even in pawe use a linearized set of equations for perturbations to the
rameter regimes far from the bifurcation point. One- andphase-twisted straight filament. Stability diagrams in the
two-dimensional analyses of the CGLE have been the sub«,8) parameter space obtained from the linear stability
ject of exhaustive studies over the last two decades. For ex¢ode are presented and discussed. Using a full three-
ample, the dynamics of the spiral wave soluti@}, spiral  dimensional nonlinear simulation, evolution to nonlinear
wave domain patterrigl], and the transition to spatiotempo- states in the form of helical filaments is observed for cases
ral chaos[5-8] in two dimensions have been extensively we tested near the boundary of the unstable region of the
investigated. However, study of the three-dimensiq@&l)  phase-twisted straight filament.
CGLE has received attention only recently. Using perturba-

tipn thepry, the evolution of scroll_wave filamerthe three— Il. PERTURBATION EQUATION
dimensional analog of the 2D spiral waydms been inves- _ )
tigated in the regime where straight filaments are sti@je A. Spiral wave solution of 2D CGLE

For example, in the special case of a circular filament with  The spiral wave solution of the two-dimensional CGLE
radiusR, the rate of collapse of the ring is governed by thehas the form

Ag(r,0,t)=p(r)exgi[ —wt+ o0+ y(r)]}, 2
*Author to whom correspondence should be addressed. FAX:
301-405-1678. Electronic address: kynam@chaos.umd.edu whereo=*1 is the “topological charge,” (,6) are polar
TAlso at Department of Physics, Department of Electrical Engi-coordinateg(later, z direction will be added for the consid-
neering, and Institute for Systems Research, University of Mary-€eration of the three-dimensional spiral wavandp(r) and
land, College Park, Maryland 20742, Y(r) are real. The phase change/A&f going counterclock-
*present address: Laboratory of Applied Mathematics, Mt. Sinaiwise around the origin is 2¢. The amplitude ofA, at the
School of Medicine, One Gustave L. Levy Place, New York, NY origin is zero due to the phase singularity there. Thus the
10029-6574. spiral wave can be viewed as a vortex whose center is a
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topological point defect. For large distances from the defect, (—jw,+s)u, =u, +(1+ipB)
the wave front asymptotically approaches a plane wave with
a wave numbek. Thus asr — o, 19 9 (m+to)? )
X|=—=r——————(k,+x)°|uy
dy rar or 2
J1I-K3, ——Kk, 3 _ )
p= dr ® —2(1+|a)|a1|2u+—(1+|a)afu_, (10

wherek is uniquely determined by the parametersand 8

iw;+s)u_=u_+(1—i
[3,13]. The frequency of the spiral is given by the plane (lo1Fs)u-=u_+(1-1p)

wave dispersion relationy= a+ (8- a)k?. Asr—0 19 9 (m—o)? ,
d(/, F&_r (?—r_—z—(kZ—K) u_
p—0, W_)O' (4)

—2(1-ia)|a?u_—(1—ia)acu, . (11)
Note that the sign ok has to be chosen so that the radial
group velocity is outgoingpy=2(8—a)k>0 or sgnk)
=sgn(B3— a). Inserting Eq.(2) into Eg. (1) yields a nonlin-
ear eigenvalue equation fgr(r) and ¢(r) which can be
numerically solved3] for k(«,8) with the boundary condi-
tions (3) and(4). (In our work we solved this problem using
the relaxation methofil4].)

A solution representing a filament with constant phase
twist k can be constructed by writing,=a;(r)expi(— w4t

We will considerm=1 in this paper. Dividing by * «? and

defining a new radial coordinate=r 1— «?, a scaled wave
numberk,=k,/\1— 2, a scaled twisk= x/\1— «2, and a
scaled growth rate=s/(1— «x?) we obtain

iwg—S+1+(1+iB)

+06+k2). Inserting this ansatz into the CGLE), one can 19.9 (mto)?
obtain[9] the following relationships between the solution X| = —=f—= o — (k2 + ZRZ,}))
for a filament with no twis{(subscript § and one with twist ror ar r2
(subscript 1
01= wo+ (B— wg) K2, 5) —2(1+ia)|ag)?|uy —(1+ia)aju_=0,
a,(r)=1—«2ay(r), (6) (12)
where ag=po(r)e'”o") and w, are the radial direction de- _ . _
pendence and the frequency of the spiral solution of two- —lwo—s+1+(1-ipB)
dimenstional CGLE, repectively, andis a scaled radial co-
ordinate, r=r\1—«? Thus the solution for a three- 1d.9 (m—o)® . 5 ap
dimensional straight filament with twist can be constructed X\ F—Z_(kz —2k;x)
from the two-dimensional solution by rescaling the fre-
guency, amplitude, and radial variable. The radial asymptotic
wave number of a spiral wave solution with phase twkst, —2(1-ia)|agl? u,—(l—ia)ggu+=0,
becomes,y1— «?, wherek, is the asymptotic wave num-
ber for the two-dimensional spiral wave soluti¢ilament (13

with no twis® and the total large asymptotic wave vector is
given by where we use Eq5) and the relationship betweexny and

ao, aO(F)=a1(r)/\/1—K2. In this form, the numerical solu-

K= kzZ+Kyr, (7)  tion for a radially dependent functidfie., a,) from the 2D
CGLE is explicitly independent of the twigt, and, after the
kt= \ k02+(1_k02)K2. (8)

trivial rescalings ofs andk,, the twist paramete}c appears

only in the terms+ 2k,«. (See Sec. Ill A for boundary con-
ditions) For smallk, and x, Egs.(12) and(13) can be ana-
We assume that the equilibrium and perturbed solutiorytically solved using the technique [8]. To lowest order in
has the form k,~ 2, we obtain damping of a straight filament perturba-
tion,

B. Perturbation equations for a straight filament with twist

A(r,0,s,t)=[a,+u(r,0,z,t) lexp —iwt+tiocH+ikz},

©)

whereu is the linear perturbation imposed @an, the equi-

s=—(1+B2)k2. (14)

Another solvable case occurs fa close to, but less

librium solution derived in the preceding section. SUbStitUt-than, one(reca” that we require ‘]:K2>1 for existence

ing Eq. (9) into the CGLE (1) and assumingu(r,,z,t)
=y, eStikaz+imé 1 es™t=ikz=imé \ye optain the following
linearized system of equations far. andu_:

of the twisted equilibrium, Sec. Il A In this case, to
lowest order in (+ «?) Egs. (12) and (13) reduce to[s
+(1+iB)(k2*2k,k)u.=0, which yields the solutions
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=—(1+iB)(2kk+k?) (with |uy|>|u_|]) and s=(1
—iB)(2k,k—k,?) (with |u_|>|u.[). In both cases there is

instability (either for O>k,>—2k or 0<k,<2k). This 0
simple case clearly shows the potential destabilizing effect of
twist.

IIl. NUMERICAL STABILITY RESULTS

A. Numerical methods

Growth rate
s
S

In order to find the growth rate R& numerically, we use
the following scheme. If we replace with the partial time
derivative 9/t operator, Eqs(12) and (13) become time-
dependent partial differential equations in one spatial vari- ~0.04|

able, r. We solve these coupled linear equations using a
semi-implicit split-step method. The typical number of mesh
points used in our studies is 400, but for certain parameter 0 004 008 012 o016

values ofa, 8, we increased the resolution to 1000, or 2000 k,

mesh points for the purpose of double checking the results.

The maximum length of the radial box size used ranges from FIG. 1. Comparison between the numerical results and theoret-

20 to 40(for some cases, 70 or 100 he behavior ofi, and ical results for smalk, with «=0.6, 3= —0.5. Circles correspond
u_ asr goes to zero, is to the numerical results and the solid line is from the theoretical

results,s=—(1+,82)k§, wheres is growth ratek, is the wave
u+(r)—>r2, (15) number of modulation along the straight filament.

u_(r)—const+O(r?). with a finitek,. These results are consistent with the work of
Aransonet al. [15] for the straight filament with no twist.
Thus, atr=0, we use the boundary conditions that(0)  Above the solid line, the asymptotic plane wave of the spiral
=0 anddu_ /dr|,=0. For the boundary condition atlarge  wave becomes absolutely unstable. For the phase-twisted
we useu, (Lma) =U_(Lmay =0. As noted earlier, the defect straight filament the stability boundary im, 8 parameter
launches outgoing waves. Furthermore, we are interested gpace is shown in Figs.(®, 2(c), and Zd) for phase-twist
the («,B) regime where these outward plane waves are nolvave numbek=0.1, 0.15, and 0.2, respectively. The circles
absolutely unstabléSec. V). In this case inward waves ex- (dotg represent parameter values numerically found to be
cited atr =L, are rapidly damped and our conditionrat unstable(stable. Compared to the case of the untwisted fila-
=L max S€rves as an effective absorbing boundary for outgoment, it is seen that the stable region of parameters is re-
ing waves. For the purpose of examining the sensitivity ofduced by twist. It is also observed that an additional unstable
the eigenvalues and eigenfunctions to the boundary condregion emerges for low values ef 8 [e.g., the circles in
tions at larger, we have varied_ 5, for several parameters — g<1 for Fig. 2c)], which does not exist for the untwisted
and found no significanfless than 0.1%differences in the case. As the phase twist increases, the stable region of the
computed growth rate. By taking a random initial condition straight filament gets smaller.
or a Gaussian-like initial conditiofwhich we have chosen in In Fig. 3 the growth rate versus, is shown fora=0.1,
this papey), the numerical solution relaxes to the eigenmodeg=—1.0, andx=0.15. These values correspond approxi-
which has the largest growth rate. We record the growth agnately to a marginally stable situatigsee Fig. 2c)]. We
each instant of time and use a stringent convergence criteriafiote that fork,<0.1 the growth rate is negative and in ap-
to accept the computed value as a legitimate growth rate. Tproximate conformity with the theoretical resilt4). Near
validate the code, we first considered the case for skjall k,~0.1 there appears to be a mode crossing in the sense that
and k=0, a region of parameter space where Ef) ap-  an eigenfunction that is more strongly damped Ko« 0.1
plies. Figure 1 shows that the numerical regafien circles  than the eigenfunction corresponding to E#i4) becomes
closely follows the theoretical damping rafeolid curve  |ess strongly damped fde,=0.1. Ask, is increased past 0.1
(14) for «=0.6, B=—0.5. We also have tested other param-the growth rate of this eigenfunction rises, becoming maxi-
eter values. Due to small numerical error, the numericallymum atk,=kJ'™=0.2. At this maximum the growth rate is
computed magnitude of the growth rate kgr=0 is typically  near zero. For the same and « values, the growth rate at
of the order of 10* (rather than the theoretical result of k™ increasesbecomes positive corresponding to instabil-
zero. ity) as— B increases from its marginal stability value, and it
decreases(becomes negative, corresponding to stability
B. Parameter space for filament stability when — B is decreased from its marginal stability value.

We first address the stability of a filament with no twist (Note from Fig. 3 that;®+ «.) The same mode crossing
and compare our results with those previously obtained byhenomenon observed far=0.15 (Fig. 3) is also found for
Aransonet al. [15] using a different numerical method. In other values ofk including the untwisted casex&O0).

Fig. 2(a), the phase diagram of the straight filament withoutHence we see that, although the long wavelength analysis
phase twist is presented. In the region to the right of theyielding the result(14) continues to hold in the unstable
circles, the straight filament is unstable to the perturbatioriegime, the stable long wavelength modes will eventually be
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FIG. 2. Phase diagrams with various values of the phase f&jst= 0.0 cas€untwisted. To the right of the circles, the straight filament
is unstable. At the region of the parameters above the solid line, the spiral wave is absolutely ufstBblase diagram fae=0.1, in the
region with circle and the region to the right of the circled region, the straight filament with the phas& wist is unstable(c) Phase
diagram fork=0.15. Same afb) with xk=0.15. The region where the filament is stable is smaller than the ca&e o) Phase diagram
for k=0.2. Same a¢bh) with xk=0.2.

overcome by short wavelength unstable modes not described1)]” 19”2, Then, in the second step, the diffusive part,
by the long wavelength perturbation analysis that gives EqgA/dt=(1+iB)V?A, is solved by fast Fourier transforming
(14). Thus the results of Ref9] yielding the slow evolution 5 the wave number spadeA(x,t)—A(k,t)], integrating
of arbitrarily shaped filaments with weak curvatysmalo- analytically (A(t+At) = A ext] — (1+i 8)k2At]), and trans-
gous to long wavelengihand weak phase twist are physi- 3_” y (A( )= {[i (1+ip) D
cally relevant only in the regime where the filament is stableforming back to real spaceA~A). o N

to short wavelength modes. We emphasize, however, that the The straight vortex filament is used as an initial condition
stable region where the results of RE®] are physically for the three-dimensional simulation. For topological rea-
relevant is relatively large, particularly for small or zero SONS, there are always two of them with opposite charge in
twist. the box. To ensure that the interaction between the pair and

interactions with vortices in other periodicity cells do not
significantly influence the instability, we used a large com-
putational box. Theory predicts that vortex interaction is ex-
ponentially small in the distance between vortices. The as-

The full numerical simulation of the three-dimensional sumed lack of significant vortex interaction is supported by
CGLE has been done using periodic boundary conditiofy in the observation that during the linear phase of the growth of
y, andz via a time split-step technique. In the first step, thethe instability, the growth rates obtained from the 3D code
nonspatial part of the CGLBA/dt=A—(1+ia)|A|?A is  were in reasonable agreement with results from our single
solved exactly by A(t+At)=A(t)e*[1+]|A(t)|?(e®**' filament vortex linear stability code.

IV. THREE-DIMENSIONAL NONLINEAR
SIMULATION RESULTS
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FIG. 3. The growth rate versus, with «=0.1, 3=—-1.0, «

=0.15, when the parameters are on the boundary of the unstab[gv

region. Note that th&)'®* which gives the instability at finit&, has
different value from the wave number of the phase twist,0.15.

Figure 4a) shows a final helical state resulting from satu-

ration of such an instability for the cagse=0.0, 3=—1.6

with the phase twisk=0.1. These parameters are just to the®

right of the stability boundarysee Fig. 2b)]. The pitch of
the helix has a value of2n/L, with the integemn equal to 4.

This corresponds t&)'™ calculated from our linear stability
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filament with the nonzero phase twist is where the parameter
— B is smaller. In this region, the linear stability analysis
shows a very weak instabiliffusually the growth rate is less
than 10 2). Figure 4b) shows a helical structure evolved
from an unstable initially straight filament for=0.2,
B=—0.3,k=0.2[see Fig. 2d)]. For this casdthe box size
Ly=50m, L =507, L,=20m) the helical structure keeps
growing. Eventually parts of the two helices of opposite
charge approach each other and reconfiegf (We cannot
rule out the possibility that with a bigger box size, a satu-
rated helical state might resuylt.

V. ABSOLUTE INSTABILITY OF THE ASYMPTOTIC
PLANE WAVE OF A TWISTED FILAMENT

We now investigate the change in the absolute stability
boundary for a filament with phase twist. We find that this
change is rather small for the values we investigate. As
discussed in Sec. Il A, a filament with phase twist has a large
asymptotic wave number different from that of the un-
isted filament. This causes a change of the condition for
the absolute instability of the asymptotic plane wave solu-
tion.

The complex growth ratﬁ(ﬁ) for a modulational pertur-
bation to the plane wave solution with spatial dependence

19X s
) — 2_o9inlk A_p2
A(a)=—9°—2iBki-q— Ry

= \J(1+ @?)R{ — (Bq?—2iK,- G+ aR2)%, (16)

analysis. Another interesting unstable region of the straight

(a)

(b)

FIG. 4. (a) Helical vortex filament fora=0.0, 8= —1.6 with
the phase twisk=0.1.L,=20m, L,=20m, L,=40m, mesh size
64%. Isosurfacg A|=0.65 is shown(b) Helical vortex filament for
a=0.2, B=-0.3 with the phase twistk=0.2. L,=50m, L,
=50m, L,=20m, mesh size equal to 128128% 32. Isosurface
|A|=0.85 is shown.

WhereR2t= 1—k?. The above equation has the same form as
the growth rate for the two-dimensional spiral wave case,

with ko replaced byk,= x>+ (1— «?)k2. The time evolu-

tion of the perturbationu(x,t), is given by
+ o0 R N N
u(x,t)=f d*gexfig-x+N(q)tlug(t=0), (17

whereug(t=0) is the Fourier transform of an initial pertur-
bation which is three-dimensionally localized about some

pointio. Fort— oo, this integral can be evaluated at the point

Xo Using the saddle point method. Then the condition for
absolute instability becomg$s,17]

REN(G*)]>0, (18)
(c?)\(ﬁ)) =0 (19
0& d* ’
{ e(am&))
R —— <0, (20

where the third of these conditions indicates that the real part
of the matrix of partial derivatives\/dqdq is negative
definite. It is convenient to useq coordinates q
=q(k./|k{)+d, with g, -k=0. From Eq.(16) we see that

X\ depends omj, only throughg? and hence/\/aq, =0 for

g, =0. Thus we takej to be parallel tdk, and Eqs(19) and
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2 - - : xk=0.2. As can be seen, a phase-twisted filament becomes
' absolutely unstable for smaller values @f(for B> —2.8)
compared to an untwisted filament. Forpg

< —2.8, one can see the crossing of the two stability lines.
However, in this parameter region, the phase-twisted fila-
ment is already unstable due to the instability discussed ear-

1.6}

1.2} lier.
o VI. CONCLUSION
0.8} A time-dependent code, using a split-step algorithm, was

developed to investigate the linear stability of twisted CGLE
filaments. The code was benchmarked by comparing results
0.4} - 1 with analytical solutions of Gabbast al.[9] for the smallk,
case. The agreement was excellent. For the filament with no
twist, the stability boundary for the core instability was de-
0 ; ; . termined in the &,B) parameter space. This boundary was
found to be in good agreement with the recent work of Aran-
_B sonet al. [15] who use a different numerical technique. We
FIG. 5. Diagram showing the absolute instability line. The solid th_en Stqd'ed the stability boundary fqr scroll wave filaments
line is for the untwisted case, and the dotted line is for the case o‘f\”th twist. It was found thaF the twist re.duces the stable
the phase-twisted case with=0.2. The dashed line is for the '€9ion of th_e straight linear filament. Nonllnegr satu.r'ated or
Benjamin-Feir instability, # «3=0, where all the plane wave so- 9rowing helical states that develop due to the instability have
lutions are unstable. been obtained using our three-dimensional nonlinear code
[9]. The stable region of the straight filament in parameter
x 2 _ > space shrinks as the phase-twist wave number is increased.
(20) become(qf ,ql.—_0)>0, [(9)‘((:'”’m_o)/aq”]qu:qﬂk _The absolute instability analysis for the asymptotic plane
.=0..From these conditions, we compute a mgrg_mal stabilityyave solution of a three-dimensional spiral wave with phase
line in (@, 8) space. To check that EQO) is satisfied along  wwist shows that there is a shift of the stability boundary.
this line we note that the matrié®\ (q)/dqdq is diagonal at ~ This shift in the absolute plane wave stability boundary is
g, =0, and thus Eq(20) becomes the two scalar conditions Small even with a phase twist large enough to significantly
Re[aleaqﬁ]<0, Re{az)\/aqf]<0 atqH:q\T’ 4,=0. We reduce the stability regiofe.g.,x=0.2).
find these to be satisfied on the computed marginal stability
line. The solid line in Fig. 5 is the stability curve for the
asymptotic plane wave of the untwisted filament and the dot- This work was supported by the U.S. Office of Naval
ted line is for the result for a phase-twist wave number ofResearchPhysics.
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