
GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 20, PAGES 3759-3762, OCTOBER 15, 1998

The role of electron dissipation on the rate of
collisionless magnetic reconnection
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Abstract. Particle simulations and analytic arguments are
presented to demonstrate that the electron dissipation re-
gion, including the physics which breaks the frozen-in con-
dition, does not affect the rate of reconnection in collisionless
plasma. The result is a general consequence of the quadratic
nature of the dispersion character of whistler waves, which
control the plasma dynamics at small scales. The recon-
nection rate is instead controlled by the dynamics at length
scales much greater than the electron dissipation region.

Introduction

Magnetic reconnection plays an important role in the dy-
namics of the magnetosphere, the solar corona, and labora-
tory experiments by allowing magnetic energy to be released
in the form of high velocity streams of electrons and ions. In
resistive magnetohydrodynamic (MHD) models of this pro-
cess, resistivity breaks the frozen-in constraint in a bound-
ary layer called the dissipation region allowing reconnection
to occur. At low values of resistivity the dissipation re-
gion forms a macroscopic Sweet-Parker layer which severely
limits the rate of reconnection [Sweet, 1958; Parker, 1957;
Biskamp, 1986], the inflow velocity into the magnetic X-line
scaling like

vi ∼
δ

L
cA � cA, (1)

with δ and L being, respectively, the small, resistivity-
dependent width and macroscopic length of the dissipation
region and cA being the Alvén velocity. As resistivity goes
to zero, δ → 0 and reconnection proceeds only in the pres-
ence of anomalous resistivity [Biskamp, 1993]. In physical
systems of interest, resistivity is too weak to explain the
observations and anomalous resistivity remains poorly un-
derstood.

In collisionless plasma the dissipation region develops a
multiscale structure based on electron and ion scale lengths
[Biskamp et al., 1997; Shay et al., 1998]. Within a distance of
the order of the ion inertial length δi = c/ωpi the ion motion
decouples from that of the electrons[Mandt et al., 1994] and
the magnetic field and the ions are accelerated away from the
X-line, eventually reaching the Alfvén velocity. Within this
ion inertial region but outside of an electron inertial region,
the electrons remain frozen-in to the magnetic field and the
dynamics of the electron magnetofluid are described by a set
of nonlinear whistler equations [Mandt et al., 1994; Biskamp
et al., 1997]. Finally, even closer to the X-line the electrons
decouple from the magnetic field either as a result of their
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finite thermal velocity [Laval et al., 1966] or their convective
motion [Dungey, 1988; Burkhart et al., 1990]. In a fluid
description the mechanism for breaking the electron frozen-
in condition can be described either as electron inertia or a
non-gyrotropic pressure [Vasyliunas, 1975] and has recently
been the subject of intense scrutiny [Lyons and Pridemore-
Brown, 1990; Cai et al., 1994; Biskamp et al., 1997; Horiuchi
and Sato, 1997; Shay et al., 1998; Kuznetsova et al., 1998;
Hesse and Winske, 1998].

Since the early explorations of the mechanism for break-
ing the frozen-in flux condition, it was recognized that dur-
ing steady state reconnection electron inertia cannot balance
the reconnection electric field at the X-line since in a 2-D
model the flows vanish at this location [Vasyliunas, 1975].
In seeming contradiction to these results, however, studies
of 2-D steady-state reconnection using only electron inertia
to break the frozen-in constraint find that not only is steady-
state reconnection possible, but that the reconnection rate
is independent of electron inertia [Biskamp et al., 1997; Shay
et al., 1998]. In hybrid and Hall MHD simulations in which
resistivity breaks the frozen-in condition, the reconnection
rates are similarly insensitive to the actual values of resis-
tivity used in the simulations [Mandt et al., 1994; Ma and
Bhattacharjee, 1996].

The underlying physics is linked to the different disper-
sion character of the whistler and Alfvén waves. In all of
the simulations which include the Hall effect, the structure
of the electron inertial region is controlled by whistler rather
than Alfvén dynamics because this region has an intrinsic
scale length which is well below the ion inertial length. The
quadratic dispersion character of the whistler wave (ω ∼ k2)
leads to an increase in the phase speed with decreasing scale
size and therefore to an increase in the velocity at which the
electrons can be ejected from the X-line as the scale size of
the electron dissipation region decreases. The consequence
is that, in contrast to the resistive MHD scaling in Eq. (1),
the whistler dynamics leads to an inflow velocity which is
independent of the width of the dissipation region. This
can be shown by carrying out a Sweet-Parker-like analysis
of the dissipation region using the whistler equations. We
take the width of the layer in the inflow (z) direction, δ, to
be controlled by an unspecified mechanism which breaks the
electron frozen-in condition, and the length in the outflow
(x) direction to be L � δ. In the whistler regime the elec-
trons are frozen-in to the magnetic field and the ion motion
can be neglected. The resulting dynamical equations in a
2-D system are[Biskamp et al., 1997]

∂ψ

∂t
+ ve · ∇ψ = 0,

∂By

∂t
−B · ∇vey = 0 (2)

ve = −
c

4πne
(∇By × ŷ + ŷ∇2

ψ) (3)
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Figure 1. Reconnection electric field Er versus time for
Lx = 80.

where B = ŷ × ∇ψ + Byŷ. The outflow velocity follows
from the x component of (3), vex ∼ cBy/(4πneδ). The
out-of-plane field By arises from bending the in-plane field.
The source (∼ Bxvey/L) acts for a time of the order of the
convection time out of the dissipation region ∼ L/vex so
By ∼ Bxvey/vex. Combining these relations and eliminat-
ing vey using (3), we obtain By ∼ Bx, vex ∼ vey and the
electron outflow velocity vex ∼ Ωeδ

2
e/δ, which is the whistler

analogue of the Alfvén outflow condition in MHD. The im-
portant point is that this outflow velocity scales inversely
with the width of the dissipation region. Applying continu-
ity (vexδ ∼ viL), the inflow velocity is given by

vi ∼
1

L
δ

2
eΩe. (4)

The reconnection rate is independent of δ and therefore the
mechanism by which the electron frozen-in condition is bro-
ken. The reconnection rate remains finite even as δ→ 0. In
fact, the reconnection rate given in (4) is sufficiently large
(it will turn out that L is actually microscopic) that the
whistler time of the global system is more of a constraint on
the reconnection rate; consequently, the electron dissipation
region has no impact on the rate of reconnection.

In this paper, we focus on the structure of the elec-
tron dominated inner layer of the dissipation region where
whistler physics and electron inertial dynamics are impor-
tant but where the ions play no significant role. Using an
electron particle code we are able to explore the relative
roles of inertia and the non-gyrotropic pressure in break-
ing the frozen-in condition and are able to demonstrate that
the microphysics associated with these processes have no im-
pact on the reconnection rate. Instead, it is the large scale
macroscopic physics which controls this rate, in this case
the global whistler dynamics. In a simulation including the
ions, it would be the dynamics of the ion dissipation region.

Particle Simulation Model

This study is performed with a 2 1/2 dimensional elec-
tron particle-in-cell (PIC) code. The ions constitute a sta-
tionary background of density n0. This allows us to focus
on the dynamics of whistlers and the electron dissipation
region without the problems arising from inadequate sepa-
ration of scales due to unrealistic ion to electron mass ra-
tios. The electric and magnetic fields are stepped forward
using the full Maxwell’s equations. At the end of each time
step, the electric field is modified by adding an electrostatic
component to insure that ∇ · E = 4πρ. Time is normal-
ized to the electron cyclotron time Ω−1

e , based on the max-

Figure 2. The (a) out-of-plane electron current Jy, (b)
flux function ψ, and (c) out-of-plane magnetic field By for
Lx = 160.

imum initial magnetic field B0. Length scales are normal-
ized to c/ωpe based on n0. Velocity is therefore normalized

to cAe =
√
B2

0/(4πn0me). The speed of light, c, is equal to
5cAe for all simulations. The Debye length is only marginally
resolved.

The initial configuration of the system is a double cur-
rent sheet in the (x, z) plane in a box of length Lx and
width Lz , with Lx/Lz = 2. The boundary conditions are
periodic in both directions. The initial current sheets are
located at z = ±Lz/4 with the initial magnetic field given
by Bx = tanh[(z + Lz/4)/w0] − tanh[(z − Lz/4)/w0] − 1.
Small magnetic perturbations and associated currents are
added to form seed magnetic islands centered around the
two current layers. The grid scales, ∆x and ∆z , are 0.3125.

Unlike a conventional Harris equilibrium in which the
variation of the density produces the equilibrium current,
we take the density to be nearly constant, the current being
produced by the E × B drift of electrons. The tempera-
ture Te is spatially uniform. There are on average 50 par-
ticles/cell initially loaded with a shifted gaussian consistent
with the equilibrium density and current. The largest sim-
ulation is 512×256 grid points with 7 million particles. For
this series of simulations, we varied Lx and Lz, me , w0, and
Te. The growth of magnetic islands in this system is robust
and proceeds without saturation so that the quasi-steady re-
connection rate and associated structure of the current layer
can be studied as a function of critical parameters.

Simulation Results

Figure 1 is a plot of the reconnection electric field, Ey
at the x-line, versus time for Lx = 80. During time period
I, the x-lines form and the reconnection rate increases to
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Figure 3. The out-of-plane electron current Jy for Lx =
40.

its quasi-steady value. During time period II, reconnection
is quasi-steady and will be the focus of our analysis. In
time period III, the flux bubbles have grown so that they
nearly reach the X-lines of the adjacent current layer and
this causes a sudden enhancement of the reconnection rate.

Figure 2 shows the out-of-plane electron current, in-plane
magnetic field lines, and out-of-plane magnetic field By dur-
ing the quasi-steady reconnection period from a simulation
with Lx = 160. To save space, only half of the simulation
box is shown in Figures 2 and 3. The structure of the elec-
tron current layer around the magnetic x-line has reached a
quasi-steady state, its width and length being independent
of the width of the initial current layer. Consistent with
the earlier fluid simulations [Biskamp et al., 1997; Shay et
al., 1998], the electron current layer is microscopic in both
the inflow and outflow directions, that is, it is not of the
order of the macroscale, Lx, as in MHD. This can be more
clearly seen by comparing the current layer in Fig. 2a with
that from a simulation with Lx = 40 in Fig. 3. The basic
scale lengths of the layer are almost unchanged in spite of
the substantial difference in Lx. The out-of-plane field By
represent the approximate streamlines of the electron flow
since for c large, the in-plane current is given approximately
by ∇By×ŷ. The presence ofBy is a signature of the whistler
dynamics.

Figure 4a is a plot of the reconnection electric field, Er,
versus 1/Lx which demonstrates that Er ∝ 1/Lx. This
scaling implies that reconnection is controlled by the global
whistler time of the system and not the electron dissipation
region. The global whistler time scales like L2

x and the mag-
netic flux in the system scales like Lx. Thus, Er scales like
the total flux divided by the time, or like 1/Lx. To make the
absence of a dependence on the electron dissipation region
more explicit, we can rescale the data shown in Fig. 4a so
that we vary the electron mass at a fixed system size. The
results in Fig. 4b demonstrate that the reconnection rate is
independent of the electron mass and therefore independent
of the dynamics of the electron dissipation region, as found
in previous two fluid [Biskamp et al., 1997] and hybrid [Shay
et al., 1998] simulations. Finally, the reconnection rate is in-
sensitive to the electron temperature, which has been varied
by a factor of sixteen, and the initial current layer width,
which has been varied by a factor of two. Thus, reconnec-
tion rate does not depend on the physics that breaks the
electron frozen-in constraint.

The width of the current layer in the inflow direction is
controlled by the Larmor radii of the unmagnetized electrons
as they bounce back and forth across the x-line [Laval et al.,

Figure 4. Reconnection electric field Er versus: (a) the
macroscopic system length Lx at fixed electron mass, and
(b) the electron mass at fixed Lx.

1966; Horiuchi and Sato, 1997]. This width is always of the
order of c/ωpe, but its exact value varies with the inflow
thermal velocity vte of the electrons. The turning point δ
of electrons being reflected from the magnetic field Bx on
either side of the x-line is given by [Laval et al., 1966]

δ ∼

√
vte

Ω′ex
, (5)

where Ω′ex = ∂Ωex/∂z. Figure 5 is a plot of this expression
with Ωex measured from the simulations versus the mea-
sured width w of the electron current layer. At sufficiently
low thermal velocities the current layer width should ap-
proach a constant in which vte is replace by the E×B inflow
velocity cEy/Bx(δ) [Dungey, 1988; Burkhart et al., 1990].
Unfortunately, we cannot demonstrate this transition due
to heating from density fluctuations.

The electron outflow velocity is much greater than the
inflow velocity, typically being comparable to or sometimes
larger than the thermal velocity. This is because the upper
limit on the outflow velocity of electrons is the peak whistler
speed or the electron Alfvén velocity cAe, which typically
exceeds the electron thermal velocity. The fluid picture of
the acceleration of electrons and their ejection from the cur-
rent layer is therefore relevant [Dungey, 1988; Burkhart et
al., 1990]. On entry into the unmagnetized region, electrons

Figure 5. Predicted width of the electron current layer δ
versus the measured current layer width w.
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are accelerated in the y direction by the reconnection elec-
tric field Er. The magnetic field Bz causes the particles
to rotate into the outflow direction. Therefore, the outflow
velocity vx is comparable and scales the same as the out-of-
plane velocity vy; the length of the current layer in the x
direction, ∆, is basically the effective Larmor radius based
on these velocities; and the time that a fluid element spends
in the current layer is given by tc ∼ (∂Ωz/∂x ∆)−1. Putting
this picture together, vx, vy and ∆ scale like [Dungey, 1988;
Burkhart et al., 1990]

vy ∼ vx ∼
(
eEr

me

)
tc ∼

(
eEr

me

)2/3 1

(∂Ωz/∂x)1/3
, (6)

∆ ∼
(
eEr

me

)1/3 1

(∂Ωz/∂x)2/3
. (7)

Equation (6) implies that the integrated current in the elec-
tron layer, and therefore the jump in Bx across this cur-
rent layer, should decrease with increasing system size Lx
since Er ∝ 1/Lx and therefore vy ∝ 1/L2/3

x . As Lx be-
comes larger, the electron current sheet weakens, which has
been confirmed in these simulations. Finally, Eqn. (7) pre-
dicts that the length of the electron current layer is micro-
scopic and actually decreases slightly with increasing system
size. This is also consistent with the current layers shown
in Figs. 2a and 3. We emphasize that the thermal veloci-
ties are comparable to the fluid velocities in the simulations
so no simple theory quantitatively describes the simulation
results.

Conclusion

The results presented demonstrate that the reconnection
rate in collisionless plasma is insensitive to the mechanism
which breaks the electron frozen-in condition in the colli-
sionless particle description of the dynamics. This result is
consistent with the hybrid and two fluid models and is a con-
sequence of the quadratic nature of the whistler frequency.
The results imply that a Hall MHD model of the magne-
tosphere should adequately describe the dynamics of recon-
nection once the linear phase of reconnection has past. It
remains to be seen whether a fluid model can adequately de-
scribe the onset of the expansion phase of substorms, which
may depend on the onset of kinetic instabilities.
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